Measure Theory for Probabilists 1. Introduction

Peter Pfaffelhuber

January 6, 2024

Introduction

Course in spring 2024 at the University of Freiburg

- All course materials online at
- Prerequisites: a course in basic probability (coin tossing, throwing dice, binomial distribution, normal distribution)
- Goal: Solid introduction to all modern probability theory, including weak limits, stochastic processes, etc.
- Interference: courses in advanced calculus (Analysis III) might also cover measure theory
- Next course: Probability theory (summer 2024), covering all forms of convergence of random variables, conditional expectation, martingales

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Measure theory

Sample space Ω ; $A \subseteq \Omega$

- Assign some value µ(A) ∈ ℝ₊ to as many subsets of A as possible, with a number of computation rules
 ⇒ measure µ defined on a σ-algebra F ⊆ 2^Ω
 → 1. Set systems; 2. Set functions
- Make a weighted average of some $f : \Omega \to \mathbb{R}$ with respect to the measure μ .

 \Rightarrow integral $\int f d\mu$

Study the structure of the space of functions with finite integral

ightarrow 3. Measurable functions and the integral; 4. \mathcal{L}^{p} -spaces

All the same on product spaces Ω = X_{i∈I} Ω_i → 5. Product spaces

Measure Theory for Probabilists 2. Semi-rings, rings and σ -fields

Peter Pfaffelhuber

January 1, 2024

Definition of some set-systems

C ⊆ 2^Ω
C σ-field ⇒ C ring ⇒ C semi-ring.
Definition 1.1: Ω set, Ø ≠ H, R, F ⊆ 2^Ω.
H ∩-stable, if (A, B ∈ H ⇒ A ∩ B ∈ H).
H σ − ∩-stable, if (A₁, A₂, ... ∈ H ⇒ ∩_{i=n}[∞] A_n ∈ H).
H ∪-stable, if (A, B ∈ H ⇒ A ∪ B ∈ H).
H σ − ∪-stable, if (A₁, A₂, ... ∈ H ⇒ ∪_{i=n}[∞] A_n ∈ H).
H complement-stable, if A ∈ H ⇒ A^c ∈ H.
H set-difference-stable, if (A, B ∈ H ⇒ B \ A ∈ H).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition of some set-systems

- We write $A \uplus B$ for $A \cup B$ if $A \cap B = \emptyset$.
- Definition 1.1: Ω set, $\emptyset \neq \mathcal{H}, \mathcal{R}, \mathcal{F} \subseteq 2^{\Omega}$.
 - ▶ \mathcal{H} is a *semi-ring*, if it is (i) \cap -stable and (ii) $\forall A, B \in \mathcal{H} \exists C_1, \dots, C_n \in \mathcal{H}$ with $B \setminus A = \biguplus_{i=1}^n C_i$.
 - \triangleright \mathcal{R} is a *ring*, if it is \cup -stable and set-difference-stable.
 - F is a σ-field, if Ω ∈ F, it is complement-stable and σ-∪-stable. Then, (Ω, F) is called measurable space.

Connections between set-systems

	${\mathcal C}$ semi-ring	${\mathcal C}$ ring	$\mathcal{C} \sigma$ -field
${\mathcal C}$ is \cap -stable	•	0	0
\mathcal{C} is σ - \cap -stable			0
${\mathcal C}$ is \cup -stable		•	0
${\mathcal C}$ is $\sigma ext{-}\cup ext{-stable}$			•
\mathcal{C} is set-difference-stable		•	0
${\mathcal C}$ is complement-stable			•
$B \setminus A = \biguplus_{i=1}^n C_i$	•	0	0
$\Omega \in \mathcal{C}$			•

Examples

• Semi-ring: Let $\Omega = \mathbb{R}$. Then,

 $\mathcal{H} := \{(a, b] : a, b \in \mathbb{Q}, a \leq b\}$ is a semi-ring.

σ-algebras: Trivial examples are {Ø, Ω} and 2^Ω.
 If *F*' is a σ-field on Ω', and f : Ω → Ω'. Then,

 $\sigma(f) := \{ f^{-1}(A') : A' \in \mathcal{F}' \}$ is a σ -field on Ω .

Indeed: If $A', A'_1, A'_2, \ldots \in \sigma(f)$, then $(f^{-1}(A'))^c = f^{-1}((A')^c) \in \sigma(f)$ and $\bigcup_{n=1}^{\infty} f^{-1}(A'_n) = f^{-1}(\bigcup_{n=1}^{\infty} A'_n) \in \sigma(f).$

Measure Theory for Probabilists 3. Generators and extensions

Peter Pfaffelhuber

January 3, 2024

Generated ring/ σ -algebra

• Let $\mathcal{C} \subseteq 2^{\Omega}$. Then,

$$\mathcal{R}(\mathcal{C}) := \bigcap \Big\{ \mathcal{R} \supseteq \mathcal{C} : \mathcal{R} \text{ ring} \Big\},\\ \sigma(\mathcal{C}) := \bigcap \Big\{ F \supseteq \mathcal{C} : \mathcal{F} \text{ } \sigma\text{-field} \Big\}$$

are the ring and σ -algebra generated from C,

▶ Example 1.6: Let $\mathcal{H} := \{[a, b), a \leq b, a, b \in \mathbb{Q}\}$. Then,

$$\mathcal{R}(\mathcal{H}) = \left\{ \biguplus_{k=1}^{n} (a_k, b_k] : a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{Q}, \\ a_k < b_k, k = 1, \dots, n \text{ and } a_k < b_{k+1}, k = 1, \dots, n-1 \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is the ring generated from \mathcal{H} .

Generated ring

▶ Lemma 1.5: *H* semi-ring. Then,

$$\mathcal{R}(\mathcal{H}) = \Big\{ \biguplus_{k=1}^n A_k : A_1, \dots, A_n \in \mathcal{H} \text{ disjoint}, n \in \mathbb{N} \Big\}$$

is the ring generated from \mathcal{H} .

Proof: R(H) is ∩-stable.
 To show: R(H) set-difference-stable. Let A₁,..., A_n ∈ H and B₁,..., B_m ∈ H be disjoint. Then,

$$\left(\biguplus_{i=1}^{n}A_{i}
ight)\setminus\left(\biguplus_{j=1}^{m}B_{j}
ight)=\biguplus_{i=1}^{n}\bigcap_{j=1}^{m}A_{i}\setminus B_{j}\in\mathcal{R}(\mathcal{H}).$$

To show: $\mathcal{R}(\mathcal{H})$ is \cup -stable:

$$A\cup B=(A\cap B)\uplus (A\setminus B)\uplus (B\setminus A)\in \mathcal{R}(\mathcal{H})$$

Definitions from topology

- Ω some set. A set system O ⊆ 2^Ω is called *topology* if (i) Ø, Ω ∈ O; (ii) if O is ∩-stable; (iii) if I is arbitrary and if A_i ∈ O, i ∈ I, then ⋃_{i∈I} A_i ∈ O. The pair (Ω, O) is called *topological space*. Its members, i.e. every A ∈ O, is called *open*; any set A ⊆ Ω with A^c ∈ O is called *closed*.
- (Ω, r) be a metric space and B_ε(ω) := {ω' ∈ Ω : r(ω, ω') < ε} an open ball and

$$\mathcal{B} := \{ B_{\varepsilon}(\omega) : \varepsilon > 0, \omega \in \Omega \}.$$
 (1)

Then,

$$\mathcal{O}(\mathcal{B}) := \{ A \subseteq \Omega : \forall \omega \in A \exists B \in \mathcal{B} : \omega \in B \subseteq A \}$$
$$= \Big\{ \bigcup_{B \in \mathcal{C}} B : \mathcal{C} \subseteq \mathcal{B} \Big\}$$

is the topology generated by r.

Definitions from topology

r is called complete, if every Cauchy-sequence converges.

If there is some countable Ω' such that inf_{x'∈Ω'} r(x, x') = 0 for all x ∈ Ω, we call (Ω, r) separable. In this case,

$$\mathcal{B}' := \{B_r(\omega'): \omega' \in \Omega', r \in \mathbb{Q}_+\}$$

is countable and $\mathcal{O}(\mathcal{B}') = \mathcal{O}(\mathcal{B})$.

The space (Ω, O) is called Polish, if it is separable and completely metrizable.

