universitätfreiburg

Probability Theory
Lecture: Prof. Dr. Peter Pfaffelhuber
Assistance: Samuel Adeosun
https://pfaffelh.github.io/hp/2024ss_wtheorie.html https://www.stochastik.uni-freiburg. de/

Tutorial 1 - Review of measure theory

Exercise 1 (4 Points).

Let Ω be a finite set such that $|\Omega| \geq 4$ and even. Set

$$
\mathcal{D}:=\{D \subset \Omega| | D \mid \in 2 \mathbb{N}\}
$$

Show that \mathcal{D} is a Dynkin system, but not a σ-algebra.

Solution.

Since $|\Omega|$ is even, $\Omega \in \mathcal{D}$ is even. If $A, B \in \mathcal{D}$ with $A \subset B$, then surely $|B \backslash A|=|B|-|A|$ is even and therefore $B \backslash A \in \mathcal{D}$. Finally, let $A_{1}, A_{2}, \ldots \in \mathcal{D}$ be an ascending sequence. Then, since $|\Omega|<\infty$, it also holds that $\left|\bigcup_{k \geq 1} A_{k}\right| \leq|\Omega|<\infty$. In particular, there exists n such that $\bigcup_{k \geq 1} A_{k}=\bigcup_{k=1}^{n} A_{k}=A_{n} \in \mathcal{D}$. \mathcal{D} is therefore a Dynkin system according to Definition 1.11.

However, \mathcal{D} cannot be \cap-stable and therefore cannot be a σ-algebra (see Table 1). This is because, since $|\mathcal{D}| \geq 2$ we can find three different $\omega_{1}, \omega_{2}, \omega_{3} \in \Omega$. Then $\left\{\omega_{1}, \omega_{2}\right\} \in \mathcal{D}$ and $\left\{\omega_{2}, \omega_{3}\right\} \in \mathcal{D}$ but not $\left\{\omega_{1}, \omega_{2}\right\} \cap\left\{\omega_{2}, \omega_{3}\right\}=\left\{\omega_{2}\right\}$.

Exercise 2 ($1+3=4$ Points).
Let μ^{*} be an outer measure on Ω.

1. Prove that if $\mu^{*}(A)=0$, then $\mu^{*}(A \cup B)=\mu^{*}(B)$.
2. Let (Ω, r) be a metric space, and μ^{*} the outer measure from Proposition 2.15, where \mathcal{F} is the topology generated from (Ω, r). In addition, let A and B be bounded sets for which there is an $\alpha>0$ such that $r(a, b) \geq \alpha$ for all $a \in A, b \in B$. Prove that $\mu^{*}(A \cup B)=\mu^{*}(A)+\mu^{*}(B)$.

Solution.

1. By the monotonicity of μ^{*}, we have that:

$$
\begin{equation*}
\mu^{*}(B) \leq \mu^{*}(A \cup B) \quad(\text { since } A \subseteq A \cup B) \tag{1}
\end{equation*}
$$

Also, by σ-subadditivity of μ^{*}, we have:

$$
\begin{equation*}
\mu^{*}(A \cup B) \leq \underbrace{\mu^{*}(A)}_{0}+\mu^{*}(B) . \tag{2}
\end{equation*}
$$

From (1) and (2), we establish that $\mu^{*}(A \cup B)=\mu^{*}(B)$.
2. By the σ-subadditivity of μ^{*}, we know that

$$
\mu^{*}(A \cup B) \leq \mu^{*}(A)+\mu^{*}(B)
$$

Hence we only need to show that the reverse inequality holds. Now fix $\varepsilon>0$. Since A and B are bounded, $A \cup B$ is bounded; and $\mu^{*}(A \cup B)$ is finite. We can therefore find a countable collection of non-empty, open, bounded intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ which covers $A \cup B$ (such that $A \cup B \subseteq \bigcup_{k=1}^{\infty} I_{k}$) and satisfies:

$$
\mu^{*}(A \cup B)>\sum_{k=1}^{\infty} l\left(I_{k}\right)-\varepsilon
$$

Without loss of generality, assume the length of each interval in the collection is less than $\frac{\alpha}{2}$ (the intervals can be subdivided until this condition holds). Then by construction, each interval only intersect either A or B. Define,

$$
\mathcal{A}=\left\{k: I_{k} \cap A \neq \emptyset\right\} \quad \text { and } \quad \mathcal{B}=\left\{k: I_{k} \cap B \neq \emptyset\right\} .
$$

Since $\left\{I_{k}\right\}_{k \in \mathcal{A}}$ and $\left\{I_{k}\right\}_{k \in \mathcal{B}}$ form open covers of A and B respectively, we can conclude:

$$
\mu^{*}(A \cup B)>\sum_{k \in \mathcal{A}} l\left(I_{k}\right)+\sum_{k \in \mathcal{B}} l\left(I_{k}\right)-\epsilon \geq \mu^{*}(A)+\mu^{*}(B)-\varepsilon
$$

This expression holds for all $\varepsilon>0$, so we must have $\mu^{*}(A \cup B) \geq \mu^{*}(A)+\mu^{*}(B)$. Therefore, $\mu^{*}(A \cup B)=\mu^{*}(A)+\mu^{*}(B)$.

