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Basics

▶ (Ω,F ,P) a probability space, i.e. Ω a set, F a σ-algebra,

P : F → [0, 1] a measure with P(Ω) = 1.

▶ Let (E , r) be a metric space and X : Ω → E measurable, i.e.

for F ′ = B(E ) (Borel σ-algebra), we have X−1(B) ∈ F for all

B ∈ F ′. Is E = R, then X is called real-valued.

▶ X∗P(B) := P(X ∈ B) = P(X−1(B)) is called distribution of

X .

▶ If X∗P = Y∗P, then X ,Y are called identically distributed and

we write X
d
= Y or X ∼ Y .



Discrete distributions

▶ µ =
∑

i∈N0
δi is the counting measure on N0 and

f : N0 → R+. We denote by f · µ the measure with

f · µ(A) :=
∞∑
i∈A

f (i) =

∫
A
f (x)µ(dx).

▶ X ∼ B(n, p) means X∗P = f · µ with

f (x) =

(
n

x

)
px(1− p)n−x .

▶ X ∼ Poi(λ) means X∗P = f · µ with

f (x) = e−λ λ
x

x!.
.

▶ X ∼ geo(p) means X∗P = f · µ with

f (x) = (1− p)xp.



Continuous distributions

▶ Let λ be Lebesgue measure on B(R) and f : R → R+

measurable. We denote by f · λ the measure with

f · λ(A) :=
∫
A
f (x)λ(dx).

▶ X ∼ exp(λ) means X∗P = fλ · λ with

fλ(x) = λe−λx1x≥0.

▶ X ∼ N(µ, σ2) means X∗P = fµ,σ2 · λ with

fµ,σ2(x) =
1√
2πσ2

exp
(
− (x − µ)2

2σ2

)
.



expected values
▶ X real-valued random variable (RV). Then

E[X ] :=

∫
xX∗P(dx)

is the expected value of X . It exists provided E[|X ] < ∞.

▶ If X∗P = f · λ and g is measurable, then, if it exists,

E[g(X )] =

∫
f (x)g(x)λ(dx)

▶ We set L1 := L1(P) := {X : E[|X |] < ∞}. For X ,Y ,∈ L1,

X ≤ Y almost certainly =⇒ E[X ] ≤ E[Y ],

E[aX + bY ] = aE[X ] + bE[Y ].

▶ E[X ] = E[X+]− E[X−], if at least one term is finite.

E[X ] < ∞ =⇒ P(X < ∞) = 1.



Measurability with respect to σ(X )

▶ The σ-algebra σ(X ) = {X−1(B) : B ∈ F ′} is σ-algebra

generated by X .

▶ Lemma 6.2: Let X ,Z be RVs. Then, Z is σ(X )-measurable iff

there exists φ measurable with φ ◦ X = Z .

⇐: clear

⇒ for Z = 1A: Here, A = X−1(A′) for some suitable A′.

Thus Z = 1A = 1X−1(A′) = 1A′ ◦ X .



Convergence results

▶ X ,X1,X2, . . . real-valued RVs. Then,

A := {Xn
n→∞−−−→ X} := {ω : Xn(ω)

n→∞−−−→ X (ω)} ∈ F

If P(A) = 1, we say Xn
n→∞−−−→ X almost surely.

▶ Proposition 6.3:

1. Lemma of Fatou: lim infn→∞ E[Xn] ≥ E[lim infn→∞ Xn].

2. Theorem of monotonic convergence: If X1,X2, · · · ∈ L1 and

Xn ↑ X almost surely, then

E[Xn]
n→∞−−−→ E[X ].

3. Theorem of dominated convergence: If Xn
n→∞−−−→ X is almost

surely and |X1|, |X2|, · · · ≤ Y almost surely with E[Y ] < ∞.

Then,

E[Xn]
n→∞−−−→ E[X ].



Markov and Chebyshev inequality

▶ Proposition 6.4: Let X ≥ 0 and x ≥ 0. Then the Markov

inequality

P(X ≥ x) ≤ E[X ]

x

holds. If X is a real-valued RV and p, x ≥ 0. Then the

Chebyshev inequality holds, i.e.

P(|X | ≥ x) ≤ E[|X |p]
xp

.

Proof: Since x · 1X≥x ≤ X , we can write

x · P(X ≥ x) = E[x · 1X≥x ] ≤ E[X ].



Minkowski and Hölder inequality

▶ Proposition 6.5 X ,Y RVs with values in R.
1. If 0 < p, q, r ≤ ∞ such that 1

p + 1
q = 1

r . Then,

E[|XY |r ]1/r ≤ E[|X |p]1/p · E[|Y |q]1/q (Hölder inequality)

Specifically for p = q = 2,

E[|XY |] ≤ E[|X |2]1/2 · E[|Y |2]1/2. (Cauchy-Schwarz inequality)

2. The Minkowski inequality is

E[|X + Y |p]1/p ≤ E[|X |p]1/p + E[|Y |p]1/p, 1 ≤ p ≤ ∞

E[|X + Y |p] ≤ E[|X |p] + E[|Y |p], 0 < p < 1



Jensen’s inequality

▶ Proposition 6.6: Let X ∈ L1 and φ be convex. Then,

E[φ(X )] ≥ φ(E[X ]).

▶ Lemma 6.7: Let q > 0 and X ∈ Lq real-valued random

variable. Then, for p ≤ q

E[|X |q] = E[(|X |p)q/p] ≥ E[|X |p]q/p.

In particular, Lq ⊆ Lp.


