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Introduction

I Course in spring 2024 at the University of Freiburg

I All course materials online at

I Prerequisites: a course in basic probability (coin tossing,
throwing dice, binomial distribution, normal distribution)

I Goal: Solid introduction to all modern probability theory,
including weak limits, stochastic processes, etc.

I Interference: courses in advanced calculus (Analysis III) might
also cover measure theory

I Next course: Probability theory (summer 2024), covering all
forms of convergence of random variables, conditional
expectation, martingales



Measure theory

I Sample space Ω; A ⊆ Ω

I Assign some value µ(A) ∈ R+ to as many subsets of A as
possible, with a number of computation rules
⇒ measure µ defined on a σ-algebra F ⊆ 2Ω

→ 1. Set systems; 2. Set functions

I Make a weighted average of some f : Ω→ R with respect to
the measure µ.
⇒ integral

∫
fdµ

Study the structure of the space of functions with finite
integral
→ 3. Measurable functions and the integral; 4. Lp-spaces

I All the same on product spaces Ω =×i∈I Ωi

→ 5. Product spaces
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Definition of some set-systems

I C ⊆ 2Ω

C σ-field =⇒ C ring =⇒ C semi-ring.

I Definition 1.1: Ω set, ∅ 6= H,R,F ⊆ 2Ω.
I H ∩-stable, if (A,B ∈ H ⇒ A ∩ B ∈ H).
I H σ − ∩-stable, if (A1,A2, ... ∈ H ⇒

⋂∞
i=n An ∈ H).

I H ∪-stable, if (A,B ∈ H ⇒ A ∪ B ∈ H).
I H σ − ∪-stable, if (A1,A2, ... ∈ H ⇒

⋃∞
i=n An ∈ H).

I H complement-stable, if A ∈ H ⇒ Ac ∈ H.
I H set-difference-stable, if (A,B ∈ H ⇒ B \ A ∈ H).



Definition of some set-systems

I We write A ] B for A ∪ B if A ∩ B = ∅.
I Definition 1.1: Ω set, ∅ 6= H,R,F ⊆ 2Ω.

I H is a semi-ring, if it is (i) ∩-stable and (ii)
∀A,B ∈ H∃C1, . . . ,Cn ∈ H with B \ A =

⊎n
i=1 Ci .

I R is a ring, if it is ∪-stable and set-difference-stable.
I F is a σ-field, if Ω ∈ F , it is complement-stable and

σ-∪-stable. Then, (Ω,F) is called measurable space.



Connections between set-systems

C semi-ring C ring C σ-field

C is ∩-stable • ◦ ◦

C is σ-∩-stable ◦

C is ∪-stable • ◦

C is σ-∪-stable •

C is set-difference-stable • ◦

C is complement-stable •

B \ A =
⊎n

i=1 Ci • ◦ ◦

Ω ∈ C •



Examples

I Semi-ring: Let Ω = R. Then,

H := {(a, b] : a, b ∈ Q, a ≤ b} is a semi-ring.

I σ-algebras: Trivial examples are {∅,Ω} and 2Ω.
If F ′ is a σ-field on Ω′, and f : Ω→ Ω′. Then,

σ(f ) := {f −1(A′) : A′ ∈ F ′} is a σ-field on Ω.

Indeed: If A′,A′1,A
′
2, . . . ∈ σ(f ), then

(f −1(A′))c = f −1((A′)c) ∈ σ(f ) and⋃∞
n=1 f

−1(A′n) = f −1
(⋃∞

n=1 A
′
n

)
∈ σ(f ).
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Generated ring/σ-algebra

I Let C ⊆ 2Ω. Then,

R(C) :=
⋂{
R ⊇ C : R ring

}
,

σ(C) :=
⋂{

F ⊇ C : F σ-field
}

are the ring and σ-algebra generated from C,

I Example 1.6: Let H := {[a, b), a ≤ b, a, b ∈ Q}. Then,

R(H) =
{ n⊎

k=1

(ak , bk ] : a1, . . . , an, b1, . . . , bn ∈ Q,

ak < bk , k = 1, . . . , n and ak < bk+1, k = 1, . . . , n − 1
}

is the ring generated from H.



Generated ring

I Lemma 1.5: H semi-ring. Then,

R(H) =
{ n⊎

k=1

Ak : A1, . . . ,An ∈ H disjoint, n ∈ N
}

is the ring generated from H.

I Proof: R(H) is ∩-stable.
To show: R(H) set-difference-stable. Let A1, . . . ,An ∈ H and
B1, . . . ,Bm ∈ H be disjoint. Then,( n⊎

i=1

Ai

)
\
( m⊎

j=1

Bj

)
=

n⊎
i=1

m⋂
j=1

Ai \ Bj ∈ R(H).

To show: R(H) is ∪-stable:

A ∪ B = (A ∩ B) ] (A \ B) ] (B \ A) ∈ R(H)



Definitions from topology

I Ω some set. A set system O ⊆ 2Ω is called topology if (i)
∅,Ω ∈ O; (ii) if O is ∩-stable; (iii) if I is arbitrary and if
Ai ∈ O, i ∈ I , then

⋃
i∈I Ai ∈ O. The pair (Ω,O) is called

topological space. Its members, i.e. every A ∈ O, is called
open; any set A ⊆ Ω with Ac ∈ O is called closed.

I (Ω, r) be a metric space and Bε(ω) := {ω′ ∈ Ω : r(ω, ω′) < ε}
an open ball and

B := {Bε(ω) : ε > 0, ω ∈ Ω}. (1)

Then,

O(B) := {A ⊆ Ω : ∀ω ∈ A ∃B ∈ B : ω ∈ B ⊆ A}

=
{ ⋃

B∈C
B : C ⊆ B

}
is the topology generated by r .



Definitions from topology

I r is called complete, if every Cauchy-sequence converges.

I If there is some countable Ω′ such that infx ′∈Ω′ r(x , x ′) = 0
for all x ∈ Ω, we call (Ω, r) separable. In this case,

B′ := {Br (ω′) : ω′ ∈ Ω′, r ∈ Q+}

is countable and O(B′) = O(B).

I The space (Ω,O) is called Polish, if it is separable and
completely metrizable.



Borel’s σ-field

I Definition 1.7: (Ω,O) a topological space.

B(Ω) := σ(O)

is the Borel σ-algebra on Ω. Sets in B(Ω) are also called
(Borel-)measurable sets.

I Lemma 1.8: Let (Ω,O) be a topological space with countable
basis C ⊆ O. Then, σ(O) = σ(C).

I Proof: To show O ⊆ σ(C). Clear, since any A ∈ O can be
represented as a countable union of sets from C.



Borel σ-field generated by interavls

I Lemma 1.9: The set system

C1 = {[−∞, b] : b ∈ Q}

generates B(R).

I Proof: Generate (a, b] from [−∞, b] \ [−∞, a], then
(a, b) =

⋃∞
i=1(a, b − 1

n ). These sets clearly generate B(R).
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Connections between set-systems

C semi-ring C ring C σ-field

C is ∩-stable • ◦ ◦

C is σ-∩-stable ◦

C is ∪-stable • ◦

C is σ-∪-stable •

C is set-difference-stable • ◦

C is complement-stable •

B \ A =
⊎n

i=1 Ci • ◦ ◦

Ω ∈ C •



Dynkin systems

I Let C ⊆ 2Ω. It is often easy to show that C is a (semi-)ring.
However, it is hard to show that C is a σ-algebra.
It is often easier to show that C is a Dynkin system:

I Definition 1.11: A set system D is called Dynkin system (on
Ω) if (i) Ω ∈ D, (ii) it is set-difference-stable for subsets (i.e.
A,B ∈ D and A ⊆ B imply B \ A ∈ D and (iii)
A1,A2, . . . ∈ D and A1 ⊆ A2 ⊆ A3 ⊆ . . . imply

⋃∞
n=1 An ∈ D.

I Goal is Theorem 1.13:
A ∩-stable Dynkin system is a σ-algebra.

I Example 1.12:
F σ-algebra ⇒ F Dynkin-system
F Dynkin system ⇒ F complement-stable



Theorem 1.13:

I D Dynkin system, C ⊆ D is ∩-stable ⇒ σ(C) ⊆ D.

I Proof: Set

λ(C) :=
⋂
{D′ ⊇ C,D′ Dynkin-system} ⊇ λ(C).

Claim: λ(C) is a σ-algebra (⇒ σ(C) ⊆ σ(λ(C)) = λ(C) ⊆ D)
Suffices: λ(C) is ∩-stable.
Then, A ∪ B = (Ac ∩ Bc)c , so λ(C) is ∪-stable and for
A1,A2, ... ∈ λ(C), we find

⋃∞
n=1 An =

⋃∞
n=1

⋃n
i=1 Ai ∈ λ(C).

For B ∈ C, set

DB := {A ⊆ Ω : A ∩ B ∈ λ(C)} ⊇ C.

Then DB is a Dynkin system...
So, λ(C) ⊆ DB . So, for an A ∈ λ(C),

BA := {B ⊆ Ω : A ∩ B ∈ λ(C)} ⊇ λ(C) is Dynkin system.



Compact sets

I J ⊆f I if J ⊆ I and J is finite
I Definition A.7: (Ω, r) metric space, K ⊆ Ω.

1. K is compact if every open cover has a finite partial cover:
If Oi ∈ O, i ∈ I and K ⊆

⋃
i∈I Oi , then there is J ⊂f I with

K ⊆
⋃

i∈J Oi .

2. K is relatively compact if K is compact.
3. K is relatively sequentially compact if for every sequence in K

there is a convergent subsequence.
4. K ⊆ Ω is totally bounded if for every ε > 0 there is an N ∈ N

and ω1, . . . , ωN ∈ K such that K ⊆
⋃N

n=1 Bε(ωn).