Exercise $3(2+2=4$ Points).

1. Let μ^{*} an outer measure on Ω. Show that if E_{1} and E_{2} are measurable, then

$$
\mu^{*}\left(E_{1} \cup E_{2}\right)+\mu^{*}\left(E_{1} \cap E_{2}\right)=\mu^{*}\left(E_{1}\right)+\mu^{*}\left(E_{2}\right)
$$

2. Let (Ω, r) is a metric space. Show that if a set $E \subseteq \Omega$ has positive outer measure, then there is a bounded subset of E that also has positive outer measure.

Solution.

1. Since E_{2} is measurable, we have

$$
\begin{equation*}
\mu^{*}\left(E_{1} \cup E_{2}\right)=\mu^{*} \underbrace{\left(\left(E_{1} \cup E_{2}\right) \cap E_{2}\right)}_{E_{2}}+\mu^{*} \underbrace{\left(\left(E_{1} \cup E_{2}\right) \cap E_{2}^{c}\right)}_{E_{1} \backslash E_{2}} \tag{3}
\end{equation*}
$$

Again, by the measurablility of E_{2},

$$
\begin{equation*}
\mu^{*}\left(E_{1}\right)=\mu^{*}\left(E_{1} \cap E_{2}\right)+\mu^{*} \underbrace{\left(E_{1} \cap E_{2}^{c}\right)}_{E_{1} \backslash E_{2}} . \tag{4}
\end{equation*}
$$

Combining (3) and (4), we have

$$
\mu^{*}\left(E_{1} \cup E_{2}\right)+\mu^{*}\left(E_{1} \cap E_{2}\right)=\mu^{*}\left(E_{1}\right)+\mu^{*}\left(E_{2}\right)
$$

2. Approach: Assume that every bounded subset of E has measure zero, then establish that the measure of E is consequently zero.

Let $x_{0} \in E$ and consider $\mathcal{B}\left(x_{0}, r\right), r \in \mathcal{Q}^{+}$balls in Ω. Then $\mathcal{B}\left(x_{0}, r\right) \cap E$ is a bounded subset of E such that $E \subseteq \bigcup_{r \in \mathcal{Q}^{+}} \mathcal{B}\left(x_{0}, r\right) \cap E$. By monotonicity and σ-subadditivity of μ^{*},

$$
\mu^{*}(E) \leq \mu^{*}\left(\bigcup_{r \in \mathcal{Q}^{+}} \mathcal{B}\left(x_{0}, r\right) \cap E\right) \leq \sum_{r \in \mathcal{Q}^{+}} \underbrace{\mu^{*}\left(\mathcal{B}\left(x_{0}, r\right) \cap E\right)}_{0}
$$

Hence, $\mu^{*}(E)=0$. Thus, if a set $E \subseteq \Omega$ has positive outer measure, then there is a bounded subset of E that also has positive outer measure.

Exercise $4(1.5+0.5+1.5=4$ Points $)$.

1. Prove that the set of all real numbers which do not have a 6 in their decimal representation, is a Lebesgue 0 -set.
2. Randomly choose an independent and identically, uniformly distributed sequence of numbers in $\{0, \ldots, 9\}$. Compute the probability that the first n numbers are not 6 .
3. Do you see a connection between (1) and (2)?

Solution.

