Probability Theory

2. Moments, charäcteristic functions and Laplace

Moments

- Definition 6.8: X, Y real-valued RVs. If it exists, $\mathbf{E}[X]$ is called expected value of X and

$$
\mathbf{V}[X]:=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]
$$

variance of X and

$$
\mathbf{C O V}[X, Y]:=\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]
$$

covariance of X and Y.
If $\operatorname{COV}[X, Y]=0$, then X and Y are called uncorrelated. For $p>0, \mathbf{E}\left[X^{p}\right]$ is the p-th moment of X and $\mathbf{E}\left[(X-\mathbf{E}[X])^{p}\right]$ is the centered p-th moment of X.

- $\mathcal{L}^{p}:=\mathcal{L}^{p}(\mathbf{P}):=\left\{X: \mathbf{E}\left[X^{p}\right]\right.$ exists. $\}$

Properties of the second moments

- Proposition 6.9: $X, Y \in \mathcal{L}^{2}$. Then, $\mathbf{V}[X], \mathbf{V}[Y], \mathbf{C O V}[X, Y]<\infty$ and

$$
\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
$$

$\mathbf{C O V}[X, Y]=\mathbf{E}[X Y]-\mathbf{E}[X] \cdot \mathbf{E}[Y]$.
The Cauchy-Schwarz inequality is

$$
\operatorname{cov}[X, Y]^{2} \leq \mathbf{V}[X] \cdot \mathbf{V}[Y] .
$$

If $X_{1}, ; X_{n} \in \mathcal{L}^{2}$, then the equation of Bienamyé is

$$
\mathbf{V}\left[\sum_{k=1}^{n} X_{k}\right]=\sum_{k=1}^{n} \mathbf{V}\left[X_{k}\right]+2 \sum_{1 \leq k<l \leq n} \mathbf{C O V}\left[X_{k}, X_{l}\right]
$$

Alternative calculation of $\mathbb{E}\left[X^{p}\right]$

- Proposition 6.10: $X \geq 0 \mathrm{ZV}$. Then applies

$$
\mathbf{E}\left[X^{p}\right]=p \int_{0}^{\infty} \mathbf{P}(X>t) t^{p-1} d t=p \int_{0}^{\infty} \mathbf{P}(X \geq t) t^{p-1} d t
$$

Proof: Fubini:

$$
\begin{aligned}
\mathbf{E}\left[X^{p}\right] & =p \mathbf{E}\left[\int_{0}^{X} t^{p-1} d t\right]=p \int_{0}^{\infty} \mathbf{E}\left[1_{X>t} t^{p-1}\right] d t \\
& =p \int_{0}^{\infty} \mathbf{P}(X>t) t^{p-1} d t
\end{aligned}
$$

Second equation analogous

Characteristic functions, Laplace transform

- Definition 6.11: Let X be \mathbb{R}^{d}-valued RV . The characteristic function of X is

$$
\psi_{X}(t):=\psi_{X_{*} \mathbf{P}}(t):=\mathbf{E}\left[e^{i t X}\right]:=\mathbf{E}[\cos (t X)]+i \mathbf{E}[\sin (t X)]
$$

where $t x:=\langle t, x\rangle$ is the scalar product.
The Laplace transform of X is

$$
\mathcal{L}_{X}(t):=\mathcal{L}_{X_{*} \mathbf{P}}(t):=\mathbf{E}\left[e^{-t X}\right]
$$

if the right-hand side exists.

Properties of the characteristic functions

- Proposition 6.12: $X, Y \mathrm{ZV}$ with values in \mathbb{R}^{d}. Then,

$$
\left|\psi_{x}(t)\right| \leq 1, \quad \psi_{X}(0)=1
$$

ψ_{X} is uniformly continuous, $\psi_{a X+b}(t)=\psi_{X}(a t) e^{i b t}$.
Proof of uniform continuity. First of all

$$
\left.\begin{array}{rl}
\left|e^{i h x}-1\right| & =\sqrt{|\cos (h x)+i \sin (h x)-1|^{2}} \\
& =\sqrt{(\cos (h x)-1)^{2}+\sin (h x)^{2}} \\
& =\sqrt{2(1-\cos (h x))}=2|\sin (h x / 2)| \leq|h x| \wedge 2
\end{array}\right\}
$$

universitätfreiburg

$$
\xrightarrow{h \rightarrow 0} 0
$$

Example: binomial distribution, Poisson distribution

- Let $X \sim B(n, p)$ be. Then

$$
\psi_{B(n, p)}(t)=\mathbf{E}\left[e^{i t X}\right]=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} e^{i t k}=\left(1-p+p e^{i t}\right)^{n} .
$$