I Lemma A.8:: K ⊆ Ω compact ⇒ K is closed.



Compact sets

I Proposition A.9: K ⊆ Ω.

1. K is relatively compact.
2. If Fi ⊆ K is closed, i ∈ I , and

⋂
i∈I Fi = ∅, then there is

J ⊆f I with
⋂

i∈J Fi = ∅.
3. K is relatively sequentially compact.
4. K is totally bounded.

Then
4.⇐= 1. ⇐⇒ 2. =⇒ 3.

Furthermore, 3. =⇒ 2. also holds if (Ω,O) is separable and
4. =⇒ 3. if (Ω, r) is complete.



Compact systems

I Definition 1.14: K ∩-stable is compact system if
⋂∞

n=1 Kn = ∅
with K1,K2, . . . ∈ K implies that there is a N ∈ N with⋂N

n=1 Kn = ∅.
I Example 1.15: K ⊆ {K ⊆ Ω : K compact} ∩-stable is

compact system.
Indeed: Let

⋂∞
n=1 Kn = ∅. Then, K1 and Ln := K1 ∩ Kn ⊆ K1

are compact and (because of the compactness of K1) there is
an N with

⋂N
n=1 Kn = ∅ due to Proposition A.9.



Compact systems

I Lemma 1.16: K compact system. Then,

K∪ :=
{ n⋃

i=1

Ki : K1, . . . ,Kn ∈ K, n ∈ N
}

is also a compact system.

I Proof: K∪ is ∩-stable. Let
L1 =

⋃m1
j=1 K

1
j , L2 =

⋃m2
j=1 K

2
j , . . . ∈ K∪ with

⋂N
n=1 Ln 6= ∅ for

all N ∈ N. To show:
⋂∞

n=1 Ln 6= ∅. Use induction over N for:

For every N ∈ N there are sets K1, . . . ,KN ∈ K with
Kn ⊆ Ln, n = 1, . . . ,N, such that for all k ∈ N0 we have
K1 ∩ · · · ∩ KN ∩ LN+1 ∩ · · · ∩ LN+k 6= ∅.

Then, use k = 0. So we see that there are K1,K2, . . . ∈ K and
Kn ⊆ Ln, n ∈ N with

⋂N
n=1 Kn 6= ∅ for all N ∈ N. Hence,

∅ 6=
⋂∞

n=1 Kn ⊆
⋂∞

n=1 Ln.
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Definition 2.1

I For F ⊆ 2Ω, we call µ : F → R+ a set function.

I µ is finitely additive if

µ
( n⊎

k=1

Ak

)
=

n∑
k=1

µ(Ak).

for disjoint A1, . . . ,An ∈ F .

I µ : F → R+ is σ-additive if the same holds for n =∞.

I If F is a σ-algebra, and µ is σ-additive, µ is a measure and
(Ω,F , µ) is a measure space.

I If µ(Ω) <∞, then µ is a finite measure; if µ(Ω) = 1, µ is a
probability measure. Then, (Ω,F , µ) is a probability space.



Definition 2.1

I µ is called sub-additive if

µ
( n⋃

k=1

Ak

)
≤

n∑
k=1

µ(Ak).

for any A1, . . . ,An ∈ F .

I µ : F → R+ is σ-sub-additive if the same holds for n =∞.

I µ is monotone if (A ⊆ B ⇒ µ(A) ≤ µ(B))

I A σ-subadditive, monotone µ∗ : 2Ω → R+ with µ∗(∅) = 0 is
an outer measure.

I A set A ⊆ Ω is called µ∗-measurable if

µ(E ) = µ(E ∩ A) + µ(E ∩ Ac), E ⊆ Ω.



Definition 2.1

I If there is Ω1,Ω2, . . . ∈ F with
⋃∞

n=1 Ωn = Ω and µ(Ωn) <∞
for all n = 1, 2, . . ., then µ is σ-finite.

I F ∩-stable. µ is inner K−regular if for all A ∈ F

µ(A) = sup
K3K⊆A

µ(K ).

I (Ω,O) topological space, µ measure on B(O). The smallest
closed set F with µ(F c) = 0 is called the support of µ.



Examples
I Let H = {(a, b] : a, b ∈ Q, a ≤ b}. Then, µ((a, b]) := b − a

defines an additive, σ-finite set function.
I Let ω′ ∈ Ω. Then, δω′(A) := 1{ω′∈A} is a probability measure.
I µ :=

∑
i∈I δωi is a counting measure.

I µi , i ∈ I measures and ai ∈ R+, i ∈ I . Then,
∑

i∈I aiµi is also
a measure, e.g. the Poisson distribution on 2N0 ,

µPoi(γ) :=
∞∑
k=0

e−γ
γk

k!
· δk ,

the geometric distribution

µgeo(p) :=
∞∑
k=1

(1− p)k−1p · δk ,

the binomial distribution

µB(n,p) :=
n∑

k=0

(
n

k

)
pk(1− p)n−k · δk .



Unions and disjoint unions

I Lemma 2.4: H semi-ring, A,A1, ...,An ∈ H. Then, there are
B1, ...,Bm ∈ H pairwise disjoint and A \

⋃n
i=1 Ai =

⊎m
j=1 Bj .

I Proof: Induction on n. If n = 1, clear. Assume the assertion
holds for some n, i.e. there is B1, ...,Bm with

A \
⋃n

i=1 Ai =
⊎m

j=1 Bj . Then, write Bj \ An+1 =
⊎kj

k=1 C
j
k for

C j
1, ...,C

j
kj
∈ H. Then,

A \
n+1⋃
i=1

Ai =
(
A \

n⋃
i=1

Ai

)
\ An+1 =

m⊎
j=1

Bj \ An+1 =
m⊎
j=1

kj⊎
k=1

C j
k .



Set-functions on semi-rings
I Lemma 2.5: H semi-ring, µ : H → [0,∞] additive.

Then, m is monotone and sub-additive.

I Proof: Monotonicity for A,B ∈ H with A ⊆ B and
C1, ...,Ck ∈ H with B \ A =

⊎k
i=1 Ci . Write

µ(A) ≤ µ(A) +
∑k

i=1 µ(Ci ) = µ(B).
Claim:

⊎
I∈I Ai ⊆ A⇒

∑n
i=1 µ(Ai ) ≤ m(A).

Write A \
⊎n

i=1 Ai =
⊎m

j=1 Bj . Then,

µ(A) = µ
( n⊎

i=1

Ai ]
m⊎
j=1

Bj

)
=

n∑
i=1

µ(Ai ) +
m∑
j=1

µ(Bj) ≥
n∑

i=1

µ(Ai ).

Sub-additivity: To show µ
(⋃n

i=1 Ai

)
≤
∑n

i=1 µ(Ai ). Write

µ
( n⋃

i=1

Ai

)
= µ

( n⊎
i=1

(
Ai\

i−1⋃
j=1

Aj

))
=

n∑
k=1

ki∑
k=1

µ(C i
k) ≤

n∑
i=1

µ(Ai ).



Set-functions on semi-rings

I Lemma 2.5: µ is σ-additive iff µ is σ-sub-additive.

I Proof: ’⇒’: Copy the proof of sub-additivity using n =∞.
’⇐’: Let A =

⊎∞
i=1 Ai ∈ H.

Then,
∑n

i=1 µ(Ai ) ≤ µ(A) by monotonicity and

∞∑
i=1

µ(Ai ) = sup
n∈N

n∑
i=1

µ(Ai ) ≤ µ(A) ≤
∞∑
i=1

µ(Ai )

by σ-sub-additivity.



Extension of set-functions on semi-rings

I Lemma 2.6: H semi-ring, R ring generated by H, µ additive
on H. Then,

µ̃
( n⊎

i=1

Ai

)
:=

n∑
i=1

µ(Ai )

µ̃ is the only additive extension of µ on R that coincides with
µ on H.

I Proof: Suffices to show that µ̃ is well-defined. Let⊎m
i=1 Ai =

⊎n
j=1 Bj . Since

Ai =
n⊎

j=1

Ai ∩ Bj , Bj =
m⊎
i=1

Ai ∩ Bj ,

m∑
i=1

µ(Ai ) =
m∑
i=1

n∑
j=1

µ(Ai∩Bj) =
n∑

j=1

m∑
i=1

µ(Ai∩Bj) =
n∑

j=1

µ(Bj).



Inclusion exclusion principle

I Proposition 2.7: µ be additive set function on ring R and I
finite. Then for Ai ∈ R, i ∈ I , it holds that

µ
(⋃

i∈I
Ai

)
=
∑
J⊆I

(−1)|J|+1µ
(⋂

j∈J
Aj

)
In particular, if I = {1, 2},

µ(A1 ∪ A2) = µ(A1) + µ(A2)− µ(A1 ∩ A2).

I Proof for |I | = 2: A1 ∪ A2 = A1 ] (A2 \ A1) and
(A2 \ A1) ] (A1 ∩ A2) = A2.
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Proposition 2.8
I µ is σ-additive iff

µ
( ∞⊎

n=1

An

)
=
∞∑
n=1

µ(An).

I µ is σ-sub-additive iff

µ
( ∞⋃

n=1

An

)
≤
∞∑
n=1

µ(An).

I µ is continuous from below, if for A,A1,A2, . . . and
A1 ⊆ A2 ⊆ . . . with A =

⋃∞
n=1 An,

µ(A) = lim
n→∞

µ(An).

I µ is continuous from above (in the ∅), if for
A(= ∅),A1,A2, . . . , µ(A1) <∞ and A1 ⊇ A2 ⊇ . . . with
A =

⋂∞
n=1 An,

(0 =)µ(A) = lim
n→∞

µ(An).