Borel's σ -field

• Definition 1.7: (Ω, \mathcal{O}) a topological space.

$$\mathcal{B}(\Omega) := \sigma(\mathcal{O})$$

is the Borel σ -algebra on Ω . Sets in $\mathcal{B}(\Omega)$ are also called (Borel-)measurable sets.

Lemma 1.8: Let (Ω, O) be a topological space with countable basis C ⊆ O. Then, σ(O) = σ(C).

Proof: To show O ⊆ σ(C). Clear, since any A ∈ O can be represented as a countable union of sets from C.

Borel σ -field generated by interavls

Lemma 1.9: The set system

$$\mathcal{C}_1 = \{[-\infty, b] : b \in \mathbb{Q}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

generates $\mathcal{B}(\mathbb{R})$.

▶ Proof: Generate (a, b] from $[-\infty, b] \setminus [-\infty, a]$, then $(a, b) = \bigcup_{i=1}^{\infty} (a, b - \frac{1}{n})$. These sets clearly generate $\mathcal{B}(\mathbb{R})$.

Measure Theory for Probabilists 4. Dynkin systems and compact systems

Peter Pfaffelhuber

January 2, 2024

< □ > < @ > < ≧ > < ≧ >

Connections between set-systems

	${\mathcal C}$ semi-ring	${\mathcal C}$ ring	$\mathcal{C} \sigma$ -field
${\mathcal C}$ is \cap -stable	•	0	0
\mathcal{C} is σ - \cap -stable			0
${\mathcal C}$ is \cup -stable		•	0
${\mathcal C}$ is $\sigma ext{-}\cup ext{-stable}$			•
\mathcal{C} is set-difference-stable		•	0
${\mathcal C}$ is complement-stable			•
$B \setminus A = \biguplus_{i=1}^n C_i$	•	0	0
$\Omega \in \mathcal{C}$			•

Dynkin systems

- Let C ⊆ 2^Ω. It is often easy to show that C is a (semi-)ring. However, it is hard to show that C is a σ-algebra. It is often easier to show that C is a Dynkin system:
- Definition 1.11: A set system D is called Dynkin system (on Ω) if (i) Ω ∈ D, (ii) it is set-difference-stable for subsets (i.e. A, B ∈ D and A ⊆ B imply B \ A ∈ D and (iii) A₁, A₂,... ∈ D and A₁ ⊆ A₂ ⊆ A₃ ⊆ ... imply ⋃_{n=1}[∞] A_n ∈ D.
- Goal is Theorem 1.13:

A \cap -stable Dynkin system is a σ -algebra.

Example 1.12:

 $\mathcal{F} \sigma$ -algebra $\Rightarrow \mathcal{F}$ Dynkin-system

 \mathcal{F} Dynkin system $\Rightarrow \mathcal{F}$ complement-stable

Theorem 1.13:

▶ \mathcal{D} Dynkin system, $\mathcal{C} \subseteq \mathcal{D}$ is \cap -stable $\Rightarrow \sigma(\mathcal{C}) \subseteq \mathcal{D}$.

Proof: Set

$$\lambda(\mathcal{C}) := \bigcap \{ \mathcal{D}' \supseteq \mathcal{C}, \mathcal{D}' \text{ Dynkin-system} \} \supseteq \lambda(\mathcal{C}).$$

Claim: $\lambda(\mathcal{C})$ is a σ -algebra ($\Rightarrow \sigma(\mathcal{C}) \subseteq \sigma(\lambda(\mathcal{C})) = \lambda(\mathcal{C}) \subseteq \mathcal{D}$) Suffices: $\lambda(\mathcal{C})$ is \cap -stable. Then, $A \cup B = (A^c \cap B^c)^c$, so $\lambda(\mathcal{C})$ is \cup -stable and for $A_1, A_2, \ldots \in \lambda(\mathcal{C})$, we find $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \bigcup_{n=1}^{n} \bigcup_{i=1}^{n} A_i \in \lambda(\mathcal{C})$.

 $A_1, A_2, \dots \in \lambda(C)$, we find $\bigcup_{n=1} A_n = \bigcup_{n=1} \bigcup_{i=1} A_i \in \lambda(C)$. For $B \in C$, set

$$\mathcal{D}_B := \{A \subseteq \Omega : A \cap B \in \lambda(\mathcal{C})\} \supseteq \mathcal{C}.$$

Then \mathcal{D}_B is a Dynkin system... So, $\lambda(\mathcal{C}) \subseteq \mathcal{D}_B$. So, for an $A \in \lambda(\mathcal{C})$,

 $\mathcal{B}_{\mathcal{A}} := \{B \subseteq \Omega : \mathcal{A} \cap B \in \lambda(\mathcal{C})\} \supseteq \lambda(\mathcal{C}) \text{ is Dynkin system.}$

Compact sets

• $J \subseteq_f I$ if $J \subseteq I$ and J is finite

• Definition A.7: (Ω, r) metric space, $K \subseteq \Omega$.

- 1. *K* is *compact* if every open cover has a finite partial cover: If $O_i \in O$, $i \in I$ and $K \subseteq \bigcup_{i \in I} O_i$, then there is $J \subset_f I$ with $K \subseteq \bigcup_{i \in J} O_i$.
- 2. K is relatively compact if \overline{K} is compact.
- 3. *K* is *relatively sequentially compact* if for every sequence in *K* there is a convergent subsequence.
- 4. $K \subseteq \Omega$ is totally bounded if for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ and $\omega_1, \ldots, \omega_N \in K$ such that $K \subseteq \bigcup_{n=1}^N B_{\varepsilon}(\omega_n)$.

• Lemma A.8:: $K \subseteq \Omega$ compact $\Rightarrow K$ is closed.

Compact sets

• Proposition A.9: $K \subseteq \Omega$.

- 1. K is relatively compact.
- 2. If $F_i \subseteq \overline{K}$ is closed, $i \in I$, and $\bigcap_{i \in I} F_i = \emptyset$, then there is $J \subseteq_f I$ with $\bigcap_{i \in J} F_i = \emptyset$.
- 3. K is relatively sequentially compact.
- 4. *K* is totally bounded.

Then

$$4. \Longleftrightarrow 1. \iff 2. \Longrightarrow 3.$$

Furthermore, 3. \Longrightarrow 2. also holds if (Ω, \mathcal{O}) is separable and 4. \Longrightarrow 3. if (Ω, r) is complete.

Compact systems

- ▶ Definition 1.14: $\mathcal{K} \cap$ -stable is *compact system* if $\bigcap_{n=1}^{\infty} K_n = \emptyset$ with $K_1, K_2, \ldots \in \mathcal{K}$ implies that there is a $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_n = \emptyset$.
- Example 1.15: K ⊆ {K ⊆ Ω : K compact} ∩-stable is compact system.

Indeed: Let $\bigcap_{n=1}^{\infty} K_n = \emptyset$. Then, K_1 and $L_n := K_1 \cap K_n \subseteq K_1$ are compact and (because of the compactness of K_1) there is an N with $\bigcap_{n=1}^{N} K_n = \emptyset$ due to Proposition A.9.

Compact systems

▶ Lemma 1.16: *K* compact system. Then,

$$\mathcal{K}_{\cup} := \left\{ \bigcup_{i=1}^{n} K_{i} : K_{1}, \dots, K_{n} \in \mathcal{K}, n \in \mathbb{N} \right\}$$

is also a compact system.

▶ Proof:
$$\mathcal{K}_{\cup}$$
 is ∩-stable. Let
 $L_1 = \bigcup_{j=1}^{m_1} \mathcal{K}_j^1, L_2 = \bigcup_{j=1}^{m_2} \mathcal{K}_j^2, \ldots \in \mathcal{K}_{\cup}$ with $\bigcap_{n=1}^N L_n \neq \emptyset$ for
all $N \in \mathbb{N}$. To show: $\bigcap_{n=1}^{\infty} L_n \neq \emptyset$. Use induction over N for:
For every $N \in \mathbb{N}$ there are sets $\mathcal{K}_1, \ldots, \mathcal{K}_N \in \mathcal{K}$ with
 $\mathcal{K}_n \subseteq L_n, n = 1, \ldots, N$, such that for all $k \in \mathbb{N}_0$ we have
 $\mathcal{K}_1 \cap \cdots \cap \mathcal{K}_N \cap L_{N+1} \cap \cdots \cap L_{N+k} \neq \emptyset$.

