

Independence and generators

- Proposition 8.10: $\left(\mathcal{C}_{i}\right)_{i \in I}$ independent, \cap-stable set systems.

Then, $\left(\sigma\left(\mathcal{C}_{i}\right)\right)_{i \in I}$ are also independent.

- Recall: Let \mathcal{C} be \cap-stable and $\mathcal{D} \supseteq \mathcal{C}$ Dynkin system
$\Omega \in \mathcal{D}, \quad A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \backslash A \in \mathcal{D}$,
$A_{1}, A_{2}, \ldots \in \mathcal{D}, A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{D}$.
Then $\sigma(\mathcal{C}) \subseteq \mathcal{D}$.
- Proof: Let $J=\left\{i_{1}, \ldots, i_{n}\right\} \subseteq_{f} I$ and o.E. $|J|>1$. Then,

$$
\begin{equation*}
\mathbf{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{n}}\right)=\prod_{k=1}^{n} \mathbf{P}\left(A_{i_{k}}\right) \text { for } A_{i_{k}} \in \mathcal{C}_{i_{k}}, k=1, \ldots, n \tag{*}
\end{equation*}
$$

Fix $A_{i_{2}}, \ldots, A_{i_{n}}$ and show that $\mathcal{D}:=\left\{A_{i_{1}} \in \mathcal{F}:(*)\right.$ holds $\}$. is a \cap-stable Dynkin system.

Indicator functions

- Corollary 8.11: A family of sets $\left(A_{i}\right)_{i \in I}$ is independent if and only if the family of random variables $\left(1_{A_{i}}\right)_{i \in I}$ is independent. In particular,

$$
\begin{aligned}
& \qquad \mathbf{P}\left(\bigcap_{j \in J} B_{j}\right)=\prod_{j \in J} \mathbf{P}\left(B_{j}\right) \\
& \text { for } J \subseteq_{f} I, B_{j} \in\left\{A_{j}, A_{j}^{c}\right\}, j \in J . \\
& \text { Proof: } \mathcal{C}_{i}=\left\{A_{i}\right\}, \sigma\left(\mathcal{C}_{i}\right)=\left\{\emptyset, C_{i}, C_{i}^{c}, \Omega\right\}
\end{aligned}
$$

Grouping

- Corollary 8.12: $\left(\mathcal{F}_{i}\right)_{i \in I}$ Family of independent σ-algebras, \mathcal{I} a partition of I, i.e. $\mathcal{I}=\left\{I_{k}, k \in K\right\}$ with $\biguplus_{k \in K} I_{k}=I$. Then $\left(\sigma\left(\mathcal{F}_{i}: i \in I_{k}\right)\right)_{k \in K}$ is also an independent system.
Proof: $\mathcal{C}_{k}:=\left\{\bigcap_{i \in J_{k}} A_{i}: J_{k} \subseteq_{f} I_{k}, A_{i} \in \mathcal{F}_{i}\right\}$ is \cap-stable and $\sigma\left(\mathcal{C}_{k}\right)=\sigma\left(\mathcal{F}_{i}: i \in I_{k}\right), k \in K$.

Terminal σ-algebra

- Definition 8.13: Let $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \subseteq \mathcal{F}$ all σ-algebras. Then

$$
\mathcal{T}\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots\right)=\bigcap_{n \geq 1} \sigma\left(\bigcup_{m>n} \mathcal{F}_{m}\right)
$$

is the σ-algebra of the terminal events of $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots \widetilde{\mathcal{F}} \subseteq \mathcal{F}$
A σ-algebra $\widetilde{\mathcal{F}}$ is called \mathbf{P}-trivial if $\mathbf{P}(A) \in\{0,1\}, A \in \widetilde{\mathcal{F}}$.

Trivial σ-algebras

- Lemma 8.14:
$\widetilde{\mathcal{F}} \sigma$-algebra is \mathbf{P}-trivial $\Longleftrightarrow \widetilde{\mathcal{F}}$ is independent of itself. $\widetilde{\mathcal{F}}$ is a \mathbf{P}-trivial σ-algebra, X is $\widetilde{\mathcal{F}}$-measurable. Then X is constant, almost surely.

Proof: ' \Rightarrow ':

$$
A, B \in \widetilde{\mathcal{F}} \Rightarrow \mathbf{P}(A \cap B)=\mathbf{P}(A) \wedge \mathbf{P}(B)=\mathbf{P}(A) \cdot \mathbf{P}(B) \text {, so } \widetilde{\mathcal{F}} \text { is }
$$

independent of itself.

$$
\begin{aligned}
& ' \Leftarrow ': \text { For } A \in \widetilde{\mathcal{F}}, \\
& \mathbf{P}(A)=\mathbf{P}(A \cap A)=\mathbf{P}(A)^{2} \Rightarrow \mathbf{P}(A) \in\{0,1\} \\
& \text { Let } c:=\sup \{x: \mathbf{P}(X<x)=0\}, \text { thus } \\
& 1=\lim _{\varepsilon \downarrow 0} \mathbf{P}(X<c+\varepsilon)-\mathbf{P}(X<c-\varepsilon)=P(X=c)
\end{aligned}
$$

universitätfreiburg

Kolmogorov's 0-1 law

- Theorem 8.15: Let $\left(\mathcal{F}_{n}\right)_{n=1,2, \ldots}$ be independent σ-algebras.

Then, $\mathcal{T}:=\mathcal{T}\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots\right)$ is \mathbf{P}-trivial.
Proof:

$$
\mathcal{T}_{n}:=\sigma\left(\bigcup_{m>n} \mathcal{F}_{m}\right) \quad n=1,2, \ldots
$$

According to Corollary 8.12: $\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}, \mathcal{T}_{n}\right)$ independent, $n=1,2, \ldots$ This also means that $\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}, \mathcal{T}\right)$ are independent, $n=1,2, \ldots$ and therefore also $\left(\mathcal{T}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots\right)$.

Again with Corollary 8.12 it follows that $\left(\mathcal{T}_{0}, \mathcal{T}\right)$ are independent and, since $\mathcal{T} \subseteq \mathcal{T}_{0}$, it also follows that \mathcal{T} is independent of itself. Therefore, the assertion follows from Lemma 8.14.