1. Let

$$
E=\{x \in \mathbb{R}: x \text { does not have a six in its representaton. }\}
$$

Write

$$
\mathbb{R}=\bigcup_{n \in \mathbb{Z}}(n, n+1)
$$

Let

$$
\tilde{E}_{n}=E \cap(n, n+1), \quad n \in \mathbb{Z}
$$

Then,

$$
\bigcup_{n \in \mathbb{Z}} \tilde{E}_{n}=\bigcup_{n \in \mathbb{Z}} E \cap(n, n+1)=E \cap \mathbb{R}=E
$$

So that,

$$
\mu(E)=\mu\left(\bigcup_{n \in \mathbb{Z}} \tilde{E}_{n}\right)=\sum_{n \in \mathbb{Z}} \mu\left(\tilde{E}_{n}\right)
$$

Now, consider

$$
E_{0}=E \cap(0,1)
$$

Define some sets F_{n} such that

$$
F_{0}=\{\text { the first digit after the decimal is a six }\}=[0.6,0.7), \quad \mu\left(F_{0}\right)=0.1=\frac{1}{10}
$$

$F_{1}=\{$ the second digit after the decimal is a six $\}=[0.06,0.07) \cup[0.16,0.17) \cup \ldots \cup[0.96,0.97)$.

We observe however that the set $[0.66,0.067)$ in F_{1} coincides with F_{0} and since we want these sets to be disjoint, we can remove the reoccurence in F_{1} so that $\mu\left(F_{1}\right)=0.01 \times 9=0.09=\frac{9}{10^{2}}$. In the same manner,
$F_{2}=\{$ the third digit after the decimal is a six $\}=[0.006,0.007) \cup[0.016,0.017) \cup \ldots \cup[0.096,0.097)$.
So that $\mu\left(F_{2}\right)=0.01 \times 9 \times 9=\frac{9^{2}}{10^{3}}$. Then,

$$
E_{0}^{c}=\bigcup_{n \geq 0} F_{n}=\bigcup_{n=0}^{\infty} F_{n} .
$$

and

$$
\mu\left(\tilde{E}_{0}^{c}\right)=\sum_{n=0}^{\infty} \frac{9^{n}}{10^{n+1}}=\frac{1}{10} \sum_{n=0}^{\infty} \frac{9^{n}}{10^{n}}=\lim _{N \rightarrow \infty} \frac{1}{10} \sum_{n=0}^{N}\left(\frac{9}{10}\right)^{n}=\frac{1}{10} \cdot \frac{1}{1-\frac{9}{10}}=1
$$

Hence,

$$
\mu\left(E_{0}\right)=1-\mu\left(\tilde{E}_{0}^{c}\right)=1-1=0 .
$$

In the same way, $\mu\left(\tilde{E}_{n}^{c}\right)=0 \quad \forall n \in \mathbb{Z}$.
2. To compute the probability that the first n numbers in a randomly chosen independent and identically uniformly distributed sequence of numbers in $\{0, \ldots, 9\}$ are not 6 , we need to determine the total number of possible sequences and the number of sequences where the first n numbers are not 6 . The total number of possible sequences of length n is given by 10^{n} because each digit in the sequence can take on one of the ten possible values $(0,1,2, \ldots$,or 9$)$ independently. Besides, the total number of posible sequences which are not six will be 9^{n}. Therefore, the number of sequences of length n where the first n numbers are not 6 is $\left(9^{n} / 10^{n}\right)=(9 / 10)^{n}$. We can also think of it this way: let us count the number of sequences where the first n numbers are not 6 . Since each digit is chosen independently and uniformly, the probability of any digit being 6 is $1 / 10$. Therefore, the probability of each digit not being 6 is $1-1 / 10=9 / 10$. Hence, the number of sequences of length n where the first n numbers are not 6 is $(9 / 10)^{n}$.
3. Now to see a connection between (1) and (2), let us compute the probability that the first n numbers are not 6 in a special way. This is similar to generating the decimal part of a real number. Suppose we fix the integer part, that is we consider numbers of the form $X . d_{1} d_{2} \ldots$. What we are interested in can be written mathematically as $\operatorname{Prob}\left(d_{1}, d_{2}, \ldots, d_{n}\right.$ such that $\left.d_{i} \neq 6, \quad \forall i=1, \ldots, n\right)$. This is equivalent to $\operatorname{Prob}\left(d_{1}, d_{2}, \ldots, d_{n}\right.$ such that $d_{i}=6$, for some $\left.i=1, \ldots, n\right)$ which will then be equal to

$$
1-P\left(\bigcup_{i=0}^{n-1} F_{i}\right)=1-\mu\left(\bigcup_{i=0}^{n-1} F_{i}\right) \quad \text { (think of measure as probability) }
$$

So that

$$
1-\sum_{i=0}^{n-1} \frac{9^{i}}{10^{i+1}}=1-\frac{1}{10} \sum_{i=0}^{n-1} \frac{9^{i}}{10}=1-\frac{1}{10}\left(1 \cdot \frac{1-\left(\frac{9}{10}\right)^{n}}{1-\frac{9}{10}}\right)=\left(\frac{9}{10}\right)^{n}
$$