Then, use k = 0. So we see that there are $K_1, K_2, \ldots \in \mathcal{K}$ and $K_n \subseteq L_n, n \in \mathbb{N}$ with $\bigcap_{n=1}^N K_n \neq \emptyset$ for all $N \in \mathbb{N}$. Hence, $\emptyset \neq \bigcap_{n=1}^\infty K_n \subseteq \bigcap_{n=1}^\infty L_n$.

Measure Theory for Probabilists 5. Set functions and outer measures

Peter Pfaffelhuber

January 6, 2024

Definition 2.1

► For $\mathcal{F} \subseteq 2^{\Omega}$, we call $\mu : \mathcal{F} \to \overline{\mathbb{R}}_+$ a set function.

μ is finitely additive if

$$\mu\Big(\biguplus_{k=1}^n A_k\Big) = \sum_{k=1}^n \mu(A_k).$$

for disjoint $A_1, \ldots, A_n \in \mathcal{F}$.

- $\mu : \mathcal{F} \to \mathbb{R}_+$ is σ -additive if the same holds for $n = \infty$.
- If *F* is a σ-algebra, and µ is σ-additive, µ is a measure and (Ω, *F*, µ) is a measure space.
- If µ(Ω) < ∞, then µ is a finite measure; if µ(Ω) = 1, µ is a probability measure. Then, (Ω, F, µ) is a probability space.</p>

Definition 2.1

• μ is called *sub-additive* if

$$\mu\Big(\bigcup_{k=1}^n A_k\Big) \leq \sum_{k=1}^n \mu(A_k).$$

for any $A_1, \ldots, A_n \in \mathcal{F}$.

- $\mu : \mathcal{F} \to \mathbb{R}_+$ is σ -sub-additive if the same holds for $n = \infty$.
- μ is monotone if $(A \subseteq B \Rightarrow \mu(A) \le \mu(B))$
- A σ-subadditive, monotone μ^{*} : 2^Ω → ℝ₊ with μ^{*}(Ø) = 0 is an *outer measure*.
- A set $A \subseteq \Omega$ is called μ^* -measurable if

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^c), \qquad E \subseteq \Omega.$$

Definition 2.1

- If there is Ω₁, Ω₂, ... ∈ F with U[∞]_{n=1} Ω_n = Ω and μ(Ω_n) < ∞ for all n = 1, 2, ..., then μ is σ-finite.</p>
- ▶ $\mathcal{F} \cap$ -stable. μ is inner \mathcal{K} -regular if for all $A \in \mathcal{F}$

$$\mu(A) = \sup_{\mathcal{K} \ni \mathcal{K} \subseteq A} \mu(\mathcal{K}).$$

(Ω, O) topological space, μ measure on B(O). The smallest closed set F with μ(F^c) = 0 is called the support of μ.

Examples

Let H = {(a, b] : a, b ∈ Q, a ≤ b}. Then, μ((a, b]) := b − a defines an additive, σ-finite set function.

▶ Let
$$\omega' \in \Omega$$
. Then, $\delta_{\omega'}(A) := 1_{\{\omega' \in A\}}$ is a probability measure.

•
$$\mu := \sum_{i \in I} \delta_{\omega_i}$$
 is a counting measure.

▶ $\mu_i, i \in I$ measures and $a_i \in \mathbb{R}_+, i \in I$. Then, $\sum_{i \in I} a_i \mu_i$ is also a measure, e.g. the Poisson distribution on $2^{\mathbb{N}_0}$,

$$\mu_{\mathsf{Poi}(\gamma)} := \sum_{k=0}^{\infty} e^{-\gamma} \frac{\gamma^k}{k!} \cdot \delta_k,$$

the geometric distribution

$$\mu_{\text{geo}(p)} := \sum_{k=1}^{\infty} (1-p)^{k-1} p \cdot \delta_k,$$

the binomial distribution

$$\mu_{B(n,p)} := \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} \cdot \delta_{k}.$$

Unions and disjoint unions

- ▶ Lemma 2.4: \mathcal{H} semi-ring, $A, A_1, ..., A_n \in \mathcal{H}$. Then, there are $B_1, ..., B_m \in \mathcal{H}$ pairwise disjoint and $A \setminus \bigcup_{i=1}^n A_i = \bigoplus_{i=1}^m B_j$.
- ▶ Proof: Induction on *n*. If n = 1, clear. Assume the assertion holds for some *n*, i.e. there is $B_1, ..., B_m$ with
 - $A \setminus \bigcup_{i=1}^{n} A_i = \biguplus_{j=1}^{m} B_j$. Then, write $B_j \setminus A_{n+1} = \biguplus_{k=1}^{k_j} C_k^j$ for $C_1^j, ..., C_{k_j}^j \in \mathcal{H}$. Then,

$$A \setminus \bigcup_{i=1}^{n+1} A_i = \left(A \setminus \bigcup_{i=1}^n A_i\right) \setminus A_{n+1} = \bigoplus_{j=1}^m B_j \setminus A_{n+1} = \bigoplus_{j=1}^m \bigoplus_{k=1}^{k_j} C_k^j.$$

Set-functions on semi-rings

▶ Lemma 2.5: \mathcal{H} semi-ring, $\mu : \mathcal{H} \to [0, \infty]$ additive. Then, *m* is monotone and sub-additive.

▶ Proof: Monotonicity for
$$A, B \in \mathcal{H}$$
 with $A \subseteq B$ and $C_1, ..., C_k \in \mathcal{H}$ with $B \setminus A = \biguplus_{i=1}^k C_i$. Write $\mu(A) \leq \mu(A) + \sum_{i=1}^k \mu(C_i) = \mu(B)$.
Claim: $\biguplus_{I \in \mathcal{I}} A_I \subseteq A \Rightarrow \sum_{i=1}^n \mu(A_i) \leq m(A)$.
Write $A \setminus \biguplus_{i=1}^n A_i = \biguplus_{j=1}^m B_j$. Then,

$$\mu(A) = \mu\left(\bigcup_{i=1}^{n} A_i \uplus \bigcup_{j=1}^{m} B_j\right) = \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{m} \mu(B_j) \ge \sum_{i=1}^{n} \mu(A_i).$$

Sub-additivity: To show $\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mu(A_{i})$. Write

$$\mu\Big(\bigcup_{i=1}^{n}A_i\Big)=\mu\Big(\underset{i=1}{\overset{n}{\biguplus}}\Big(A_i\setminus\underset{j=1}{\overset{i-1}{\bigcup}}A_j\Big)\Big)=\sum_{k=1}^{n}\sum_{k=1}^{k_i}\mu(C_k^i)\leq \sum_{i=1}^{n}\mu(A_i).$$

universität freiburg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Set-functions on semi-rings

Lemma 2.5: μ is σ-additive iff μ is σ-sub-additive.

Proof: '⇒': Copy the proof of sub-additivity using n = ∞.
 '⇐': Let A = ⋃_{i=1}[∞] A_i ∈ H.
 Then, ∑_{i=1}ⁿ μ(A_i) ≤ μ(A) by monotonicity and

$$\sum_{i=1}^{\infty} \mu(A_i) = \sup_{n \in \mathbb{N}} \sum_{i=1}^{n} \mu(A_i) \le \mu(A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

by σ -sub-additivity.

Extension of set-functions on semi-rings

 Lemma 2.6: *H* semi-ring, *R* ring generated by *H*, μ additive on *H*. Then,

$$\widetilde{\mu}\Big(\biguplus_{i=1}^{n}A_{i}\Big):=\sum_{i=1}^{n}\mu(A_{i})$$

 $\widetilde{\mu}$ is the only additive extension of μ on \mathcal{R} that coincides with μ on \mathcal{H} .