Proposition 2.8

I Let R be a ring and µ : R → R+ be additive and µ(A) <∞
for all A ∈ R. Then, the following are equivalent:

1. µ is σ-additive;
2. µ is σ-subadditive;
3. µ is continuous from below;
4. µ is continuous from above in ∅;
5. µ is continuous from above.

I Proof: 1.⇔2., 5.⇒4.: clear.
1.⇒3.: With A0 = ∅, A =

⊎∞
n=1 An \ An−1

3.⇒1.: Set AN =
⊎N

n=1 Bn,
4.⇒5.: With Bn := An \ A ↓ ∅,
µ(An) = µ(Bn) + µ(A)

n→∞−−−→ µ(A).
3.⇒4.: Set Bn := A1 \ An ↑ A1. Then,
µ(A1) = limn→∞ µ(Bn) = µ(A1)− limn→∞ µ(An).
4.⇒3. Set Bn := A \ An ↓ ∅. Then,
0 = limn→∞ µ(Bn) = µ(A)− limn→∞ µ(An).



Inner regularity of measures on Polish spaces
I Lemma 2.9: (Ω,O) Polish, µ finite, ε > 0.

There exists K ⊆ Ω compact with µ(Ω \ K ) < ε.
I Proof: There is {ω1, ω2, . . . } ⊆ Ω dense, so

Ω =
⋃∞

k=1 B1/n(ωk). µ is continuous from above ⇒

0 = µ
(

Ω \
∞⋃
k=1

B1/n(ωk)
)

= lim
N→∞

µ
(

Ω \
N⋃

k=1

B1/n(ωk)
)
.

Take Nn ∈ N with µ
(

Ω \
⋃Nn

k=1 B1/n(ωn
k)
)
< ε/2n and

A :=
⋂∞

n=1

⋃Nn
k=1 B1/n(ωk) totally bounded, hence relatively

compact with

µ(Ω \ A) ≤ µ(Ω \ A) ≤ µ
( ∞⋃

n=1

(
Ω \

Nn⋃
k=1

B1/n(ωk)
))

≤
∞∑
n=1

µ
(

Ω \
Nn⋃
k=1

B1/n(ωk)
)
< ε.



Inner regularity and σ-additivity
I Theorem 2.10: H semi-ring, µ : H → R+ finite, finitely

additive and inner K ⊆ H-regular. Then µ is σ-additive.
I Proof:Wlog, H is ring and K = K∪

To show: µ is continuous from above in ∅. Let A1,A2, · · · ∈ H
with A1 ⊇ A2 ⊇ · · · and

⋂∞
n=1 An = ∅ and ε > 0.

Choose K1,K2, · · · ∈ K with Kn ⊆ An, n ∈ N and

µ(An) ≤ µ(Kn) + ε2−n.

Then,
⋂∞

n=1 Kn ⊆
⋂∞

n=1 An = ∅, so there is N ∈ N with⋂N
n=1 Kn = ∅. From this,

AN = AN ∩
( N⋃

n=1

K c
n

)
=

N⋃
n=1

AN \ Kn ⊆
N⋃

n=1

An \ Kn.

By subadditivity and monotonicity of µ, for m ≥ N,

µ(Am) ≤ µ(AN) ≤
N∑

n=1

µ(An \ Kn) ≤ ε
N∑

n=1

2−n ≤ ε.
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Question

▶ When does an additive set-function µ on H uniquely extend
to a measure H̃ on σ(H)?

▶ Uniqueness: Proposition 2.11: Let C ⊆ 2Ω be ∩-stable, and
µ, ν be σ-finite measures on σ(C). Then,

µ = ν ⇐⇒ µ|C = ν|C .

▶ Existence: See Carathéodory’s Extension Theorem 2.13:
Let µ∗ be an outer measure. Then, F∗ the set of
µ∗-measurable sets is a σ-algebra and µ := µ∗|F∗ is a
measure.



Theorem 2.16

Lemma 2.5 Theorem 2.10 Theorem 2.16

µ additive ◦ ◦

µ finite ◦

µ σ-finite ◦

µ defined on semi-ring ◦ ◦ ◦

hline µ σ-additive ◦/• • ◦

hline µ σ-subadditive •/◦

µ inner K-regular ◦

µ extends uniquely to σ(H) •



Proposition 2.11

▶ Let C ⊆ 2Ω be ∩-stable, and µ, ν be σ-finite measures on
σ(C). Then,

µ = ν ⇐⇒ µ|C = ν|C .

▶ Proof for finite µ, ν with µ(Ω) = ν(Ω): ⇒: clear
⇐: Let

D := {B ∈ F : µ(A) = ν(A)} ⊇ H.

To show: D is Dynkin. ⇒ σ(H) ⊆ D by Theorem 1.13.
▶ B,C ∈ D,B ⊆ C ⇒ µ(C \ B) = µ(C )− µ(B) =

ν(C )− ν(B) = ν(C \ B), i.e. C \ B ∈ D.
▶ B1,B2, · · · ∈ D with B1 ⊆ B2 ⊆ B3 ⊆ · · · ∈ D and

B =
⋃∞

n=1 Bn ∈ F , then from continuity from below,

µ(B) = lim
n→∞

µ(Bn) = lim
n→∞

ν(Bn) = ν(B) ⇒ B ∈ D.



Theorem 2.13

▶ A σ-subadditive, monotone µ∗ : 2Ω → R+ with µ∗(∅) = 0 is
an outer measure.

▶ A set A ⊆ Ω is called µ∗-measurable if

µ(E ) = µ(E ∩ A) + µ(E ∩ Ac), E ⊆ Ω.

▶ Theorem 2.13: Let µ∗ be an outer measure. Then, F∗ the set
of µ∗-measurable sets is a σ-algebra and µ := µ∗|F∗ is a
measure. Furthermore, N := {N ⊆ Ω : µ∗(N) = 0} ⊆ F∗.



Theorem 2.13
▶ Let µ∗ be an outer measure. Then, F∗ the set of

µ∗-measurable sets is a σ-algebra and µ := µ∗|F∗ is a
measure.

▶ Proof: Show:
▶ ∅ ∈ F∗, since µ∗(E ) = µ∗(E ∩ ∅) + µ∗(E ∩ Ω).
▶ A ∈ F∗ ⇒ Ac ∈ F∗

▶ A,B ∈ F∗ ⇒ A ∩ B ∈ F∗, since

µ∗(E ) = µ∗(E ∩ A) + µ∗(E ∩ Ac)

= µ∗((E ∩ A) ∩ B) + µ∗((E ∩ A) ∩ Bc) + µ∗(E ∩ Ac)

≥ µ∗(E ∩ (A ∩ B)) + µ∗(E ∩ (A ∩ B)c) ≥ µ∗(E ),

▶ A1,A2, · · · ∈ F∗ disjoint, Bn =
⊎n

k=1 Ak ∈ F∗, Bn ↑ B.
Show µ∗(E ∩ Bn) =

∑n
k=1 µ

∗(E ∩ Ak) by induction on n:

µ∗(E ∩ Bn+1) = µ∗(E ∩ Bn+1 ∩ Bn) + µ∗(E ∩ Bn+1 ∩ Bc
n )

= µ∗(E ∩ Bn) + µ∗(E ∩ An+1) =
n+1∑
k=1

µ∗(E ∩ Ak).



Theorem 2.13
▶ Let µ∗ be an outer measure. Then, F∗ the set of

µ∗-measurable sets is a σ-algebra and µ := µ∗|F∗ is a
measure.

▶ Then, µ∗(E ∩ B) =
∑∞

k=1 µ
∗(E ∩ Ak) = limn→∞ µ∗(E ∩ Bn)

since

µ∗(E ∩ B) ≤
∞∑
k=1

µ∗(E ∩ Ak) = lim
n→∞

n∑
k=1

µ∗(E ∩ Ak)

= lim
n→∞

µ∗(E ∩ Bn) ≤ µ∗(E ∩ B),

▶ B ∈ F∗, since B1,B2, ... ∈ F∗, so

µ∗(E ) = lim
n→∞

µ∗(E ∩ Bn) + µ∗(E ∩ Bc
n )

≥ µ∗(E ∩ B) + µ∗(E ∩ Bc) ≥ µ∗(E ).

▶ So, F∗ is a σ-algebra and µ∗ is σ-additive on F∗, i.e.
µ = µ∗|F∗ is a measure.



Theorem 2.13

▶ N := {N ⊆ Ω : µ∗(N) = 0} ⊆ F∗.

▶ N ∈ N are called (µ∗-)null sets.
If Ac ∈ N , we say that A holds (µ)-almost everywhere or
almost surely.

▶ Proof: For N ∈ N , by monotonicity µ∗(E ∩ N) = 0, so

µ∗(E ∩ Nc) + µ∗(E ∩ N) ≥ µ∗(E ) ≥ µ∗(E ∩ Nc)

= µ∗(E ∩ Nc) + µ∗(E ∩ N).



Zweite Folie

▶ Test



Zweite Folie

▶ Test



Proposition 2.8
▶ µ is σ-additive iff

µ
( ∞⊎

n=1

An

)
=

∞∑
n=1

µ(An).

▶ µ is σ-sub-additive iff

µ
( ∞⋃

n=1

An

)
≤

∞∑
n=1

µ(An).

▶ µ is continuous from below, if for A,A1,A2, . . . and
A1 ⊆ A2 ⊆ . . . with A =

⋃∞
n=1 An,

µ(A) = lim
n→∞

µ(An).

▶ µ is continuous from above (in the ∅), if for
A(= ∅),A1,A2, . . . , µ(A1) < ∞ and A1 ⊇ A2 ⊇ . . . with
A =

⋂∞
n=1 An,

(0 =)µ(A) = lim
n→∞

µ(An).