- Let $X \sim \operatorname{Poi}(\gamma)$. Then is

$$
\psi_{\operatorname{Poi}(\gamma)}(t)=\mathbf{E}\left[e^{i t X}\right]=e^{-\gamma} \sum_{n=0}^{\infty} \frac{\gamma^{n} e^{i t n}}{n!}=e^{\gamma\left(e^{i t}-1\right)}
$$

Example: Normal distribution, exponential distribution

- Let $X \sim N\left(\mu, \sigma^{2}\right)$. Then is

$$
\psi_{N\left(\mu, \sigma^{2}\right)}(t)=e^{i t \mu} e^{-\sigma^{2} t^{2} / 2}
$$

For $\mu=0, \sigma^{2}=1$:

$$
\begin{aligned}
\frac{d}{d t} \psi_{N(0,1)}(t) & =\frac{i}{\sqrt{2 \pi}} \int x e^{-x^{2} / 2} e^{i t x} d x \\
& =\frac{i}{\sqrt{2 \pi}} \int e^{-x^{2} / 2} i t e^{i t x} d x=-t \psi_{N(0,1)}(t)
\end{aligned}
$$

A plausible solution of the IVP is $\psi_{N(0,1)}(t)=e^{-t^{2} / 2}$.

- Let $X \sim \exp (\gamma)$. Then is

$$
\mathcal{L}_{\exp (\gamma)}(t)=\mathbf{E}\left[e^{-t x}\right]=\int_{0}^{\infty} \gamma e^{-\gamma x} e^{-t x} d x=\frac{\gamma}{\gamma+t}
$$

Characteristic function and moments

- Proposition 6.14: X real-valued RV.

If X is in \mathcal{L}^{p}, then $\psi_{X} \in \mathcal{C}^{p}(\mathbb{R})$ and for $k=0, \ldots, p$,

$$
\psi_{X}^{(k)}(t)=\mathbf{E}\left[(i X)^{k} e^{i t X}\right] .
$$

In particular, $\psi_{X}^{(k)}(0)=i^{k} \mathbf{E}\left[X^{k}\right]$.
If, specifically, $X \in \mathcal{L}^{2}$, then

$$
\psi_{X}(t)=1+i t \mathbf{E}[X]-\frac{t^{2}}{2} \mathbf{E}\left[X^{2}\right]+\varepsilon(t) t^{2} \text { with } \varepsilon(t) \xrightarrow{t \rightarrow 0} 0 .
$$

Proof: $k=0$ ok; Assume it holds for $k<p$. Then

$$
\psi_{X}^{(k+1)}(t)=\mathbf{E}\left[\frac{d}{d t}(i X)^{k} e^{i t X}\right]=\mathbf{E}\left[(i X)^{k+1} e^{i t X}\right]
$$

Examples: Exponential and normal distribution

- For $X \sim \exp (\gamma)$ is $\mathcal{L}_{\exp (\gamma)}(t)=\gamma /(\gamma+t)$, i.e.

$$
\begin{aligned}
\mathbf{E}\left[X^{n}\right] & =\left.(-1)^{n} \frac{d^{n}}{d t^{n}} \mathbf{E}\left[e^{-t X}\right]\right|_{t=0}=\left.(-1)^{n} \frac{d^{n}}{d t^{n}} \frac{\gamma}{\gamma+t}\right|_{t=0} \\
& \left.=\frac{n!\gamma}{(\gamma+t)^{n+1}} \right\rvert\, t=0=\frac{n!}{\gamma^{n}}
\end{aligned}
$$

$$
\psi_{N\left(\mu, \sigma^{2}\right)}(t)=1+i t \mu-\sigma^{2} t^{2} / 2-\mu^{2} t^{2} / 2+\varepsilon(t) t^{2}
$$

with $\varepsilon(t) \xrightarrow{t \rightarrow 0} 0$. From this,

$$
\mathbf{E}[X]=\mu, \quad \mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-\mu^{2}=\sigma^{2}
$$