▶ Proof: Suffices to show that $\tilde{\mu}$ is well-defined. Let $\biguplus_{i=1}^{m} A_i = \biguplus_{j=1}^{n} B_j$. Since

$$A_i = \biguplus_{j=1}^n A_i \cap B_j, \qquad B_j = \biguplus_{i=1}^m A_i \cap B_j,$$

$$\sum_{i=1}^{m} \mu(A_i) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu(A_i \cap B_j) = \sum_{j=1}^{n} \sum_{i=1}^{m} \mu(A_i \cap B_j) = \sum_{j=1}^{n} \mu(B_j).$$

Inclusion exclusion principle

Proposition 2.7: µ be additive set function on ring R and I finite. Then for A_i ∈ R, i ∈ I, it holds that

$$\mu\Big(\bigcup_{i\in I}A_i\Big)=\sum_{J\subseteq I}(-1)^{|J|+1}\mu\Big(\bigcap_{j\in J}A_j\Big)$$

In particular, if $I = \{1, 2\}$,

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2).$$

Proof for
$$|I| = 2$$
: $A_1 \cup A_2 = A_1 \uplus (A_2 \setminus A_1)$ and $(A_2 \setminus A_1) \uplus (A_1 \cap A_2) = A_2$.

Measure Theory for Probabilists 6. σ -additivity

Peter Pfaffelhuber

January 6, 2024

Proposition 2.8

 $\blacktriangleright \mu$ is σ -additive iff

$$\mu\Big(\underset{n=1}{\overset{\infty}{\vdash}} A_n\Big) = \sum_{n=1}^{\infty} \mu(A_n).$$

• μ is σ -sub-additive iff

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

• μ is continuous from below, if for A, A_1, A_2, \ldots and $A_1 \subseteq A_2 \subseteq \ldots$ with $A = \bigcup_{n=1}^{\infty} A_n$, $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

• μ is continuous from above (in the \emptyset), if for $A(=\emptyset), A_1, A_2, \dots, \mu(A_1) < \infty$ and $A_1 \supseteq A_2 \supseteq \dots$ with $A = \bigcap_{n=1}^{\infty} A_n$,

$$(0 =)\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Proposition 2.8

- ▶ Let \mathcal{R} be a ring and $\mu : \mathcal{R} \to \overline{\mathbb{R}}_+$ be additive and $\mu(A) < \infty$ for all $A \in \mathcal{R}$. Then, the following are equivalent:
 - 1. μ is σ -additive;
 - 2. μ is σ -subadditive;
 - 3. μ is continuous from below;
 - 4. μ is continuous from above in \emptyset ;
 - 5. μ is continuous from above.

▶ Proof: 1.⇔2., 5.⇒4.: clear.
1.⇒3.: With
$$A_0 = \emptyset$$
, $A = \biguplus_{n=1}^{\infty} A_n \setminus A_{n-1}$
3.⇒1.: Set $A_N = \biguplus_{n=1}^N B_n$,
4.⇒5.: With $B_n := A_n \setminus A \downarrow \emptyset$,
 $\mu(A_n) = \mu(B_n) + \mu(A) \xrightarrow{n \to \infty} \mu(A)$.
3.⇒4.: Set $B_n := A_1 \setminus A_n \uparrow A_1$. Then,
 $\mu(A_1) = \lim_{n\to\infty} \mu(B_n) = \mu(A_1) - \lim_{n\to\infty} \mu(A_n)$.
4.⇒3. Set $B_n := A \setminus A_n \downarrow \emptyset$. Then,
 $0 = \lim_{n\to\infty} \mu(B_n) = \mu(A) - \lim_{n\to\infty} \mu(A_n)$.

Inner regularity of measures on Polish spaces

Lemma 2.9: (Ω, O) Polish, μ finite, ε > 0. There exists K ⊆ Ω compact with μ(Ω \ K) < ε.</p>

• Proof: There is
$$\{\omega_1, \omega_2, \dots\} \subseteq \Omega$$
 dense, so
 $\Omega = \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k)$. μ is continuous from above \Rightarrow

$$0 = \mu \Big(\Omega \setminus \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k) \Big) = \lim_{N \to \infty} \mu \Big(\Omega \setminus \bigcup_{k=1}^{N} B_{1/n}(\omega_k) \Big).$$

Take $N_n \in \mathbb{N}$ with $\mu\left(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k^n)\right) < \varepsilon/2^n$ and $A := \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)$ totally bounded, hence relatively compact with

$$\mu(\Omega \setminus \overline{A}) \leq \mu(\Omega \setminus A) \leq \mu\Big(\bigcup_{n=1}^{\infty} \Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big)\Big)$$

 $\leq \sum_{n=1}^{\infty} \mu\Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big) < \varepsilon.$

Inner regularity and σ -additivity

- Theorem 2.10: *H* semi-ring, μ : *H* → ℝ₊ finite, finitely additive and inner *K* ⊆ *H*-regular. Then μ is σ-additive.
- Proof:Wlog, *H* is ring and *K* = *K*_∪
 To show: μ is continuous from above in Ø. Let *A*₁, *A*₂, ... ∈ *H* with *A*₁ ⊇ *A*₂ ⊇ ··· and ⋂_{n=1}[∞] *A*_n = Ø and ε > 0.
 Choose *K*₁, *K*₂, ... ∈ *K* with *K*_n ⊆ *A*_n, n ∈ ℕ and

$$\mu(A_n) \leq \mu(K_n) + \varepsilon 2^{-n}.$$

Then, $\bigcap_{n=1}^{\infty} K_n \subseteq \bigcap_{n=1}^{\infty} A_n = \emptyset$, so there is $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_n = \emptyset$. From this,

$$A_N = A_N \cap \left(\bigcup_{n=1}^N K_n^c\right) = \bigcup_{n=1}^N A_N \setminus K_n \subseteq \bigcup_{n=1}^N A_n \setminus K_n.$$

By subadditivity and monotonicity of μ , for $m \ge N$,

$$\mu(A_m) \leq \mu(A_N) \leq \sum_{n=1}^N \mu(A_n \setminus K_n) \leq \varepsilon \sum_{\substack{n=1 \\ \langle n \rangle < \langle n$$

Measure Theory for Probabilists 7. Uniqueness and extension of set functions

Peter Pfaffelhuber

January 8, 2024

┥□▶ ┥⁄// ↓ ↓ ミ▶ ┥ ミ▶

Question

- When does an additive set-function μ on H uniquely extend to a measure H̃ on σ(H)?
- ▶ Uniqueness: Proposition 2.11: Let $C \subseteq 2^{\Omega}$ be \cap -stable, and μ, ν be σ -finite measures on $\sigma(C)$. Then,

$$\mu = \nu \qquad \Longleftrightarrow \qquad \mu|_{\mathcal{C}} = \nu|_{\mathcal{C}}.$$

Existence: See Carathéodory's Extension Theorem 2.13: Let μ* be an outer measure. Then, F* the set of μ*-measurable sets is a σ-algebra and μ := μ*|_{F*} is a measure.

	Lemma 2.5	Theorem 2.10	Theorem 2.16
μ additive	0	0	
μ finite		0	
$\mu~\sigma$ -finite			0
μ defined on semi-ring	0	0	0
hline $\mu~\sigma$ -additive	∘/∙	•	0
hline $\mu \sigma$ -subadditive	•/0		
μ inner $\mathcal K$ -regular		0	
μ extends uniquely to $\sigma(\mathcal{H})$			•

Proposition 2.11

Let C ⊆ 2^Ω be ∩-stable, and μ, ν be σ-finite measures on σ(C). Then,

$$\mu = \nu \qquad \Longleftrightarrow \qquad \mu|_{\mathcal{C}} = \nu|_{\mathcal{C}}.$$

$$\mathcal{D} := \{B \in \mathcal{F} : \mu(A) = \nu(A)\} \supseteq \mathcal{H}.$$

To show: \mathcal{D} is Dynkin. $\Rightarrow \sigma(\mathcal{H}) \subseteq \mathcal{D}$ by Theorem 1.13.

B, C ∈ D, B ⊆ C ⇒ µ(C \ B) = µ(C) − µ(B) = ν(C) − ν(B) = ν(C \ B), i.e. C \ B ∈ D.
B₁, B₂, ... ∈ D with B₁ ⊆ B₂ ⊆ B₃ ⊆ ... ∈ D and B = ⋃_{n=1}[∞] B_n ∈ F, then from continuity from below,

$$\mu(B) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \nu(B_n) = \nu(B) \quad \Rightarrow B \in \mathcal{D}.$$

- A σ-subadditive, monotone μ^{*} : 2^Ω → ℝ₊ with μ^{*}(Ø) = 0 is an *outer measure*.
- A set $A \subseteq \Omega$ is called μ^* -measurable if

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^c), \qquad E \subseteq \Omega.$$

Theorem 2.13: Let μ^{*} be an outer measure. Then, F^{*} the set of μ^{*}-measurable sets is a σ-algebra and μ := μ^{*}|_{F^{*}} is a measure. Furthermore, N := {N ⊆ Ω : μ^{*}(N) = 0} ⊆ F^{*}.

