Probability Theory 6. The Lemma of Borel-Cantelli

Peter Pfaffelhuber

May 5, 2024

Independence

▶ Definition 8.1: $(A_i)_{i \in I}$ with $A_i \in \mathcal{F}$ is called *independent*, if

$$\mathsf{P}\Big(\bigcap_{j\in J} A_j\Big) = \prod_{j\in J} \mathsf{P}(A_j) \tag{\ast}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $J \subseteq_f I$.

 $(C_i)_{i \in I}$ with $C_i \subseteq \mathcal{F}$ is called *independent* if (*) holds for all $J \subseteq_f I$ and $A_j \in C_j, j \in J$.

 $(X_i)_{i \in I}$ is called independent if $(\sigma(X_i))_{i \in I}$ is independent.

Existence of product measures

- ▶ Proposition 8.2: $(X_i)_{i \in I}$ is independent if and only if for each $J \subseteq_f I$ $((X_i)_{i \in J})_* P = \bigotimes_{i \in J} (X_i)_* P,$
- Corollary 8.3: Let *E* be Polish, *I* arbitrary. Let $X_i : \Omega : i \to E$ ZV for probability spaces $(\Omega_i, \mathcal{F}_i, P_i)$, $i \in I$. Then there are (Ω, \mathcal{F}, P) and $Y_i : \Omega \to E$ with $(Y_i)_{i \in I}$ independent and $Y_i \stackrel{d}{=} X_i$.
- Lemma 8.4: (Ω'_i, F'_i), (Ω''_i, F''_i), i ∈ I, measureable spaces. (X_i)_{i∈I} independent rvs, X_i : Ω → Ω'_i, and φ_i : Ω'_i → Ω''_i measurable, i ∈ I. Then the family (φ_i(X_i))_{i∈I} is also independent. Proof: Clear because of σ(φ_i(X_i)) ⊆ σ(X_i).

Independent and uncorrelated

▶ Proposition 8.5: $X, Y \in \mathcal{L}^1$ independent, \mathbb{R} -valued. Then $XY \in \mathcal{L}^1$ and

$$\mathsf{E}[XY] = \mathsf{E}[X] \cdot \mathsf{E}[Y].$$

Proof: If the statement is true, it is also true for sums:

$$\mathsf{E}\Big[\sum_{i=1}^{n} X_i \cdot \sum_{j=1}^{n} Y_j\Big] = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathsf{E}[X_i Y_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathsf{E}[X_i] \mathsf{E}[Y_j]$$
$$= \mathsf{E}\Big[\sum_{i=1}^{n} X_i\Big] \cdot \mathsf{E}\Big[\sum_{j=1}^{n} Y_j\Big].$$

Clear if $X = 1_A$, $Y = 1_B$;

Clear for simple functions

Clear for non-negative, measurable functions

Example:

Let X, Y ~ B(1,.5). Then X + Y, X - Y are uncorrelated but not independent.

$$E[(X + Y)(X - Y)] = E[X^2 - Y^2] = E[X^2] - E[Y^2] = 0,$$

but

$$P(X + Y = 2, X - Y = 1) = 0$$

$$\neq \frac{1}{16} = P(X = Y = 1) \cdot P(X = 1, Y = 0)$$

$$= P(X + Y = 2) \cdot P(X - Y = 1).$$

The Borel-Cantelli lemma

▶ Definition 8.7: For A₁, A₂, ... ∈ F,

$$\limsup_{n \to \infty} A_n := \bigcap_{n \ge 1} \bigcup_{m \ge n} A_m$$
.
▶ Theorem 8.8: Let A₁, A₂, ... ∈ F. Then

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Longrightarrow P(\limsup_{n \to \infty} A_n) = 0.$$
If A₁, A₂, ... are independent,

$$\sum_{n=1}^{\infty} P(A_n) = \infty \Longrightarrow P(\limsup_{n \to \infty} A_n) = 1.$$
Proof:

$$\mathsf{P}(\limsup_{n \to \infty} A_n) = \lim_{n \to \infty} \mathsf{P}\left(\bigcup_{m \ge n} A_m\right) \le \lim_{n \to \infty} \sum_{m = n} \mathsf{P}(A_m) = 0$$
universität freiburg

 ∞

The Borel-Cantelli lemma

► Theorem 8.8: Let A₁, A₂, ... ∈ F. If A₁, A₂, ... are independent,

$$\sum_{n=1}^{\infty} \mathsf{P}(A_n) = \infty \Longrightarrow \mathsf{P}(\limsup_{n \to \infty} A_n) = 1.$$

Proof: We recall $\log(1-x) \leq -x$ for $x \in [0,1]$.

$$P((\limsup_{n \to \infty} A_n)^c) = P\left(\bigcup_{n=1}^{\infty} \bigcap_{m \ge n} A_m^c\right) = \lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} A_m^c\right)$$
$$= \lim_{n \to \infty} \prod_{m=n}^{\infty} (1 - P(A_m)) = \lim_{n \to \infty} \exp\left(\sum_{m=n}^{\infty} \log(1 - P(A_m))\right)$$
$$\leq \lim_{n \to \infty} \exp\left(-\sum_{m=n}^{\infty} P(A_m)\right)$$

= 0

Examples

Let X = (X₁, X₂, ...) be an infinite p coin toss with p > 0. Then |{n : X_n head}| = ∞. head. Indeed: Let A_n := {X_n head}. Then, A₁, A₂, ... is independent and ∑_{n=1}[∞] P(A_n) = ∑_{n=1}[∞] ¹/₂ = ∞.
The probability that only finitely many of the events

 $B_n := \{X_1 \text{ head}\} \text{ occur is } p.$

Let X_n ~ geo(p) be independent. Then, |{n : X_n > n}| < ∞ almost surely.

Indeed, let $A_n := \{X_n > n\}$. Then,

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(X_n \ge n) = \sum_{n=1}^{\infty} (1-p)^{n-1} = \frac{1}{p} < \infty.$$