Proposition 2.8

▶ Let R be a ring and µ : R → R+ be additive and µ(A) < ∞
for all A ∈ R. Then, the following are equivalent:

1. µ is σ-additive;
2. µ is σ-subadditive;
3. µ is continuous from below;
4. µ is continuous from above in ∅;
5. µ is continuous from above.

▶ Proof: 1.⇔2., 5.⇒4.: clear.
1.⇒3.: With A0 = ∅, A =

⊎∞
n=1 An \ An−1

3.⇒1.: Set AN =
⊎N

n=1 Bn,
4.⇒5.: With Bn := An \ A ↓ ∅,
µ(An) = µ(Bn) + µ(A)

n→∞−−−→ µ(A).
3.⇒4.: Set Bn := A1 \ An ↑ A1. Then,
µ(A1) = limn→∞ µ(Bn) = µ(A1)− limn→∞ µ(An).
4.⇒3. Set Bn := A \ An ↓ ∅. Then,
0 = limn→∞ µ(Bn) = µ(A)− limn→∞ µ(An).



Inner regularity of measures on Polish spaces
▶ Lemma 2.9: (Ω,O) Polish, µ finite, ε > 0.

There exists K ⊆ Ω compact with µ(Ω \ K ) < ε.
▶ Proof: There is {ω1, ω2, . . . } ⊆ Ω dense, so

Ω =
⋃∞

k=1 B1/n(ωk). µ is continuous from above ⇒

0 = µ
(
Ω \

∞⋃
k=1

B1/n(ωk)
)
= lim

N→∞
µ
(
Ω \

N⋃
k=1

B1/n(ωk)
)
.

Take Nn ∈ N with µ
(
Ω \

⋃Nn
k=1 B1/n(ω

n
k)
)
< ε/2n and

A :=
⋂∞

n=1

⋃Nn
k=1 B1/n(ωk) totally bounded, hence relatively

compact with

µ(Ω \ A) ≤ µ(Ω \ A) ≤ µ
( ∞⋃

n=1

(
Ω \

Nn⋃
k=1

B1/n(ωk)
))

≤
∞∑
n=1

µ
(
Ω \

Nn⋃
k=1

B1/n(ωk)
)
< ε.



Inner regularity and σ-additivity
▶ Theorem 2.10: H semi-ring, µ : H → R+ finite, finitely

additive and inner K ⊆ H-regular. Then µ is σ-additive.
▶ Proof:Wlog, H is ring and K = K∪

To show: µ is continuous from above in ∅. Let A1,A2, · · · ∈ H
with A1 ⊇ A2 ⊇ · · · and

⋂∞
n=1 An = ∅ and ε > 0.

Choose K1,K2, · · · ∈ K with Kn ⊆ An, n ∈ N and

µ(An) ≤ µ(Kn) + ε2−n.

Then,
⋂∞

n=1 Kn ⊆
⋂∞

n=1 An = ∅, so there is N ∈ N with⋂N
n=1 Kn = ∅. From this,

AN = AN ∩
( N⋃

n=1

K c
n

)
=

N⋃
n=1

AN \ Kn ⊆
N⋃

n=1

An \ Kn.

By subadditivity and monotonicity of µ, for m ≥ N,

µ(Am) ≤ µ(AN) ≤
N∑

n=1

µ(An \ Kn) ≤ ε

N∑
n=1

2−n ≤ ε.
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Lebesgue measure

I Proposition 2.18: There is exactly one measure λ on
(R,B(R)) with

λ((a, b]) = b − a

for a, b ∈ Q with a ≤ b.

I Proof: H = {(a, b] : a, b ∈ Q, a ≤ b} is a semi-ring with
σ(H) = B(R).
σ-additivity: let a1, a2, . . . be such that⋃∞

n=1(an+1, an] = (a, b] ∈ H, i.e., b = a1 and an ↓ a. Then,

λ(a, b] = b−a = a1− lim
N→∞

aN =
∞∑
n=1

an−an+1 =
∞∑
n=1

λ((an+1, an]).

Conclude with Theorem 2.16.



σ-finite measures on R

I Proposition 2.19: µ : B(R)→ R+ is a σ-finite measure iff
there is G : R→ R, non-decreasing and right-continuous with

µ((a, b]) = G (b)− G (a), a, b ∈ Q, a ≤ b. (∗)

If G̃ also satisfies (∗), then G̃ = G + c for some c ∈ R.

I Proof: ’⇒’: Define G (0) = 0 and

G (x) :=

{
µ((0, x ]), x > 0,

−µ((x , 0]), x < 0.
’⇐’: Similar to the proof of Proposition 2.18.
Let G̃ satisfy (∗). Then, for a ∈ R,

G̃ (b) = G̃ (a) + µ((a, b]) = G (b) + G̃ (a)− G (a),

and the assertion follows with c = G̃ (a)− G (a).



Probability measures on R

I Corollary 2.20: µ : B(R)→ [0, 1] is probability measure iff
there is F : R→ [0, 1] non-decreasing and right-continuous
with limb→∞ F (b) = 1 and

µ((a, b]) = F (b)− F (a), a, b ∈ Q, a ≤ b.

F is uniquely defined by µ.
F is called the distribution function of µ.



Examples

I Let f : R→ R+ be a density (piecewise continuous with∫∞
−∞ f (x)dx = 1). A densitiy defines a distribution function

via

F (x) :=

∫ x

−∞
f (a)da,

therefore uniquely a probability measures.

FU(0,1)(x) =

∫ x

−∞
1[0,1](a)da =


0, x ≤ 0,

x , 0 < x ≤ 1,

1, x > 1,

Fexp(λ)(x) =

∫ x

−∞
1[0,∞)(a)λe−λada = 1− e−λx

FN(µ,σ2)(x) =
1√

2πσ2

∫ x

−∞
exp

(
− (a− µ)2

2σ2

)
da =: Φ(x)



Image measures
I If F ′ is a σ-field on Ω′, and f : Ω→ Ω′. Then,

σ(f ) := {f −1(A′) : A′ ∈ F ′} is a σ-field on Ω.

I Definition 2.23: (Ω,F , µ) measure space, (Ω′,F ′) measurable
space, f : Ω→ Ω′ with σ(f ) ⊆ F . Then,

F ′ 3 A′ 7→ f∗µ(A′) := µ(f −1(A′)) = µ(f ∈ A′)

is the image measure of f under µ.
If P is a probability measure, we call X∗µ the distribution of X
under P.

I Proposition 2.25: f∗µ is a measure on F ′.
I Proof: A′1,A

′
2, · · · ∈ F ′ disjoint, then

f∗µ
( ∞⊎

n=1

A′n

)
= µ

(
f −1
( ∞⊎

n=1

A′n

))
= µ

( ∞⊎
n=1

(f −1(A′n)
)

=
∞∑
n=1

µ(f −1(A′n)) =
∞∑
n=1

f∗µ(A′n).



Examples

I For Ω = [0, 1], H := {[0, b) : 0 ≤ b ≤ 1} has
σ(H) = B([0, 1]).
µ = µU(0,1), f : u 7→ 1− u. Then f∗µ = µ, because

f∗µ([0, b)) = µ(f −1([0, b))) = µ([1− b, 1]) = 1− (1− b) = b.

I Ω = R, y ∈ R, fy : x 7→ x + y
λ Lebesgue measure. Then (fy )∗λ = λ, because

(fy )∗λ([a, b]) = λ(f −1y ([a, b])) = λ([a− y , b − y ]) = b − a.

I Ω = [0, 1],Ω′ = R+, f : x 7→ − 1
λ log(x) for λ > 0

µ = µU(0,1). Then, f∗µ = µexp(λ), because for x ≥ 0

f∗µ([0, x ]) = µ(f −1([0, x ])) = µ([e−λx , 1]) = 1− e−λx .
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Image measures

I If F ′ is a σ-field on Ω′, and f : Ω→ Ω′. Then,

σ(f ) := {f −1(A′) : A′ ∈ F ′} is a σ-field on Ω.

I Definition 2.23: (Ω,F , µ) measure space, (Ω′,F ′) measurable
space, f : Ω→ Ω′ with σ(f ) ⊆ F . Then,

F ′ 3 A′ 7→ f∗µ(A′) := µ(f −1(A′)) = µ(f ∈ A′)

is the image measure of f under µ.
If P is a probability measure, we call X∗µ the distribution of X
under P.

I Proposition 2.25: f∗µ is a measure on F ′.



Lemma 3.2

I (Ω′,F ′) measurable space, f : Ω→ Ω′, C′ ⊆ F ′ with
σ(C′) = F ′. Then σ(f −1(C′)) = f −1(σ(C′)).

I Proof: ’⊆’: f −1(σ(C′)) is a σ-algebra. So,

σ(f −1(C′)) ⊆ σ(f −1(σ(C′))) = f −1(σ(C′))

’⊇’: define

F̃ ′ = {A′ ∈ σ(C′) : f −1(A′) ∈ σ(f −1(C′))} ⊆ σ(C′).

Again, F̃ ′ is a σ-algebra and C′ ⊆ F̃ ′ ⊆ σ(C′). Thus,
F̃ ′ = σ(C′). For A′ ∈ σ(C′), we find

f −1(A′) ∈ σ(f −1(C′)),

which is equivalent to f −1(σ(C′)) ⊆ σ(f −1(C′)).



Definition 3.3

I (Ω,F), (Ω′,F ′) measurable spaces and f : Ω→ Ω′.

1. f is F/F ′-measurable if f −1(F ′) ⊆ F . We define
σ(f ) := f −1(F ′) the σ-algebra generated by f .