- Let μ^{*} be an outer measure. Then, F^{*} the set of μ^{*}-measurable sets is a σ-algebra and μ := μ^{*}|_{F^{*}} is a measure.
- ▶ Proof: Show:
 - $\emptyset \in \mathcal{F}^*$, since $\mu^*(E) = \mu^*(E \cap \emptyset) + \mu^*(E \cap \Omega)$.

$$\blacktriangleright A \in \mathcal{F}^* \Rightarrow A^c \in \mathcal{F}^*$$

► $A, B \in \mathcal{F}^* \Rightarrow A \cap B \in \mathcal{F}^*$, since

$$\mu^{*}(E) = \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c})$$

= $\mu^{*}((E \cap A) \cap B) + \mu^{*}((E \cap A) \cap B^{c}) + \mu^{*}(E \cap A^{c})$
 $\geq \mu^{*}(E \cap (A \cap B)) + \mu^{*}(E \cap (A \cap B)^{c}) \geq \mu^{*}(E),$

► $A_1, A_2, \dots \in \mathcal{F}^*$ disjoint, $B_n = \bigcup_{k=1}^n A_k \in \mathcal{F}^*$, $B_n \uparrow B$. Show $\mu^*(E \cap B_n) = \sum_{k=1}^n \mu^*(E \cap A_k)$ by induction on *n*:

$$\mu^*(E \cap B_{n+1}) = \mu^*(E \cap B_{n+1} \cap B_n) + \mu^*(E \cap B_{n+1} \cap B_n^c)$$
$$= \mu^*(E \cap B_n) + \mu^*(E \cap A_{n+1}) = \sum_{k=1}^{n+1} \mu^*(E \cap A_k).$$

universität freiburg

・ロト・(四ト・(日下・(日下))

- Let μ^{*} be an outer measure. Then, F^{*} the set of μ^{*}-measurable sets is a σ-algebra and μ := μ^{*}|_{F^{*}} is a measure.
- ▶ Then, $\mu^*(E \cap B) = \sum_{k=1}^{\infty} \mu^*(E \cap A_k) = \lim_{n \to \infty} \mu^*(E \cap B_n)$ since

$$\mu^*(E \cap B) \leq \sum_{k=1}^{\infty} \mu^*(E \cap A_k) = \lim_{n \to \infty} \sum_{k=1}^n \mu^*(E \cap A_k)$$
$$= \lim_{n \to \infty} \mu^*(E \cap B_n) \leq \mu^*(E \cap B),$$

▶ $B \in \mathcal{F}^*$, since $B_1, B_2, ... \in \mathcal{F}^*$, so

$$\mu^*(E) = \lim_{n \to \infty} \mu^*(E \cap B_n) + \mu^*(E \cap B_n^c)$$

$$\geq \mu^*(E \cap B) + \mu^*(E \cap B^c) \geq \mu^*(E).$$

So, \mathcal{F}^* is a σ -algebra and μ^* is σ -additive on \mathcal{F}^* , i.e. universität fikeitarg $\mu^*|_{\mathcal{F}^*}$ is a measure.

$$\blacktriangleright \mathcal{N} := \{ \mathcal{N} \subseteq \Omega : \mu^*(\mathcal{N}) = 0 \} \subseteq \mathcal{F}^*.$$

- N ∈ N are called (µ*-)null sets.
 If A^c ∈ N, we say that A holds (µ)-almost everywhere or almost surely.
- ▶ Proof: For $N \in \mathcal{N}$, by monotonicity $\mu^*(E \cap N) = 0$, so

$$\mu^*(E \cap N^c) + \mu^*(E \cap N) \ge \mu^*(E) \ge \mu^*(E \cap N^c)$$
$$= \mu^*(E \cap N^c) + \mu^*(E \cap N).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Zweite Folie

universität-freiburg

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Zweite Folie

universität-freiburg

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Proposition 2.8

 $\blacktriangleright \mu$ is σ -additive iff

$$\mu\Big(\underset{n=1}{\overset{\infty}{\vdash}} A_n\Big) = \sum_{n=1}^{\infty} \mu(A_n).$$

• μ is σ -sub-additive iff

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

• μ is continuous from below, if for A, A_1, A_2, \ldots and $A_1 \subseteq A_2 \subseteq \ldots$ with $A = \bigcup_{n=1}^{\infty} A_n$, $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

• μ is continuous from above (in the \emptyset), if for $A(=\emptyset), A_1, A_2, \dots, \mu(A_1) < \infty$ and $A_1 \supseteq A_2 \supseteq \dots$ with $A = \bigcap_{n=1}^{\infty} A_n$,

$$(0 =)\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Proposition 2.8

- ▶ Let \mathcal{R} be a ring and $\mu : \mathcal{R} \to \overline{\mathbb{R}}_+$ be additive and $\mu(A) < \infty$ for all $A \in \mathcal{R}$. Then, the following are equivalent:
 - 1. μ is σ -additive;
 - 2. μ is σ -subadditive;
 - 3. μ is continuous from below;
 - 4. μ is continuous from above in \emptyset ;
 - 5. μ is continuous from above.

▶ Proof: 1.⇔2., 5.⇒4.: clear.
1.⇒3.: With
$$A_0 = \emptyset$$
, $A = \biguplus_{n=1}^{\infty} A_n \setminus A_{n-1}$
3.⇒1.: Set $A_N = \biguplus_{n=1}^N B_n$,
4.⇒5.: With $B_n := A_n \setminus A \downarrow \emptyset$,
 $\mu(A_n) = \mu(B_n) + \mu(A) \xrightarrow{n \to \infty} \mu(A)$.
3.⇒4.: Set $B_n := A_1 \setminus A_n \uparrow A_1$. Then,
 $\mu(A_1) = \lim_{n\to\infty} \mu(B_n) = \mu(A_1) - \lim_{n\to\infty} \mu(A_n)$.
4.⇒3. Set $B_n := A \setminus A_n \downarrow \emptyset$. Then,
 $0 = \lim_{n\to\infty} \mu(B_n) = \mu(A) - \lim_{n\to\infty} \mu(A_n)$.

Inner regularity of measures on Polish spaces

Lemma 2.9: (Ω, O) Polish, μ finite, ε > 0. There exists K ⊆ Ω compact with μ(Ω \ K) < ε.</p>

• Proof: There is
$$\{\omega_1, \omega_2, \dots\} \subseteq \Omega$$
 dense, so
 $\Omega = \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k)$. μ is continuous from above \Rightarrow

$$0 = \mu \Big(\Omega \setminus \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k) \Big) = \lim_{N \to \infty} \mu \Big(\Omega \setminus \bigcup_{k=1}^{N} B_{1/n}(\omega_k) \Big).$$

Take $N_n \in \mathbb{N}$ with $\mu\left(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k^n)\right) < \varepsilon/2^n$ and $A := \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)$ totally bounded, hence relatively compact with

$$\mu(\Omega \setminus \overline{A}) \leq \mu(\Omega \setminus A) \leq \mu\Big(\bigcup_{n=1}^{\infty} \Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big)\Big)$$

 $\leq \sum_{n=1}^{\infty} \mu\Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big) < \varepsilon.$

Inner regularity and σ -additivity

- Theorem 2.10: *H* semi-ring, μ : *H* → ℝ₊ finite, finitely additive and inner *K* ⊆ *H*-regular. Then μ is σ-additive.
- Proof:Wlog, *H* is ring and *K* = *K*_∪
 To show: μ is continuous from above in Ø. Let *A*₁, *A*₂, ... ∈ *H* with *A*₁ ⊇ *A*₂ ⊇ ··· and ⋂_{n=1}[∞] *A*_n = Ø and ε > 0.
 Choose *K*₁, *K*₂, ... ∈ *K* with *K*_n ⊆ *A*_n, n ∈ ℕ and

$$\mu(A_n) \leq \mu(K_n) + \varepsilon 2^{-n}.$$

Then, $\bigcap_{n=1}^{\infty} K_n \subseteq \bigcap_{n=1}^{\infty} A_n = \emptyset$, so there is $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_n = \emptyset$. From this,

$$A_N = A_N \cap \left(\bigcup_{n=1}^N K_n^c\right) = \bigcup_{n=1}^N A_N \setminus K_n \subseteq \bigcup_{n=1}^N A_n \setminus K_n.$$

By subadditivity and monotonicity of μ , for $m \ge N$,

$$\mu(A_m) \leq \mu(A_N) \leq \sum_{n=1}^N \mu(A_n \setminus K_n) \leq \varepsilon \sum_{\substack{n=1 \\ \langle n \rangle < \langle n$$

Measure Theory for Probabilists 8. Measures on \mathbb{R} and image measures

Peter Pfaffelhuber

January 9, 2024

┥□▶ ┥⁄// ↓ ↓ ミ▶ ┥ ミ▶

Lebesgue measure

Proposition 2.18: There is exactly one measure λ on (ℝ, B(ℝ)) with

$$\lambda((a,b]) = b - a$$

for $a, b \in \mathbb{Q}$ with $a \leq b$.

