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Tutorial 1 - Review of measure theory

Exercise 1 (4 Points).

Let Ω be a finite set such that |Ω| ≥ 4 and even. Set

D := {D ⊂ Ω | |D| ∈ 2N}.

Show that D is a Dynkin system, but not a σ-algebra.

Solution.
Since |Ω| is even, Ω ∈ D is even. If A,B ∈ D with A ⊂ B, then surely |B \A| = |B| − |A|
is even and therefore B \ A ∈ D. Finally, let A1,A2, . . . ∈ D be an ascending sequence.
Then, since |Ω| < ∞, it also holds that |

⋃
k≥1Ak| ≤ |Ω| < ∞. In particular, there exists

n such that
⋃
k≥1Ak =

⋃n
k=1Ak = An ∈ D. D is therefore a Dynkin system according to

Definition 1.11.

However, D cannot be ∩-stable and therefore cannot be a σ-algebra (see Table 1). This
is because, since |D| ≥ 2 we can find three different ω1, ω2 ,ω3 ∈ Ω. Then {ω1, ω2} ∈ D
and {ω2, ω3} ∈ D but not {ω1, ω2} ∩ {ω2, ω3} = {ω2}.

Exercise 2 (1+3=4 Points).

Let µ∗ be an outer measure on Ω.

1. Prove that if µ∗(A) = 0, then µ∗(A ∪B) = µ∗(B).

2. Let (Ω,r) be a metric space, and µ∗ the outer measure from Proposition 2.15, where
F is the topology generated from (Ω,r). In addition, let A and B be bounded sets
for which there is an α > 0 such that r(a,b) ≥ α for all a ∈ A,b ∈ B. Prove that
µ∗(A ∪B) = µ∗(A) + µ∗(B).

Solution.

1. By the monotonicity of µ∗, we have that:

µ∗(B) ≤ µ∗(A ∪B) (since A ⊆ A ∪B). (1)

Also, by σ−subadditivity of µ∗, we have:

µ∗(A ∪B) ≤ µ∗(A)︸ ︷︷ ︸
0

+µ∗(B). (2)

From (1) and (2), we establish that µ∗(A ∪B) = µ∗(B).
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2. By the σ−subadditivity of µ∗, we know that

µ∗(A ∪B) ≤ µ∗(A) + µ∗(B).

Hence we only need to show that the reverse inequality holds. Now fix ε > 0. Since A
and B are bounded, A∪B is bounded; and µ∗(A∪B) is finite. We can therefore find
a countable collection of non-empty, open, bounded intervals {Ik}∞k=1 which covers
A ∪B (such that A ∪B ⊆

⋃∞
k=1 Ik) and satisfies:

µ∗(A ∪B) >

∞∑
k=1

l(Ik)− ε

Without loss of generality, assume the length of each interval in the collection is
less than α

2 (the intervals can be subdivided until this condition holds). Then by
construction, each interval only intersect either A or B. Define,

A = {k : Ik ∩A 6= ∅} and B = {k : Ik ∩B 6= ∅}.

Since {Ik}k∈A and {Ik}k∈B form open covers of A and B respectively, we can con-
clude:

µ∗(A ∪B) >
∑
k∈A

l(Ik) +
∑
k∈B

l(Ik)− ε ≥ µ∗(A) + µ∗(B)− ε.

This expression holds for all ε > 0, so we must have µ∗(A ∪ B) ≥ µ∗(A) + µ∗(B).
Therefore, µ∗(A ∪B) = µ∗(A) + µ∗(B).

Exercise 3 (2+2=4 Points).

1. Let µ∗ an outer measure on Ω. Show that if E1 and E2 are measurable, then

µ∗(E1 ∪ E2) + µ∗(E1 ∩ E2) = µ∗(E1) + µ∗(E2).

2. Let (Ω,r) is a metric space. Show that if a set E ⊆ Ω has positive outer measure,
then there is a bounded subset of E that also has positive outer measure.

Solution.

1. Since E2 is measurable, we have

µ∗(E1 ∪ E2) = µ∗ ((E1 ∪ E2) ∩ E2)︸ ︷︷ ︸
E2

+µ∗ ((E1 ∪ E2) ∩ Ec2)︸ ︷︷ ︸
E1\E2

. (3)

Again, by the measurablility of E2,

µ∗(E1) = µ∗(E1 ∩ E2) + µ∗ (E1 ∩ Ec2)︸ ︷︷ ︸
E1\E2

. (4)

Combining (3) and (4), we have

µ∗(E1 ∪ E2) + µ∗(E1 ∩ E2) = µ∗(E1) + µ∗(E2).
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2. Approach: Assume that every bounded subset of E has measure zero, then establish
that the measure of E is consequently zero.