2. If (Ω,F ,P) is a probability space and X : Ω→ Ω′ measurable,
then X is called an Ω′-valued random variable. The image
measure X∗P from Definition 2.23 is called the distribution of
X .

3. If (Ω′,F ′) = (R,B(R)), and f is F/F ′-measurable, we say
that f is (Borel-)measurable.

4. If f = 1A for A ⊆ Ω, then f is called indicator function. If
f =

∑n
k=1 ck1Ak

for c1, . . . , cn ∈ R pairwise different and
A1, . . . ,An ⊆ Ω, then f is called simple.



Examples

I f : ω 7→ ω is measurable, since f −1(F) = F .

I (Ω,O) and (Ω′.O′) topological spaces, f : Ω→ Ω′

continuous. Then f is measurable.
Indeed: Since f −1(O′) ⊆ O. From Lemma 3.2,

f −1(B(Ω′)) = f −1(σ(O′)) = σ(f −1(O′) ⊆ σ(O) = B(Ω).

I A function f : Ω→ {0, 1} is measurable if and only if
f −1({1}) ∈ F . Then, σ(f ) = {∅, f −1({1}), (f −1({1}))c ,Ω}.

I For a non-measurable set/function, see Example 2.27 in the
manuscript.



Examples for random variables

I (E , r) metric space, X an E -valued random variable on some
probability space, Y an E -valued random variable on another
probability space. If X∗P = Y∗Q, X and Y are identically
distributed and we write X ∼ Y .

I Let (Xi )i∈I family of random variables on a probability space.
The distribution of ((Xi )i∈I )∗P is called the joint distribution
of (Xi )i∈I .



Lemma 3.6

I If C′ ⊆ F ′ with F ′ = σ(C′), then f : Ω→ Ω′ is
F/F ′-measurable if and only if f −1(C′) ⊆ F .

I If f : Ω→ Ω′ is measurable and g : Ω′ → Ω′′ is measurable,
then g ◦ f : Ω→ Ω′′ is measuarble.

I A real-valued function f (i.e. f : Ω→ R) is measurable (with
respect to F/B(R)) if and only if {ω : f (ω) ≤ x} ∈ F for all
x ∈ Q.

I A simple function f =
∑n

k=1 ck1Ak
with pairwise different

c1, . . . , cn ∈ R and A1, . . . ,An ⊆ Ω is measurable if and only if
A1, . . . ,An ∈ F .

I Proof of 1.:
f −1(F ′) = f −1(σ(C′)) = σ(f −1(C′)) ⊆ σ(F) = F . This
means that f is F/F ′-measurable.



Algebraic structures of measurability

I Lemma 3.7: Let f , g , f1, f2, . . . be measurable. Then, the
following are measurable: fg , af + bg for a, b ∈ R, f /g if
g(ω) 6= 0 for all ω ∈ Ω,

sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn.

I In particular, f +, f −, |f | are measurable.

I Proof: Consider ψ(ω) := (f (ω), g(ω)) measruable. Then,
(x , y) 7→ ax + by , (x , y) 7→ xy , (x , y) 7→ x/y are continuous,
hence measurbale.
2. for measurability of supn∈N fn. Write, for x ∈ R,

{
ω : sup

n∈N
fn(ω) ≤ x

}
=
∞⋂
n=1

{
ω : fn(ω) ≤ x

}
︸ ︷︷ ︸

∈F

∈ F .



Approximation by simple functions

I Theorem 3.9: f : Ω→ R+ measurable. Then there is
f1, f2, · · · : Ω→ R of simple functions with fn ↑ f .

I Proof: Write

fn(ω) = n ∧ 2−n[2nf (ω)] ↑ f

by construction. Furthermore, ω 7→ [2nf (ω)] is measurable
according to Lemma 3.6.
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Outline

I Goal: For a measure µ, define for many functions f : Ω→ R

µ[f ] =

∫
fdµ =

∫
f (ω)µ(dω).

I Initial step: For f = 1A for some A ∈ F , define

µ[f ] := µ(A).

I Definition 3.10: For f =
∑m

k=1 ck1Ak
with

c1, . . . , cm ≥ 0,A1, . . . ,Am ∈ F , define

µ[f ] :=
m∑
i=1

ciµ(Ai ).

I Final step: f measurbale: use approximating sequence of
simple functions.



Simple properties

I Lemma 3.12: f , g non-negative, simple functions and α ≥ 0.
Then,

µ[af + bg ] = aµ[f ] + bµ[g ], f ≤ g ⇒ µ[f ] ≤ µ[g ].

I If f = 1A for A ∈ F , note that f is in general not piecewise
continuous. In particular,

∫
f (x)dx does not exist in the sense

of Riemann.



Integral of non-negative measurable functions

I Definition 3.14: (Ω,F , µ) measue space, f : Ω→ R+

measurable. Define

µ[f ] :=

∫
fdµ :=

∫
f (ω)µ(dω)

:= sup{µ[g ] : g simple, non-negative, g ≤ f }.

I Definition 3.17: f : Ω→ R measurable. Then f is said to be
µ-integrable if µ[|f |] <∞,

µ[f ] :=

∫
f (ω)µ(dω) :=

∫
fdµ := µ[f +]− µ[f −].

I For A ∈ F we also write

µ[f ,A] :=

∫
A
fdµ := µ[f 1A].



Proposition 3.16
I f , g , f1, f2, · · · : Ω→ R+ measurable. Then,

1. If f ≤ g , then µ[f ] ≤ µ[g ].
2. If

fn ↑ f , then µ[fn] ↑ µ[f ].

3. If a, b ≥ 0, then µ[af + bg ] = aµ[f ] + bµ[g ].
I Proof: 1. clear.

2. Since f1, f2, ... ≤ f , limn→∞ µ[fn] = supn∈N µ[fn] ≤ µ[f ].
For the reverse it suffices to show

µ[g ] ≤ sup
n∈N

µ[fn]

for all simple functions g =
∑m

k=1 ck1Ak
≤ f . Let

Bε
n := {fn ≥ (1− ε)g}. Since fn ↑ f and g ≤ f ,

⋃∞
n=1 B

ε
n = Ω

µ[fn] ≥ µ[(1− ε)g1Bε
n
] =

m∑
k=1

(1− ε)ckµ(Ak ∩ Bε
n)

n→∞−−−→
m∑

k=1

(1− ε)ckµ(Ak) = (1− ε)µ[g ].



Some properties
I Define

L1(µ) :=
{
f : Ω→ R : µ[|f |1] <∞

}
.

I Let f , g ∈ L1(µ). Then
1. The integral is monotone, i.e.

f ≤ g almost everywhere =⇒ µ[f ] ≤ µ[g ].

In particular,
|µ[f ]| ≤ µ[|f |].

2. The integral is linear, so if a, b ∈ R, then af + bg ∈ L1(µ) and

µ[af + bg ] = aµ[f ] + bµ[g ].

3. g ∈ L1(f∗µ), then g ◦ f ∈ L1(µ) and

µ[g ◦ f ] = f∗µ[g ].

I Proof: 4. for simple, non-negative functions g . Note
g ◦ f =

∑m
k=1 ck1f ∈A′k , hence

µ[g ◦ f ] =
m∑

k=1

ckµ(f ∈ A′k) =
m∑

k=1

ck f∗µ(A′k) = f∗µ[g ].



Properties almost everywhere
I f : Ω→ R+ measurable.

1. f = 0 almost everywhere iff µ[f ] = 0.
2. If µ[f ] <∞, then f <∞ almost everywhere.

I Proof: 1. Let N := {f > 0} ∈ F .
’⇒’: µ(N) = 0, so

0 ≤ µ[f ] = µ[f ,N] = lim
n→∞

µ[n ∧ f ,N] ≤ lim
n→∞

µ[n,N] = 0.

’⇐’ Let Nn := {f ≥ 1/n}, so Nn ↑ N and nf ≥ 1Nn , i.e.

0 = µ[f ] ≥ 1
nµ(Nn).

This means that µ(Nn) = 0 and therefore
µ(N) = µ(

⋃∞
n=1Nn) = 0 by σ-sub-additivity of µ.

2. Let A := {f =∞}. Since f 1f≥n ≥ n1f≥n,

µ(A) = µ[1A] ≤ µ[1f≥n] ≤ 1
nµ[f , 1f≥n] ≤ 1

nµ[f ]
n→∞−−−→ 0.



Lebesgue and Riemann integral

I f : R→ R be a piece-wise constant function, i.e.

f (x) =
∞∑

j=−∞
aj1[xj−1,xj )(x)

f : [a, b]→ R is Riemann-integrable if λ[|f |] <∞ and there
are piece-wise constant functions f −n ≤ f ≤ f +n and
λ[f +n − f −n ]

n→∞−−−→ 0. Then, the Riemann integral and
Lebesgue integral then coincide.

I f : R→ R is called Riemann-integrable if f 1K is
Riemann-integrable for all compact intervals K ⊆ R and
λ[f 1[−n,n]] converges.



Riemann integrability

I Proposition 3.23: f : [0, t]→ R piecewise continuous. Then f
is integrable, Riemann-integrable, and

λ[f ] = lim
n→∞

∞∑
k=1

f (yn,k)(xn,k − xn,k−1)

for 0 = xn,0 ≤ ... ≤ xn,kn = t with

maxk |xn,k − xn,k−1|
n→∞−−−→ 0 and any xn,k−1 ≤ yn,k ≤ xn,k .

I Proof for continuous f . Choose εn ↓ 0 and xn,0 ≤ ... ≤ xn,kn
such that K ⊆ [xn,0, xn,kn ] and
maxxn,k−1≤y<xn,k |f (xn,k−1)− f (y)| < εn. Then, find piecewise
constant f +n , f

−
n with f −n ≤ f ≤ f +n and ||f +n − f −n || ≤ εn.