▶ Proof: $\mathcal{H} = \{(a, b] : a, b \in \mathbb{Q}, a \leq b\}$ is a semi-ring with $\sigma(\mathcal{H}) = \mathcal{B}(\mathbb{R})$. σ -additivity: let a_1, a_2, \ldots be such that $\bigcup_{n=1}^{\infty} (a_{n+1}, a_n] = (a, b] \in \mathcal{H}$, i.e., $b = a_1$ and $a_n \downarrow a$. Then,

$$\lambda(a, b] = b - a = a_1 - \lim_{N \to \infty} a_N = \sum_{n=1}^{\infty} a_n - a_{n+1} = \sum_{n=1}^{\infty} \lambda((a_{n+1}, a_n)).$$

Conclude with Theorem 2.16.

σ -finite measures on $\mathbb R$

Proposition 2.19: μ : B(ℝ) → ℝ₊ is a σ-finite measure iff there is G : ℝ → ℝ, non-decreasing and right-continuous with

$$\mu((a,b]) = G(b) - G(a), \qquad a,b \in \mathbb{Q}, a \leq b. \qquad (*)$$

If \widetilde{G} also satisfies (*), then $\widetilde{G} = G + c$ for some $c \in \mathbb{R}$. Proof: ' \Rightarrow ': Define G(0) = 0 and $G(x) := \begin{cases} \mu((0, x]), & x > 0, \\ -\mu((x, 0]), & x < 0. \end{cases}$ ' \Leftarrow ': Similar to the proof of Proposition 2.18. Let \widetilde{G} satisfy (*). Then, for $a \in \mathbb{R}$, $\widetilde{G}(b) = \widetilde{G}(a) + \mu((a, b]) = G(b) + \widetilde{G}(a) - G(a),$

and the assertion follows with $c = \widetilde{G}(a) - G(a)$.

Probability measures on $\mathbb R$

Corollary 2.20: µ : B(ℝ) → [0, 1] is probability measure iff there is F : ℝ → [0, 1] non-decreasing and right-continuous with lim_{b→∞} F(b) = 1 and

$$\mu((a,b]) = F(b) - F(a), \qquad a, b \in \mathbb{Q}, a \leq b.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

F is uniquely defined by μ . F is called the distribution function of μ .

Examples

Let f : ℝ → ℝ₊ be a density (piecewise continuous with ∫[∞]_{-∞} f(x)dx = 1). A densitiy defines a distribution function via

$$F(x):=\int_{-\infty}^{x}f(a)da,$$

therefore uniquely a probability measures.

$$F_{U(0,1)}(x) = \int_{-\infty}^{x} \mathbb{1}_{[0,1]}(a) da = \begin{cases} 0, & x \le 0, \\ x, & 0 < x \le 1, \\ 1, & x > 1, \end{cases}$$
$$F_{\exp(\lambda)}(x) = \int_{-\infty}^{x} \mathbb{1}_{[0,\infty)}(a) \lambda e^{-\lambda a} da = 1 - e^{-\lambda x}$$
$$F_{N(\mu,\sigma^2)}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} \exp\left(-\frac{(a-\mu)^2}{2\sigma^2}\right) da =: \Phi(x)$$

Image measures

universität

• If \mathcal{F}' is a σ -field on Ω' , and $f : \Omega \to \Omega'$. Then,

$$\sigma(f) := \{ f^{-1}(A') : A' \in \mathcal{F}' \}$$
 is a σ -field on Ω .

Definition 2.23: (Ω, F, μ) measure space, (Ω', F') measurable space, f : Ω → Ω' with σ(f) ⊆ F. Then,

$$\mathcal{F}'
i A' \mapsto f_*\mu(A') := \mu(f^{-1}(A')) = \mu(f \in A')$$

is the *image measure* of f under μ .

If \mathbb{P} is a probability measure, we call $X_*\mu$ the distribution of X under \mathbb{P} .

- Proposition 2.25: $f_*\mu$ is a measure on \mathcal{F}' .
- ▶ Proof: $A'_1, A'_2, \dots \in \mathcal{F}'$ disjoint, then

$$f_*\mu\Big(\underset{n=1}{\overset{\infty}{\mapsto}}A'_n\Big) = \mu\Big(f^{-1}\Big(\underset{n=1}{\overset{\infty}{\mapsto}}A'_n\Big)\Big)$$
$$= \mu\Big(\underset{n=1}{\overset{\infty}{\mapsto}}(f^{-1}(A'_n)\Big) = \sum_{n=1}^{\infty}\mu(f^{-1}(A'_n)) = \sum_{n=1}^{\infty}f_*\mu(A'_n).$$
freiburg

Examples

Measure Theory for Probabilists 9. Approximation of measurable functions

Peter Pfaffelhuber

January 14, 2024

┥□▶ ┥⁄// ↓ ↓ ミ▶ ┥ ミ▶

Image measures

▶ If \mathcal{F}' is a σ -field on Ω' , and $f : \Omega \to \Omega'$. Then,

$$\sigma(f) := \{ f^{-1}(A') : A' \in \mathcal{F}' \}$$
 is a σ -field on Ω .

• Definition 2.23: $(\Omega, \mathcal{F}, \mu)$ measure space, (Ω', \mathcal{F}') measurable space, $f : \Omega \to \Omega'$ with $\sigma(f) \subseteq \mathcal{F}$. Then,

$$\mathcal{F}' \ni \mathcal{A}' \mapsto f_*\mu(\mathcal{A}') := \mu(f^{-1}(\mathcal{A}')) = \mu(f \in \mathcal{A}')$$

is the *image measure* of f under μ .

If \mathbb{P} is a probability measure, we call $X_*\mu$ the distribution of X under \mathbb{P} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Proposition 2.25: $f_*\mu$ is a measure on \mathcal{F}' .

Lemma 3.2

• (Ω', \mathcal{F}') measurable space, $f : \Omega \to \Omega', \mathcal{C}' \subseteq \mathcal{F}'$ with $\sigma(\mathcal{C}') = \mathcal{F}'$. Then $\sigma(f^{-1}(\mathcal{C}')) = f^{-1}(\sigma(\mathcal{C}'))$.

▶ Proof: '⊆': $f^{-1}(\sigma(\mathcal{C}'))$ is a σ -algebra. So,

$$\sigma(f^{-1}(\mathcal{C}')) \subseteq \sigma(f^{-1}(\sigma(\mathcal{C}'))) = f^{-1}(\sigma(\mathcal{C}'))$$

'⊇': define

$$\widetilde{\mathcal{F}}' = \{ \mathsf{A}' \in \sigma(\mathcal{C}') : f^{-1}(\mathsf{A}') \in \sigma(f^{-1}(\mathcal{C}')) \} \subseteq \sigma(\mathcal{C}').$$

Again, $\widetilde{\mathcal{F}}'$ is a σ -algebra and $\mathcal{C}' \subseteq \widetilde{\mathcal{F}}' \subseteq \sigma(\mathcal{C}')$. Thus, $\widetilde{\mathcal{F}}' = \sigma(\mathcal{C}')$. For $A' \in \sigma(\mathcal{C}')$, we find

$$f^{-1}(A') \in \sigma(f^{-1}(\mathcal{C}')),$$

which is equivalent to $f^{-1}(\sigma(\mathcal{C}')) \subseteq \sigma(f^{-1}(\mathcal{C}'))$.

Definition 3.3

• (Ω, \mathcal{F}) , (Ω', \mathcal{F}') measurable spaces and $f : \Omega \to \Omega'$.

