Probability Theory 7. Kolmogorov's 0-1-Law

Peter Pfaffelhuber

May 5, 2024

Independence and generators

- Proposition 8.10: (C_i)_{i∈I} independent, ∩-stable set systems. Then, (σ(C_i))_{i∈I} are also independent.
- ▶ Recall: Let C be \cap -stable and $D \supseteq C$ Dynkin system

$$\Omega \in \mathcal{D}, \qquad A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \setminus A \in \mathcal{D},$$

$$A_1, A_2, \ldots \in \mathcal{D}, A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{D}.$$
Then $\sigma(\mathcal{C}) \subseteq \mathcal{D}.$
Proof: Let $J = \{i_1, \ldots, i_n\} \subseteq_f I$ and o.E. $|J| > 1$. Then,
$$\mathbf{P}(A_{i_1} \cap \cdots \cap A_{i_n}) = \prod_{k=1}^n \mathbf{P}(A_{i_k}) \text{ for } A_{i_k} \in \mathcal{C}_{i_k}, k = 1, \ldots, n. \quad (*)$$
Fix A_{i_2}, \ldots, A_{i_n} and show that $\mathcal{D} := \{A_{i_1} \in \mathcal{F} : (*) \text{ holds}\}.$ is a \cap -stable Dynkin system.

universität freiburg

Indicator functions

Corollary 8.11: A family of sets (A_i)_{i∈I} is independent if and only if the family of random variables (1_{A_i})_{i∈I} is independent. In particular,

$$\mathbf{P}\Big(\bigcap_{j\in J} B_j\Big) = \prod_{j\in J} \mathbf{P}(B_j)$$

for $J \subseteq_f I$, $B_j \in \{A_j, A_j^c\}, j \in J$.
Proof: $C_i = \{A_i\}, \sigma(C_i) = \{\emptyset, C_i, C_i^c, \Omega\}$

Grouping

Corollary 8.12: (*F_i*)_{i∈I} Family of independent *σ*-algebras, *I* a partition of *I*, i.e. *I* = {*I_k*, *k* ∈ *K*} with *⊎_{k∈K} I_k* = *I*. Then (*σ*(*F_i* : *i* ∈ *I_k*))_{*k∈K*} is also an independent system.
 Proof: *C_k* := { ∩<sub>*i∈J_k A_i* : *J_k* ⊆_{*f*} *I_k*, *A_i* ∈ *F_i*} is ∩-stable and *σ*(*C_k*) = *σ*(*F_i* : *i* ∈ *I_k*), *k* ∈ *K*.
</sub>

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Terminal σ -algebra

▶ Definition 8.13: Let $\mathcal{F}_1, \mathcal{F}_2, ... \subseteq \mathcal{F}$ all σ -algebras. Then

$$\mathcal{T}(\mathcal{F}_1, \mathcal{F}_2, \dots) = \bigcap_{n \ge 1} \sigma \Big(\bigcup_{m > n} \mathcal{F}_m \Big)$$

is the σ -algebra of the terminal events of $\mathcal{F}_1, \mathcal{F}_2, \dots \quad \widetilde{\mathcal{F}} \subseteq \mathcal{F}$ A σ -algebra $\widetilde{\mathcal{F}}$ is called **P**-trivial if $\mathbf{P}(A) \in \{0,1\}, A \in \widetilde{\mathcal{F}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Trivial σ -algebras

Lemma 8.14:

 $\widetilde{\mathcal{F}} \sigma$ -algebra is **P**-trivial $\iff \widetilde{\mathcal{F}}$ is independent of itself. $\widetilde{\mathcal{F}}$ is a **P**-trivial σ -algebra, X is $\widetilde{\mathcal{F}}$ -measurable. Then X is constant, almost surely.

Proof: $' \Rightarrow '$: $A, B \in \widetilde{\mathcal{F}} \Rightarrow \mathbf{P}(A \cap B) = \mathbf{P}(A) \land \mathbf{P}(B) = \mathbf{P}(A) \cdot \mathbf{P}(B)$, so $\widetilde{\mathcal{F}}$ is independent of itself. ' \Leftarrow ': For $A \in \widetilde{\mathcal{F}}$. $\mathbf{P}(A) = \mathbf{P}(A \cap A) = \mathbf{P}(A)^2 \Rightarrow \mathbf{P}(A) \in \{0, 1\}.$ Let $c := \sup\{x : \mathbf{P}(X < x) = 0\}$, thus $1 = \lim_{\varepsilon \to 0} \mathbf{P}(X < c + \varepsilon) - \mathbf{P}(X < c - \varepsilon) = P(X = c)$ universität freiburg

(ロ)、

Kolmogorov's 0-1 law

► Theorem 8.15: Let (𝓕_n)_{n=1,2,...} be independent σ-algebras. Then, 𝒯 := 𝒯(𝓕₁,𝓕₂,...) is P-trivial. Proof:

$$\mathcal{T}_n := \sigma\Big(\bigcup_{m>n} \mathcal{F}_m\Big) \qquad n = 1, 2, \dots$$

According to Corollary 8.12: $(\mathcal{F}_1, \ldots, \mathcal{F}_n, \mathcal{T}_n)$ independent, $n = 1, 2, \ldots$ This also means that $(\mathcal{F}_1, \ldots, \mathcal{F}_n, \mathcal{T})$ are independent, $n = 1, 2, \ldots$ and therefore also $(\mathcal{T}, \mathcal{F}_1, \mathcal{F}_2, \ldots)$. Again with Corollary 8.12 it follows that $(\mathcal{T}_0, \mathcal{T})$ are independent and, since $\mathcal{T} \subseteq \mathcal{T}_0$, it also follows that \mathcal{T} is independent of itself. Therefore, the assertion follows from Lemma 8.14.

universität freiburg