Integrability and Riemann-integrability follows. The formula
follows from uniform approximation of the function f .



Lebesgue and Riemann integral

I f = 1[0,1]∩Q is not Riemann-integrable.

I f (t) = (−1)dte+1

dte . Then

λ[f 1[0,2n]] =
2n∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

=
n∑

k=1

1

2k − 1
− 1

2k
=

n∑
k=1

1

(2k − 1)2k

So, f is Riemann-integrable. However

λ[|f |] =
∞∑
k=1

1

k
=∞.

So, |f | is not integrable, hence f is not Lebesgue-integrable.
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Outline
I Theorem 3.25 for Riemann integral:

f , f1, f2, ... : [a, b]→ R be piecewise continuous with
fn

n→∞−−−→ f uniformly. Then∫ b

a
fn(x)dx

n→∞−−−→
∫ b

a
f (x)dx .

I Theorem 3.26, monotone convergence:
f1, f2, · · · ∈ L1(µ) and f : Ω→ R measurable with fn ↑ f
almost everywhere. Then,

lim
n→∞

µ[fn] = µ[f ].

I Theorem 3.28, dominated convergence:
f , g , f1, f2, · · · : Ω→ R measurable with |fn| ≤ g almost
everywhere, limn→∞ fn = f almost everywhere, and
g ∈ L1(µ). Then,

lim
n→∞

µ[fn] = µ[f ].



Monotone Convergence

I Theorem 3.26, monotone convergence:
f1, f2, · · · ∈ L1(µ) and f : Ω→ R measurable with fn ↑ f
almost everywhere. Then,

lim
n→∞

µ[fn] = µ[f ].

I Proof: N ∈ F be such that µ(N) = 0 and fn(ω) ↑ f (ω) for
ω /∈ N. Set gn := (fn − f1)1Nc ≥ 0. This means that
gn ↑ (f − f1)1Nc =: g and with Proposition 3.16.2,

µ[fn] = µ[f1] + µ[gn]
n→∞−−−→ µ[f1] + µ[g ] = µ[f ].



Lemma von Fatou

I Theorem 3.27: f1, f2, · · · : Ω→ R+ measurable. Then,

lim inf
n→∞

µ[fn] ≥ µ[lim inf
n→∞

fn].

I Proof: For all k ≥ n, fk ≥ inf`≥n f` and thus, for all n,

inf
k≥n

µ[fk ] ≥ µ[ inf
`≥n

f`].

So,

lim inf
n→∞

µ[fn] = sup
n∈N

inf
k≥n

µ[fk ] ≥ sup
n∈N

µ[ inf
k≥n

fk ] = µ[lim inf
n→∞

fn]

by monotone convergence.



Dominated convergence

I Theorem 3.28: f , g , f1, f2, · · · : Ω→ R measurable with
|fn| ≤ g almost everywhere, limn→∞ fn = f almost
everywhere, and g ∈ L1(µ). Then,

lim
n→∞

µ[fn] = µ[f ].

I Proof: Wlog, |fn| ≤ g and limn→∞ fn = f everywhere. Use
Fatou’s lemma and g − fn, g + f ≥ 0, i.e.

µ[g + f ] ≤ lim inf
n→∞

µ[g + fn] = µ[g ] + lim inf
n→∞

µ[fn],

µ[g − f ] ≤ lim inf
n→∞

µ[g − fn] = µ[g ]− lim sup
n→∞

µ[fn].

After subtracting µ[g ],

µ[f ] ≤ lim inf
n→∞

µ[fn] ≤ lim sup
n→∞

µ[fn] ≤ µ[f ].



Example

I λ: Lebesgue measure, fn = 1/n. Then fn ↓ 0, but

lim inf
n→∞

µ[fn] =∞ > 0 = µ[0] = µ[lim inf
n→∞

fn].



Example

|fn| ≤ g ∈ L1(µ) is necessary (here for λ Lebesgue measure)

I fn = n · 1[0,1/n]
n→∞−−−→∞ · 10. There is no g ∈ L1(λ) with

fn ≤ g and

lim
n→∞

µ[fn] = 1 6= 0 = µ[ lim
n→∞

fn].

I fn = n · 1[0,1/n2]
n→∞−−−→∞ · 10. There is fn ≤ g ∈ L1(λ) with

sup
n∈N

fn(x) = sup{n : x ≤ 1/n2} =
[ 1√

x

]
≤ 1√

x
=: g(x),

and
lim
n→∞

µ[fn] = lim
n→∞

1
n = 0 = µ[0] = µ[ lim

n→∞
fn].
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Definition of an Lp-space

I For 0 < p ≤ ∞, set

Lp := Lp(µ) := {f : Ω→ R measurable with ||f ||p <∞}

for

||f ||p := (µ[|f |p])1/p, 0 < p <∞ (1)

and
||f ||∞ := inf{K : µ(|f | > K ) = 0}.



Hölder’s inequality
I Proposition 4.2.1: f , g be measurable, 0 < p, q, r ≤ ∞ such

that 1
p + 1

q = 1
r . Then,

||fg ||r ≤ ||f ||p||g ||q (Hölder inequality)

I Proof: p =∞ or ||f ||p = 0, ||f ||p =∞, ||g ||q = 0 or
||g ||q =∞: ok, so assume any other case and define

f̃ :=
f

||f ||p
, g̃ =

g

||g ||q
.

To show ||f̃ g̃ ||r ≤ 1. Convexity of the exponential function:

(xy)r = exp
(
r
pp log x + r

qq log y
)
≤ r

p x
p + r

q y
q,

and thus

||f̃ g̃ ||rr = µ[(f̃ g̃)r ] ≤ r
pµ[f̃ p] + r

qµ[g̃q] = 1.



Minkowski’s inequality

I Proposition 4.2.2: For 1 ≤ p ≤ ∞,

||f + g ||p ≤ ||f ||p + ||g ||p.

I Proof: p = 1, p =∞ clear. Else, let q = p/(p − 1) and
r = 1/p + 1/q = 1, so Hölder’s inequality gives

||f + g ||pp ≤ µ[|f | · |f + g |p−1] + µ[|g | · |f + g |p−1]

≤ ||f ||p · ||(f + g)p−1||q + ||g ||p · ||(f + g)p−1||q
= (||f ||p + ||g ||p) · ||f + g ||p−1p ,

since

||(f + g)p−1||q = ||(f + g)q(p−1)||1/q1 = ||(f + g)p||(p−1)/p1

= ||f + g ||p−1p .

Dividing by ||f + g ||p−1p gives the result.



p 7→ Lp is decreasing

I µ finite, 1 ≤ r < q ≤ ∞. Then Lq(µ) ⊆ Lr (µ).

I Counterexample for µ infinite: λ Lebesgue measure,
f : x 7→ 1

x · 1x>1. Then f ∈ L2(λ), but f /∈ L1(λ).

I Proof: q =∞ clear; otherwise since ||1||p <∞,

||f ||r = ||1 · f ||r ≤ ||1||p · ||f ||q <∞

for 1
p = 1

r −
1
q > 0



Lp-convergence

I Definition 4.6: f1, f2, . . . in Lp(µ) converges to f ∈ Lp(µ) iff

||fn − f ||p
n→∞−−−→ 0.

We write fn
n→∞−−−→Lp f .

I Proposition 4.7: µ be finite, 1 ≤ r < q ≤ ∞ and
f , f1, f2, · · · ∈ Lq. If fn

n→∞−−−→Lq f , then also fn
n→∞−−−→Lr f .

I Proof: clear since ||f − g ||r ≤ ||f − g ||q.



Completeness of Lp

I Proposition 4.8: p ≥ 1,f1, f2, . . . be a Cauchy sequence in Lp.
Then there is f ∈ Lp with ||fn − f ||p

n→∞−−−→ 0.
I Proof: ε1, ε2, . . . summable. There is nk for each k with
||fm − fn||p ≤ εk for all m, n ≥ nk . In particular,

∞∑
k=1

||fnk+1
− fnk ||p ≤

∞∑
k=1

εk <∞.

Monotone convergence and Minkowski give∣∣∣∣∣∣ ∞∑
k=1

|fnk+1
− fnk |

∣∣∣∣∣∣
p
≤
∞∑
k=1

||fnk+1
− fnk ||p <∞.

In particular
∑∞

k=1 |fnk+1
− fnk | <∞ almost everywhere, i.e.

for almost all ω ∈ Ω, the sequence fn1(ω), fn2(ω), . . . is
Cauchy in R, hence converges to some f . Fatou gives

||fn − f ||p ≤ lim inf
k→∞

||fnk − fn||p ≤ sup
m≥n
||fm − fn||p

n→∞−−−→ 0,

i.e. fn
n→∞−−−→Lp f .
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A scalar product

▶ Apparently, ⟨, ., ⟩ : L2 × L2 → R, given by

⟨f , g⟩ := µ[fg ],

is bi-linear, symmetric and positive semi-definite.

▶ Complete normed spaces with a scalar product are called
Hilbert spaces. So, L2 is a Hilbert space.

▶ Write f ⊥ g iff µ[fg ] = 0



Parallelogram identity

▶ Lemma 4.9: For f , g ∈ L2,

||f + g ||2 + ||f − g ||2 = 2||f ||2 + 2||g ||2.

▶ Proof:

||f + g ||2 + ||f − g ||2 = ⟨f + g , f + g⟩+ ⟨f − g , f − g⟩
= 2⟨f , f ⟩+ 2⟨g , g⟩ = 2||f ||2 + 2||g ||2.



Decomposition
▶ Proposition 4.10: M closed, linear subspace of L2 and f ∈ L2.