- 1. f is \mathcal{F}/\mathcal{F}' -measurable if $f^{-1}(\mathcal{F}') \subseteq \mathcal{F}$. We define $\sigma(f) := f^{-1}(\mathcal{F}')$ the σ -algebra generated by f.
- If (Ω, F, P) is a probability space and X : Ω → Ω' measurable, then X is called an Ω'-valued random variable. The image measure X_{*}P from Definition 2.23 is called the *distribution of* X.
- If (Ω', F') = (ℝ, B(ℝ)), and f is F/F'-measurable, we say that f is (Borel-)measurable.
- 4. If $f = 1_A$ for $A \subseteq \Omega$, then f is called *indicator function*. If $f = \sum_{k=1}^{n} c_k 1_{A_k}$ for $c_1, \ldots, c_n \in \mathbb{R}$ pairwise different and $A_1, \ldots, A_n \subseteq \Omega$, then f is called *simple*.

Examples

- $f: \omega \mapsto \omega$ is measurable, since $f^{-1}(\mathcal{F}) = \mathcal{F}$.
- (Ω, O) and (Ω'.O') topological spaces, f : Ω → Ω' continuous. Then f is measurable.
 Indeed: Since f⁻¹(O') ⊆ O. From Lemma 3.2,

$$f^{-1}(\mathcal{B}(\Omega')) = f^{-1}(\sigma(\mathcal{O}')) = \sigma(f^{-1}(\mathcal{O}') \subseteq \sigma(\mathcal{O}) = \mathcal{B}(\Omega).$$

- A function $f : \Omega \to \{0, 1\}$ is measurable if and only if $f^{-1}(\{1\}) \in \mathcal{F}$. Then, $\sigma(f) = \{\emptyset, f^{-1}(\{1\}), (f^{-1}(\{1\}))^c, \Omega\}$.
- For a non-measurable set/function, see Example 2.27 in the manuscript.

Examples for random variables

- ► (E, r) metric space, X an E-valued random variable on some probability space, Y an E-valued random variable on another probability space. If X_{*}P = Y_{*}Q, X and Y are *identically distributed* and we write X ~ Y.
- Let (X_i)_{i∈I} family of random variables on a probability space. The distribution of ((X_i)_{i∈I})_{*}P is called the *joint distribution* of (X_i)_{i∈I}.

Lemma 3.6

- If C' ⊆ F' with F' = σ(C'), then f : Ω → Ω' is F/F'-measurable if and only if f⁻¹(C') ⊆ F.
- ▶ If $f : \Omega \to \Omega'$ is measurable and $g : \Omega' \to \Omega''$ is measurable, then $g \circ f : \Omega \to \Omega''$ is measuarble.
- A real-valued function f (i.e. f : Ω → ℝ) is measurable (with respect to F/B(ℝ)) if and only if {ω : f(ω) ≤ x} ∈ F for all x ∈ ℚ.
- A simple function $f = \sum_{k=1}^{n} c_k \mathbf{1}_{A_k}$ with pairwise different $c_1, \ldots, c_n \in \mathbb{R}$ and $A_1, \ldots, A_n \subseteq \Omega$ is measurable if and only if $A_1, \ldots, A_n \in \mathcal{F}$.
- ▶ Proof of 1.: $f^{-1}(\mathcal{F}') = f^{-1}(\sigma(\mathcal{C}')) = \sigma(f^{-1}(\mathcal{C}')) \subseteq \sigma(\mathcal{F}) = \mathcal{F}$. This means that f is \mathcal{F}/\mathcal{F}' -measurable.

Algebraic structures of measurability

Lemma 3.7: Let f, g, f₁, f₂,... be measurable. Then, the following are measurable: fg, af + bg for a, b ∈ ℝ, f/g if g(ω) ≠ 0 for all ω ∈ Ω,

$\sup f_n$,	inf f _n ,	$\limsup_{n\to\infty} f_n,$	lim inf f_n .
$n \in \mathbb{N}$	$n \in \mathbb{N}$	$n \rightarrow \infty$	$n \rightarrow \infty$ "

- ▶ In particular, $f^+, f^-, |f|$ are measurable.
- Proof: Consider ψ(ω) := (f(ω), g(ω)) measruable. Then, (x, y) → ax + by, (x, y) → xy, (x, y) → x/y are continuous, hence measurbale.
 - 2. for measurability of $\sup_{n \in \mathbb{N}} f_n$. Write, for $x \in \mathbb{R}$,

$$\left\{\omega: \sup_{n\in\mathbb{N}}f_n(\omega)\leq x\right\}=\bigcap_{n=1}^{\infty}\underbrace{\left\{\omega:f_n(\omega)\leq x\right\}}_{\in\mathcal{F}}\in\mathcal{F}.$$

Approximation by simple functions

Theorem 3.9: f : Ω → ℝ₊ measurable. Then there is f₁, f₂, · · · : Ω → ℝ of simple functions with f_n ↑ f.
 Proof: Write

$$f_n(\omega) = n \wedge 2^{-n} [2^n f(\omega)] \uparrow f$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

by construction. Furthermore, $\omega \mapsto [2^n f(\omega)]$ is measurable according to Lemma 3.6.

Measure Theory for Probabilists 10. Defining the integral, and some properties

Peter Pfaffelhuber

January 19, 2024

4

Outline

• Goal: For a measure μ , define for *many* functions $f : \Omega \to \mathbb{R}$

$$\mu[f] = \int f d\mu = \int f(\omega) \mu(d\omega).$$

▶ Initial step: For $f = 1_A$ for some $A \in \mathcal{F}$, define

$$\mu[f] := \mu(A).$$

▶ Definition 3.10: For $f = \sum_{k=1}^{m} c_k 1_{A_k}$ with $c_1, \ldots, c_m \ge 0, A_1, \ldots, A_m \in \mathcal{F}$, define

$$\mu[f] := \sum_{i=1}^m c_i \mu(A_i).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Final step: f measurbale: use approximating sequence of simple functions.

Simple properties

Lemma 3.12: f, g non-negative, simple functions and α ≥ 0. Then,

$$\mu[af + bg] = a\mu[f] + b\mu[g], \qquad f \le g \Rightarrow \mu[f] \le \mu[g].$$

If f = 1_A for A ∈ F, note that f is in general not piecewise continuous. In particular, ∫ f(x)dx does not exist in the sense of Riemann.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Integral of non-negative measurable functions

▶ Definition 3.14: $(\Omega, \mathcal{F}, \mu)$ measue space, $f : \Omega \to \overline{\mathbb{R}}_+$ measurable. Define

$$\mu[f] := \int f d\mu := \int f(\omega)\mu(d\omega)$$
$$:= \sup\{\mu[g] : g \text{ simple, non-negative, } g \leq f\}.$$

► Definition 3.17: $f : \Omega \to \overline{\mathbb{R}}$ measurable. Then f is said to be μ -integrable if $\mu[|f|] < \infty$,

$$\mu[f] := \int f(\omega)\mu(d\omega) := \int fd\mu := \mu[f^+] - \mu[f^-].$$

• For $A \in \mathcal{F}$ we also write

$$\mu[f,A] := \int_A f d\mu := \mu[f1_A].$$

Proposition 3.16

►
$$f, g, f_1, f_2, \dots : \Omega \to \overline{\mathbb{R}}_+$$
 measurable. Then,
1. If $f \leq g$, then $\mu[f] \leq \mu[g]$.
2. If
 $f_n \uparrow f$, then $\mu[f_n] \uparrow \mu[f]$.

3. If
$$a, b \ge 0$$
, then $\mu[af + bg] = a\mu[f] + b\mu[g]$.

Proof: 1. clear.

