

Independence

- Definition 8.1: $\left(A_{i}\right)_{i \in I}$ with $A_{i} \in \mathcal{F}$ is called independent, if

$$
\begin{equation*}
\mathrm{P}\left(\bigcap_{j \in J} A_{j}\right)=\prod_{j \in J} \mathrm{P}\left(A_{j}\right) \tag{*}
\end{equation*}
$$

for all $J \subseteq_{f} I$.
$\left(\mathcal{C}_{i}\right)_{i \in I}$ with $\mathcal{C}_{i} \subseteq \mathcal{F}$ is called independent if $(*)$ holds for all
$J \subseteq_{f} I$ and $A_{j} \in \mathcal{C}_{j}, j \in J$.
$\left(X_{i}\right)_{i \in I}$ is called independent if $\left(\sigma\left(X_{i}\right)\right)_{i \in I}$ is independent.

Existence of product measures

- Proposition 8.2: $\left(X_{i}\right)_{i \in I}$ is independent if and only if for each $J \subseteq \subseteq_{f} I$

$$
\left(\left(X_{i}\right)_{i \in J}\right)_{*} \mathrm{P}=\bigotimes_{i \in J}\left(X_{i}\right)_{*} \mathrm{P}
$$

- Corollary 8.3: Let E be Polish, I arbitrary. Let $X_{i}: \Omega: i \rightarrow E$ ZV for probability spaces $\left(\Omega_{i}, \mathcal{F}_{i}, \mathrm{P}_{i}\right), i \in I$. Then there are $(\Omega, \mathcal{F}, \mathrm{P})$ and $Y_{i}: \Omega \rightarrow E$ with $\left(Y_{i}\right)_{i \in I}$ independent and $Y_{i} \stackrel{d}{=} X_{i}$.
- Lemma 8.4: $\left(\Omega_{i}^{\prime}, \mathcal{F}_{i}^{\prime}\right),\left(\Omega_{i}^{\prime \prime}, \mathcal{F}_{i}^{\prime \prime}\right), i \in I$, measureable spaces. $\left(X_{i}\right)_{i \in I}$ independent rvs, $X_{i}: \Omega \rightarrow \Omega_{i}^{\prime}$, and $\varphi_{i}: \Omega_{i}^{\prime} \rightarrow \Omega_{i}^{\prime \prime}$ measurable, $i \in I$. Then the family $\left(\varphi_{i}\left(X_{i}\right)\right)_{i \in I}$ is also independent. Proof: Clear because of $\sigma\left(\varphi_{i}\left(X_{i}\right)\right) \subseteq \sigma\left(X_{i}\right)$.

Independent and uncorrelated

- Proposition 8.5: $X, Y \in \mathcal{L}^{1}$ independent, \mathbb{R}-valued. Then $X Y \in \mathcal{L}^{1}$ and

$$
\mathrm{E}[X Y]=\mathrm{E}[X] \cdot \mathrm{E}[Y] .
$$

Proof: If the statement is true, it is also true for sums:

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i=1}^{n} X_{i} \cdot \sum_{j=1}^{n} Y_{j}\right] & =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left[X_{i} Y_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left[X_{i}\right] \mathrm{E}\left[Y_{j}\right] \\
& =\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right] \cdot \mathrm{E}\left[\sum_{j=1}^{n} Y_{j}\right]
\end{aligned}
$$

Clear if $X=1_{A}, Y=1_{B}$;
Clear for simple functions
Clear for non-negative, measurable functions

Example:

- Let $X, Y \sim B(1, .5)$. Then $X+Y, X-Y$ are uncorrelated but not independent.

$$
\mathrm{E}[(X+Y)(X-Y)]=\mathrm{E}\left[X^{2}-Y^{2}\right]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}\left[Y^{2}\right]=0,
$$

but

$$
\begin{aligned}
& \mathrm{P}(X+Y=2, X-Y=1)=0 \\
& \quad \neq \frac{1}{16}=\mathrm{P}(X=Y=1) \cdot \mathrm{P}(X=1, Y=0) \\
& \quad=\mathrm{P}(X+Y=2) \cdot \mathrm{P}(X-Y=1)
\end{aligned}
$$

The Borel-Cantelli lemma

- Definition 8.7: For $A_{1}, A_{2}, \cdots \in \mathcal{F}$,

$$
\limsup _{n \rightarrow \infty} A_{n}:=\bigcap_{n \geq 1} \bigcup_{m \geq n} A_{m}
$$

- Theorem 8.8: Let $A_{1}, A_{2}, \ldots \in \mathcal{F}$. Then

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)<\infty \Longrightarrow \mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0
$$

If A_{1}, A_{2}, \ldots are independent,

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)=\infty \Longrightarrow \mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1
$$

Proof:

$$
\mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcup_{m \geq n} A_{m}\right) \leq \lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mathrm{P}\left(A_{m}\right)=0
$$

The Borel-Cantelli lemma

- Theorem 8.8: Let $A_{1}, A_{2}, \ldots \in \mathcal{F}$. If A_{1}, A_{2}, \ldots are independent,

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)=\infty \Longrightarrow \mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1
$$

Proof: We recall $\log (1-x) \leq-x$ for $x \in[0,1]$.

$$
\begin{aligned}
& \mathrm{P}\left(\left(\limsup _{n \rightarrow \infty} A_{n}\right)^{c}\right)=\mathrm{P}\left(\bigcup_{n=1}^{\infty} \bigcap_{m \geq n} A_{m}^{c}\right)=\lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right) \\
& \quad=\lim _{n \rightarrow \infty} \prod_{m=n}^{\infty}\left(1-\mathrm{P}\left(A_{m}\right)\right)=\lim _{n \rightarrow \infty} \exp \left(\sum_{m=n}^{\infty} \log \left(1-\mathrm{P}\left(A_{m}\right)\right)\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \exp \left(-\sum_{m=n}^{\infty} \mathrm{P}\left(A_{m}\right)\right) \\
& \quad=0
\end{aligned}
$$

Examples

- Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be an infinite p coin toss with $p>0$.

Then $\mid\left\{n: X_{n}\right.$ head $\} \mid=\infty$. head.
Indeed: Let $A_{n}:=\left\{X_{n}\right.$ head $\}$. Then, A_{1}, A_{2}, \ldots is independent and $\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{1}{2}=\infty$.

- The probability that only finitely many of the events $B_{n}:=\left\{X_{1}\right.$ head $\}$ occur is p.
- Let $X_{n} \sim \operatorname{geo}(p)$ be independent. Then, $\left|\left\{n: X_{n}>n\right\}\right|<\infty$ almost surely. Indeed, let $A_{n}:=\left\{X_{n}>n\right\}$. Then,

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)=\sum_{n=1}^{\infty} \mathrm{P}\left(X_{n} \geq n\right)=\sum_{n=1}^{\infty}(1-p)^{n-1}=\frac{1}{p}<\infty
$$