Then, there is an almost everywhere unique decomposition
f = g + h with g ∈ M, h ⊥ M.

▶ Proof: For f ∈ L2, define df := infg∈M{||f − g |||}. Choose
g1, g2, . . . with ||f − gn||

n→∞−−−→ df . Then

4d2
f + ||gm − gn||2 ≤ ||2f − gm − gn||2 + ||gm − gn||2

= 2||f − gm||2 + 2||f − gn||2
m,n→∞−−−−−→ 4d2

f .

Thus ||gm − gn||2
m,n→∞−−−−−→ 0, i.e. ||gn − g || n→∞−−−→ 0 for some

g ∈ M with ||f − g || = df . For t > 0, l ∈ M,

d2
f ≤ ||f − g + tl ||2 = d2

f + 2t⟨f − g , l⟩+ t2||l ||2.

Since this applies to all t, ⟨f − g , l⟩ = 0, i.e. f − g ⊥ M.
Uniqueness: Let f = g + h = g ′ + h′. Then, g − g ′ ∈ M as
well as g − g ′ = h − h′ ⊥ M, i.e. g − g ′ ⊥ g − g ′. This
means ||g − g ′|| = ⟨g − g ′, g − g ′⟩ = 0, i.e. g = g ′.



Theorem of Riesz-Fréchet
▶ Proposition 4.11: F : L2 → R is continuous and linear iff

there exists some h ∈ L2 with

F (f ) = ⟨f , h⟩, f ∈ L2.

Then, h ∈ L2 is unique.
▶ Proof: ’⇐’ linearity clear. Continuity:

|⟨|f − f ′|, h⟩| ≤ ||f − f ′|| · ||h||.
For uniqueness, let ⟨f , h1 − h2⟩ = 0 for all f ∈ L2; in
particular, with f = h1 − h2

||h1 − h2||2 = ⟨h1 − h2, h1 − h2⟩ = 0,

thus h1 = h2 µ-almost everywhere.



Theorem of Riesz-Fréchet
▶ Proposition 4.11: F : L2 → R is continuous and linear iff

there exists some h ∈ L2 with

F (f ) = ⟨f , h⟩, f ∈ L2.

Then, h ∈ L2 is unique.
▶ Proof: ’⇒’: For F = 0 choose h = 0. For F ̸≡ 0,

M = F−1{0} is closed and linear, so for f ′ ∈ L2 \M, write
f ′ = g ′ + h′ with g ′ ∈ M and h′ ⊥ M and
F (h′) = F (f ′)− F (g ′) = F (f ′) ̸= 0. Set h′′ = h′

F (h′) , so that

h′′ ⊥ M and F (h′′) = 1 and for f ∈ L2

F (f − F (f )h′′) = F (f )− F (f )F (h′′) = 0.

i.e. f − F (f )h′′ ∈ M, in particular ⟨F (f )h′′, h′′⟩ = ⟨f , h′′⟩ and
F (f ) = 1

||h′′||2 · ⟨F (f )h
′′, h′′⟩ = 1

||h′′||2 · ⟨f , h
′′⟩ = ⟨f , h′′

||h′′||2 ⟩.

Now, the assertion follows with h := h′′

||h′′||2 .
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Theorem of Radon-Nikodým

I Corollary 4.17: µ, ν be σ-finite measures. Then, ν has a
density with respect to µ if and only if ν � µ.

I Theorem 4.16 (Lebesgue decomposition theorem): µ, ν be
σ-finite measures. Then ν can be written uniquely as

ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.



Absolute continuity

I Definition 4.13: ν has a density f with respect to µ if for all
A ∈ F ,

ν(A) = µ[f ;A].

We write f = dν
dµ and ν = f · µ.

I ν is absolutely continuous with respect to µ if all µ-zero sets
are also ν-zero sets. We write ν � µ. If both ν � µ and
µ� ν, then µ and ν are called equivalent.

I µ and ν are called singular if there is an A ∈ F with µ(A) = 0
and ν(Ac) = 0. We write µ ⊥ ν.



Chain rule
I Lemma 4.14: Let µ be a measure on F .

1. Let ν be a σ-finite measure. If g1 and g2 are densities of ν
with respect to µ, then g1 = g2, µ-almost everywhere.

2. Let f : Ω→ R+ and g : Ω→ R be measurable. Then,

(f · µ)[g ] = µ[fg ],

if one of the two sides exists.

I Proof for finite µ: 1. Set A := {g1 > g2}. Since both g1 and
g2 are densities of ν with respect to µ,

0 = ν(A)− ν(A) = µ[g1 − g2;A].

Since only g1 > g2 is possible on A, g1 = g2 is 1Aµ-almost
everywhere.
2. For g = 1A with A ∈ F , write

(f · µ)[g ] = (f · µ)(A) = µ[f ,A] = µ[f 1A] = µ[fg ].

This extends up to the general case.



Examples
I For µ ∈ R, σ2 ∈ R+

fN(µ,σ2)(x) :=
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
and λ is the one-dimensional Lebesgue measure. Then,
fN(µ,σ2) · λ is a normal distribution.

I For γ ≥ 0, let

fexp(γ)(x) := 1x≥0 · γe−γx .
Then, fexp(γ) · λ is called exponential distribution with
parameter γ. From the chain rule,

E[X ] = fexp(γ) · λ[id] =

∫ ∞
0

γe−γxxdx = ... =
1

γ
.

I Let µ be the counting measure on N0 and

f (k) = e−γ
γk

k!
, k = 0, 1, 2, ....

Then f · µ is the Poisson distribution for the parameter γ.



Theorem 4.16
I Let µ, ν be σ-finite measures. Then ν can be written uniquely

as
ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.

I Proof for finite µ, ν. The map{
L2(µ+ ν) → R)

f 7→ ν[f ]

is continuous. By Riesz-Frechet, there is h ∈ L2(µ+ ν) with

ν[f ] = (µ+ ν)[fh], ν[f (1− h)] = µ[fh], f ∈ L2(µ+ ν).

For f = 1{h<0} and f = 1{h>1}, we find

0 ≤ ν{h < 0} = (µ+ ν)[h; h < 0] ≤ 0,

0 ≤ µ[h; {h > 1}] = ν[1− h; {h > 1} ≤ 0.



Theorem 4.16
I Let µ, ν be σ-finite measures. Then ν can be written uniquely

as
ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.

I Proof: Let E := h−1{1}, and f = 1E . Then,

µ(E ) = µ[h;E ] = ν[1− h;E ] = 0.

Define ν = νa + νs and νs ⊥ µ using

νa(A) = ν(A \ E ), νs(A) = ν(A ∩ E ),

To show: νa � µ, so choose A ∈ F with µ(A) = 0, so

ν[1− h;A \ E ] = µ[h;A \ E ] = 0.

Since h < 1 on A \ E , νa(A) = ν(A \ E ) = 0, i.e. νa � µ.



Theorem 4.16
I Let µ, ν be σ-finite measures. Then ν can be written uniquely

as
ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.

I Proof: Define ν = νa + νs and νs ⊥ µ using

νa(A) = ν(A \ E ), νs(A) = ν(A ∩ E ),

To show: g := h
1−h1Ω\E is the density of νa with respect to µ:

µ[g ;A] = µ
[ h

1− h
;A \ E

]
= ν(A \ E ) = νa(A).

Uniqueness: let ν = νa + νs = ν̃a + ν̃s Choose A, Ã ∈ A with
νs(A) = µ(Ac) = ν̃s(Ã) = µ(Ãc) = 0. Then,

νa = 1
A∩Ã · νa = 1

A∩Ã · ν = 1
A∩Ã · ν̃a = ν̃a.



Corollary 4.17
I Let µ, ν be σ-finite measures. Then, ν has a density with

respect to µ if and only if ν � µ.
I Proof: ’⇒’: clear. ’⇐’: Lebesgue decomposition Theorem,

there is a unique decomposition ν = νa + νs with
νa � µ, νs ⊥ µ. Since ν � µ, νs = 0 must apply and
therefore ν = νa. In particular, the density of ν exists with
respect to µ.
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Product spaces

I For an index set I and a family of sets (Ωi )i∈I , define the
product space

Ω :=×
i∈I

Ωi := {(ωi )i∈I : ωi ∈ Ωi}

For H ⊆ J ⊆ I , define projections

πJH :×
i∈J

Ωi →×
i∈H

Ωi ,

and πH := πIH and πi := π{i}, i ∈ I .



Topology on product spaces

I Definition 5.1: Let (Ωi ,Oi )i∈I be a family of topologcal
spaces. Then,

O := O(C), C :=
{
Ai × ×

j∈I ,j 6=i

Ωj ; i ∈ I ,Ai ∈ Oi

}
is called the product topology on Ω.

I All πi , i ∈ I are continuous with respect to the product
topology.
Indeed, for Ai ∈ Oi ,

π−1i (Ai ) = Ai × ×
I3j 6=i

Ωj ∈ C ⊆ O.



The product σ-algebra
I Definition 5.3: Let (Ωi ,Fi )i∈I be a family of measurable

spaces. Then,⊗
i∈I
Fi := σ(E), E :=

{
Ai × ×

j∈I ,j 6=i

Ωj : i ∈ I ,Ai ∈ Fi

}
is the product-σ-algebra on Ω.
We denote the Borel σ-algebra of O by B(Ω).

I Projections are measurable.
I Lemma 5.5: Let Fi = B(Ωi ). For arbitrary I , we have⊗

i∈I B(Ωi ) ⊆ B(Ω). If I is countable and (Ωi ,Oi )i∈I are
separable metric spaces, then B(Ω) =

⊗
i∈I B(Ωi ).

