universität freiburg

Probability Theory

Summer semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024ss_wtheorie.html https://www.stochastik.uni-freiburg. de/

Tutorial 2 - Densities and random variables

Exercise 1 (4 Points).

Let λ , μ and ν be measures on (Ω, \mathcal{A}) . Show that:

- (a) If for all $\varepsilon > 0$ there exists an $A \in \mathcal{A}$ with $\mu(A) < \varepsilon$ and $\nu(A^c) < \varepsilon$, then $\mu \perp \nu$.
- (b) If $\lambda \ll \mu$ and $\mu \perp \nu$, then also $\lambda \perp \nu$.
- (c) If $\mu \ll \nu$ and $\mu \perp \nu$, then $\mu \equiv 0$.

Exercise 2 (4 Points).

Let μ and ν be two measures on the measure space (Ω, \mathcal{A}) and let ν be finite. Show that the following statements are equivalent:

- (a) $\nu \ll \mu$.
- (b) For every $\varepsilon > 0$ there is a $\delta > 0$, such that for all $A \in \mathcal{A}$ with $\mu(A) \leq \delta$, also $\nu(A) \leq \varepsilon$.

Exercise 3 (4 Points).

Give an example of two measures μ,ν with $\nu \ll \mu$ for which there is no density $f: \Omega \to \mathbb{R}$ with $d\nu = f d\mu$.

Exercise 4 (4 Points).

- (a) Give an example of a real-valued random variable $X \neq 0$ with $X \stackrel{d}{=} -X$.
- (b) Show the following: If $X \stackrel{d}{=} Y$ are *E*-valued random variables and $f : E \to \mathbb{R}$ is Borel-measurble, then $f(X) \stackrel{d}{=} f(Y)$.
- (c) Show the following: If $X \stackrel{d}{=} Y$, then $\mathbf{E}[X] = \mathbf{E}[Y]$.
- (d) Fill in some details in the proof of Lemma 6.2. \Leftarrow .