Let x0 ∈ E and consider B(x0,r), r ∈ Q+ balls in Ω. Then B(x0,r)∩E is a bounded
subset of E such that E ⊆

⋃
r∈Q+ B(x0,r)∩E. By monotonicity and σ−subadditivity

of µ∗,

µ∗(E) ≤ µ∗
 ⋃
r∈Q+

B(x0,r) ∩ E

 ≤ ∑
r∈Q+

µ∗ (B(x0,r) ∩ E)︸ ︷︷ ︸
0

Hence, µ∗(E) = 0. Thus, if a set E ⊆ Ω has positive outer measure, then there is a
bounded subset of E that also has positive outer measure.

Exercise 4 (1.5+0.5+1.5=4 Points).

1. Prove that the set of all real numbers which do not have a 6 in their decimal repre-
sentation, is a Lebesgue 0-set.

2. Randomly choose an independent and identically, uniformly distributed sequence of
numbers in {0,...,9}. Compute the probability that the first n numbers are not 6.

3. Do you see a connection between (1) and (2)?

Solution.

1. Let

E = {x ∈ R : x does not have a six in its representaton.}

Write

R =
⋃
n∈Z

(n,n+ 1)

Let

Ẽn = E ∩ (n,n+ 1), n ∈ Z

Then, ⋃
n∈Z

Ẽn =
⋃
n∈Z

E ∩ (n,n+ 1) = E ∩ R = E.

So that,

µ(E) = µ

(⋃
n∈Z

Ẽn

)
=
∑
n∈Z

µ(Ẽn)

Now, consider

E0 = E ∩ (0,1).

Define some sets Fn such that

F0 = {the first digit after the decimal is a six} = [0.6,0.7), µ(F0) = 0.1 =
1

10
.

F1 = {the second digit after the decimal is a six} = [0.06,0.07)∪[0.16,0.17)∪. . .∪[0.96,0.97).
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We observe however that the set [0.66,0.067) in F1 coincides with F0 and since
we want these sets to be disjoint, we can remove the reoccurence in F1 so that
µ(F1) = 0.01× 9 = 0.09 = 9

102
. In the same manner,

F2 = {the third digit after the decimal is a six} = [0.006,0.007)∪[0.016,0.017)∪. . .∪[0.096,0.097).

So that µ(F2) = 0.01× 9× 9 = 92

103
. Then,

Ec0 =
⋃
n≥0

Fn =
∞⋃
n=0

Fn.

and

µ
(
Ẽc0

)
=
∞∑
n=0

9n

10n+1
=

1

10

∞∑
n=0

9n

10n
= lim

N→∞

1

10

N∑
n=0

(
9

10

)n
=

1

10
· 1

1− 9
10

= 1

Hence,
µ(E0) = 1− µ(Ẽc0) = 1− 1 = 0.

In the same way, µ(Ẽcn) = 0 ∀ n ∈ Z.

2. To compute the probability that the first n numbers in a randomly chosen inde-
pendent and identically uniformly distributed sequence of numbers in {0, . . . ,9} are
not 6, we need to determine the total number of possible sequences and the number
of sequences where the first n numbers are not 6. The total number of possible
sequences of length n is given by 10n because each digit in the sequence can take
on one of the ten possible values (0,1,2, . . . ,or 9) independently. Besides, the total
number of posible sequences which are not six will be 9n. Therefore, the number of
sequences of length n where the first n numbers are not 6 is (9n/10n) = (9/10)n.
We can also think of it this way: let us count the number of sequences where the first
n numbers are not 6. Since each digit is chosen independently and uniformly, the
probability of any digit being 6 is 1/10. Therefore, the probability of each digit not
being 6 is 1 − 1/10 = 9/10. Hence, the number of sequences of length n where the
first n numbers are not 6 is (9/10)n.

3. Now to see a connection between (1) and (2), let us compute the probability that the
first n numbers are not 6 in a special way. This is similar to generating the decimal
part of a real number. Suppose we fix the integer part, that is we consider numbers
of the form X.d1d2 . . .. What we are interested in can be written mathematically
as Prob(d1,d2, . . . ,dn such that di 6= 6, ∀i = 1, . . . ,n). This is equivalent to
Prob(d1,d2, . . . ,dn such that di = 6, for some i = 1, . . . ,n) which will then be
equal to

1− P

(
n−1⋃
i=0

Fi

)
= 1− µ

(
n−1⋃
i=0

Fi

)
(think of measure as probability)

So that

1−
n−1∑
i=0

9i

10i+1
= 1− 1

10

n−1∑
i=0

9

10

i

= 1− 1

10

(
1.

1−
(

9
10

)n
1− 9

10

)
=

(
9

10

)n
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