I Proof: Clearly, C ⊆ O(C), C ⊆ E and E ⊆ σ(C). So,⊗
i∈I
B(Ωi ) = σ(E) = σ(C) ⊆ σ(O(C)) = B(Ω).

If I is countable and all spaces are separable, every A ∈ O(C)
is a countable union of sets in C, so O(C) ⊆ σ(C). Hence,

σ(O(C)) ⊆ σ(σ(C)) = σ(C).



Products of generators

I Lemma 5.7: Let (Ωi ,Fi ) be measurable spaces and
Ω =×i∈I Ωi .

1. I finite, Hi semi-ring with σ(Hi ) = Fi . Then

H :=
{×

i∈I

Ai : Ai ∈ Hi , i ∈ I
}

is semi-ring with σ(H) =
⊗

i∈I Fi .
2. I arbitrary, Hi a ∩-stable generator of Fi , i ∈ I . Then

H := {×
i∈J

Ai ××
i∈I\J

Ωi : J ⊆f I ,Ai ∈ Hi , i ∈ J}

is ∩-stable generator of
⊗

i∈I Fi .



σ-algebra on Rd

I Corollary 5.8: Let Ω = Rd . For a, b ∈ Rd , denote

(a, b] = (a1, b1]× · · · × (ad , bd ].

Then,
H := {(a, b] : a, b ∈ Q, a ≤ b}

is a semi-ring with σ(H) = B(Rd).

I Proof: H is a semi-ring that generates
⊗d

i=1 B(R) = B(Rd)
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Definition 5.9

(Ωi ,Fi ), i = 1, 2 measurable spaces.

I κ : Ω1 ×F2 → R+ is a transition kernel from (Ω1,F1) to
(Ω2,F2) if
(i) for all ω1 ∈ Ω1, the map κ(ω1, .) is a measure on F2 and
(ii) for all A2 ∈ F2 κ(.,A2) is F1-measurable.

I A transition kernel is called σ-finite if there is a sequence
Ω21,Ω22, · · · ∈ F2 with Ω2n ↑ Ω2 and supω1

κ(ω1,Ω2n) <∞
for all n = 1, 2, . . .

I It is called stochastic kernel or Markov kernel if for all
ω1 ∈ Ω1 the map κ(ω1, .) is a probability measure.



Example: Markov chain

I Ω = {ω1, . . . , ωn} finite and P = (pij)1≤i ,j≤n with pij ∈ [0, 1]
and

∑n
j=1 pij = 1. Then,

κ(ωi , .) :=
n∑

j=1

pij · δωj

is a Markov kernel from (Ω, 2Ω) to (Ω, 2Ω).

I P is the transition matrix of a homogeneous, Ω-valued
Markov chain.



I (Ωi ,Fi ), i = 1, 2 be measurable spaces, µ a σ-finite measure
on F0, κ a σ-finite transition kernel from (Ω1,F1) to (Ω2,F2)

I Lemma 5.11: Let f : Ω1 × Ω2 → R+ be F1 ⊗F2 measurable.
Then,

ω1 7→ κ(ω1, .)[f ] :=

∫
κ(ω1, dω2)f (ω1, ω2)

is F1-measurable.

I Theorem 5.12: There is exactly one σ-finite measure µ⊗ κ on
(Ω1 × Ω2,F1 ⊗F2) with(

µ⊗ κ
)

(A× B) =

∫
A
µ(dω1)

(∫
B
κ(ω1, dω2)

)
.



Fubini’s Theorem

I Theorem 5.13: (Ωi ,Fi ), µ, κ and µ⊗ κ as above. Let
f : Ω1 → Ω2 → R+ measurable with respect to F1 ⊗F2.
Then,∫

fd
(
µ⊗ κ

)
=

∫
µ(dω1)

(∫
κ(ω1, dω2)f (ω1, ω2)

)
.

Equality also applies if f : Ω1 × Ω2 → R is measurable with∫
|f |d

(
µ⊗ κ

)
<∞.

I Corollary 5.14: Let Ω = Ω1×Ω2 and Hi ⊆ 2Ωi be a semi-ring,
and µi : Hi → R+ σ-finite and, σ-additive, i = 1, 2. Then
there is exactly one measure µ1 ⊗ µ2 on σ(H1)⊗ σ(H2) with

µ1 ⊗ µ2(A1 × A2) = µ1(A1) · µ2(A2).

For f : Ω→ R+ measurable, the value of the integral does
not depend on the order of integration.



Definition and Example

I λ⊗d is d-dimensional Lebesgue measure. Let

f (x , y) =
xy

(x2 + y2)2
.

Then, for every x ∈ R∫
λ(dy)f (x , y) = 0,

since f (x , .) ∈ L1(λ) and f (x , y) = −f (x ,−y). Therefore,
iterated integrals are 0. However, |f | is not integrable because
f has a non-integrable pole in (0, 0).



Convolutions of measures 1

I Definition 5.17: Let µ1, µ2 be σ-finite measures on B(R) and
µ1 ⊗ µ2 their product measure. Let S(x1, x2) := x1 + x2.
Then S∗(µ1 ⊗ · · · ⊗ µn) is the convolution of µ1, µ2 and is
denoted by µ1 ∗ µ2.

I γ1, γ2 ≥ 0, µPoi(γ1) and µPoi(γ2). Then,

µPoi(γ1) ∗ µPoi(γ2) =
∑
m,n

1m+n=ke
−(γ1+γ2)γ

m
1 γ

n
2

m!n!
· δk

=
k∑

m=0

e−(γ1+γ2) γm1 γ
k−m
2

m!(k −m)
· δk

= e−(γ1+γ2) (γ1 + γ2)k

k!
· δk

k∑
m=0

(
k

m

)
γm1 γ

k−m
2

(γ1 + γ2)k

= µPoi(γ1+γ2).



Convolutions of measures 2
I Lemma 5.19: λ measure on B(R), µ = fµ · λ and ν = fν · λ.

Then,µ ∗ ν = fµ∗ν · λ with

fµ∗ν(t) =

∫
fµ(s)fν(t − s)λ(ds).

I fN(µ1,σ2
1) and fN(µ2,σ2

2). Let µ := µ1 + µ2 and σ2 = σ2
1 + σ2

2.

Then, the density of N(µ1, σ
2
1) ∗ N(µ2, σ

2
2) is

x 7→ 1

2π
√
σ2

1σ
2
2

∫
exp

(
− (y − µ1)2

2σ2
1

− (x − y − µ2)2

2σ2
2

)
dy

= · · · =

=
1

2πσ

∫
exp

(
−

(σy − σ1
σ2

(x − µ))2

2σ2
−

(x − µ)2
(
σ2

σ2
2
− σ2

1

σ2
2

)
2σ2

)
dy

=
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
.
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Purpose

I Let X1,X2, ... be coin tosses, i.e. random variables with values
in {0, 1}. What is the joint distribution of (X1,X2, ...)?

I Let (Xt)t∈[0,∞) some random process. What is its
distribution?

I → We need to consider probability measures on (uncountably)
infinite product spaces!!

I We will do this using our usual construction with outer
measures based on a projective family.

I Recall für H ⊆ J the projection πJH : ΩJ → ΩH .



Projective family and limit

I (Ω,F) measurable space, I arbitrary.

I Definition 5.21: A family (PJ)J⊆f I , where PJ is a probability
measure on FJ := F⊗J , is called projective if

PH = (πJH)∗PJ , H ⊆ J ⊆f I .

If there exists a measure PI on F I := F⊗I with

PJ = (πJ)∗PI , J ⊆f I ,

then we call PI its projective limit and write

PI = lim←−
J⊆f I

PJ .



Uniqueness

I Remark 5.23: Projective limits are unique:
Indeed:

H′ :=
{
×
i∈J

Ai ××
i∈I\J

Ωi ,Ai ∈ Fi , i ∈ J ⊆f I
}
,

is a ∩-stable generator of F⊗I . If PI = lim←−J⊆f I
PJ . and

A =×i∈J Ai ××i∈I\J Ω ∈ H′,

PI (A) = PJ

(
×
i∈J

Ai

)
.



Existence
I Theorem 5.24: Let Ω be Polish and (PJ)J⊆f I a projective

family. Then, the projective limit lim←−J⊆f I
PJ exists.

I Proof: H′ semi-ring as above. For
A =×i∈J Ai ××i∈I\J Ω ∈ H′, define

µ(A) := PJ(×
i∈J

Ai )

and use the compact system

K := {×
j∈J

Kj ××
i∈I\J

Ω : J ⊆f I ,Kj compact} ⊆ H.

To show: µ is inner regular with respect to K.
Then. According to Theorem 2.10, µ is σ-additive.
Furthermore, µ(ΩI ) = 1, so µ can be uniquely extended to a
measure P on σ(H) = F I according to Theorem 2.16.



Existence
I Theorem 5.24: Let Ω be Polish and (PJ)J⊆f I a projective

family. Then, the projective limit lim←−J⊆f I
PJ exists.

I To show: µ is inner regular with respect to K.
For ε > 0 and j ∈ J, there is Kj ⊆ Aj cp with Pj(Aj \Kj) < ε.
Then,

µ
((
×
i∈J

Ai ××
i∈I\J

Ω
)
\
(
×
i∈J

Ki ××
i∈I\J

Ω
))

= µ
((

(×
i∈J

Ai ) \ (×
i∈J

Ki

))
××

i∈I\J
Ω
)

= PJ

((×
j∈J

Aj

)
\
(×
j∈J

Kj

))
≤ PJ

(⋃
j∈J

(Aj \ Kj)××
i 6=j

Ω
)

≤
∑
j∈J

PJ

(
(Aj \ Kj)××

i 6=j

Ω
)

=
∑
j∈J

Pj(Aj \ Kj) ≤ |J|ε.