2. Since $f_1, f_2, ... \leq f$, $\lim_{n \to \infty} \mu[f_n] = \sup_{n \in \mathbb{N}} \mu[f_n] \leq \mu[f]$. For the reverse it suffices to show

$$\mu[g] \leq \sup_{n \in \mathbb{N}} \mu[f_n]$$

for all simple functions $g = \sum_{k=1}^{m} c_k \mathbf{1}_{A_k} \leq f$. Let $B_n^{\varepsilon} := \{f_n \geq (1 - \varepsilon)g\}$. Since $f_n \uparrow f$ and $g \leq f$, $\bigcup_{n=1}^{\infty} B_n^{\varepsilon} = \Omega$

$$\mu[f_n] \ge \mu[(1-\varepsilon)g\mathbf{1}_{B_n^{\varepsilon}}] = \sum_{k=1}^m (1-\varepsilon)c_k\mu(A_k \cap B_n^{\varepsilon})$$

$$\xrightarrow{n \to \infty} \sum_{k=1}^{m} (1-\varepsilon)c_k \mu(A_k) = (1-\varepsilon)\mu[g].$$

Some properties

Define $\mathcal{L}^{1}(\mu) := \left\{ f : \Omega \to \overline{\mathbb{R}} : \mu[|f|^{1}] < \infty \right\}.$ \blacktriangleright Let $f, g \in \mathcal{L}^1(\mu)$. Then 1. The integral is monotone, i.e. $f \leq g$ almost everywhere $\implies \mu[f] \leq \mu[g]$. In particular, $|\mu[f]| < \mu[|f|].$ 2. The integral is linear, so if $a, b \in \mathbb{R}$, then $af + bg \in \mathcal{L}^1(\mu)$ and $\mu[af + bg] = a\mu[f] + b\mu[g].$ 3. $g \in \mathcal{L}^1(f_*\mu)$, then $g \circ f \in \mathcal{L}^1(\mu)$ and $\mu[g \circ f] = f_* \mu[g].$ Proof: 4. for simple, non-negative functions g. Note $g \circ f = \sum_{k=1}^{m} c_k \mathbf{1}_{f \in A'_k}$, hence $\mu[g \circ f] = \sum_{k=1}^{m} c_k \mu(f \in A'_k) = \sum_{k=1}^{m} c_k f_* \mu(A'_k) = f_* \mu[g].$ universität freiburg

Properties almost everywhere

univers

•
$$f: \Omega \to \mathbb{R}_+$$
 measurable.
1. $f = 0$ almost everywhere iff $\mu[f] = 0$.
2. If $\mu[f] < \infty$, then $f < \infty$ almost everywhere.
• Proof: 1. Let $N := \{f > 0\} \in \mathcal{F}$.
 $'\Rightarrow': \mu(N) = 0$, so
 $0 \le \mu[f] = \mu[f, N] = \lim_{n \to \infty} \mu[n \land f, N] \le \lim_{n \to \infty} \mu[n, N] = 0$.
 $' \in '$ Let $N_n := \{f \ge 1/n\}$, so $N_n \uparrow N$ and $nf \ge 1_{N_n}$, i.e.
 $0 = \mu[f] \ge \frac{1}{n}\mu(N_n)$.
This means that $\mu(N_n) = 0$ and therefore
 $\mu(N) = \mu(\bigcup_{n=1}^{\infty} N_n) = 0$ by σ -sub-additivity of μ .
2. Let $A := \{f = \infty\}$. Since $f1_{f \ge n} \ge n1_{f \ge n}$,
 $\mu(A) = \mu[1_A] \le \mu[1_{f \ge n}] \le \frac{1}{n}\mu[f, 1_{f \ge n}] \le \frac{1}{n}\mu[f] \xrightarrow{n \to \infty} 0$.

Lebesgue and Riemann integral

• $f : \mathbb{R} \to \mathbb{R}$ be a piece-wise constant function, i.e.

$$f(x) = \sum_{j=-\infty}^{\infty} a_j \mathbb{1}_{[x_{j-1},x_j)}(x)$$

 $f:[a,b] \to \mathbb{R}$ is *Riemann-integrable* if $\lambda[|f|] < \infty$ and there are piece-wise constant functions $f_n^- \leq f \leq f_n^+$ and $\lambda[f_n^+ - f_n^-] \xrightarrow{n \to \infty} 0$. Then, the Riemann integral and Lebesgue integral then coincide.

 f: ℝ → ℝ is called *Riemann-integrable* if f1_K is Riemann-integrable for all compact intervals K ⊆ ℝ and λ[f1_[-n,n]] converges.

Riemann integrability

Proposition 3.23: f : [0, t] → ℝ piecewise continuous. Then f is integrable, Riemann-integrable, and

$$\lambda[f] = \lim_{n \to \infty} \sum_{k=1}^{\infty} f(y_{n,k})(x_{n,k} - x_{n,k-1})$$

for
$$0 = x_{n,0} \le ... \le x_{n,k_n} = t$$
 with
 $\max_k |x_{n,k} - x_{n,k-1}| \xrightarrow{n \to \infty} 0$ and any $x_{n,k-1} \le y_{n,k} \le x_{n,k}$.
Proof for continuous f . Choose $\varepsilon_n \downarrow 0$ and $x_{n,0} \le ... \le x_{n,k_n}$
such that $K \subseteq [x_{n,0}, x_{n,k_n}]$ and
 $\max_{x_{n,k-1} \le y < x_{n,k}} |f(x_{n,k-1}) - f(y)| < \varepsilon_n$. Then, find piecewise
constant f_n^+, f_n^- with $f_n^- \le f \le f_n^+$ and $||f_n^+ - f_n^-|| \le \varepsilon_n$.
Integrability and Riemann-integrability follows. The formula
follows from uniform approximation of the function f .

universität freiburg

Lebesgue and Riemann integral

$$\lambda[f1_{[0,2n]}] = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
$$= \sum_{k=1}^{n} \frac{1}{2k-1} - \frac{1}{2k} = \sum_{k=1}^{n} \frac{1}{(2k-1)2k}$$

So, f is Riemann-integrable. However

$$\lambda[|f|] = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.$$

So, |f| is not integrable, hence f is not Lebesgue-integrable.

Measure Theory for Probabilists 11. Convergence results

Peter Pfaffelhuber

January 19, 2024

Outline

▶ Theorem 3.25 for Riemann integral: $f, f_1, f_2, \ldots : [a, b] \to \mathbb{R}$ be piecewise continuous with $f_n \xrightarrow{n \to \infty} f$ uniformly. Then

$$\int_a^b f_n(x) dx \xrightarrow{n \to \infty} \int_a^b f(x) dx.$$

► Theorem 3.26, monotone convergence: $f_1, f_2, \dots \in \mathcal{L}^1(\mu)$ and $f : \Omega \to \mathbb{R}$ measurable with $f_n \uparrow f$ almost everywhere. Then,

$$\lim_{n\to\infty}\mu[f_n]=\mu[f].$$

• Theorem 3.28, dominated convergence: $f, g, f_1, f_2, \dots : \Omega \to \overline{\mathbb{R}}$ measurable with $|f_n| \leq g$ almost everywhere, $\lim_{n\to\infty} f_n = f$ almost everywhere, and $g \in \mathcal{L}^1(\mu)$. Then,

$$\lim_{n\to\infty}\mu[f_n]=\mu[f].$$

(日)((1))

Monotone Convergence

► Theorem 3.26, monotone convergence: $f_1, f_2, \dots \in \mathcal{L}^1(\mu)$ and $f : \Omega \to \mathbb{R}$ measurable with $f_n \uparrow f$ almost everywhere. Then,

$$\lim_{n\to\infty}\mu[f_n]=\mu[f].$$

▶ Proof: $N \in \mathcal{F}$ be such that $\mu(N) = 0$ and $f_n(\omega) \uparrow f(\omega)$ for $\omega \notin N$. Set $g_n := (f_n - f_1) \mathbb{1}_{N^c} \ge 0$. This means that $g_n \uparrow (f - f_1) \mathbb{1}_{N^c} =: g$ and with Proposition 3.16.2,

$$\mu[f_n] = \mu[f_1] + \mu[g_n] \xrightarrow{n \to \infty} \mu[f_1] + \mu[g] = \mu[f].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma von Fatou

Theorem 3.27: f₁, f₂, ...: Ω → ℝ₊ measurable. Then, liminf_{n→∞} μ[f_n] ≥ μ[liminf_n].
Proof: For all k ≥ n, f_k ≥ inf_{ℓ≥n} f_ℓ and thus, for all n, inf_{k≥n} μ[f_k] ≥ μ[inf_{ℓ≥n} f_ℓ].

So,

$$\liminf_{n \to \infty} \mu[f_n] = \sup_{n \in \mathbb{N}} \inf_{k \ge n} \mu[f_k] \ge \sup_{n \in \mathbb{N}} \mu[\inf_{k \ge n} f_k] = \mu[\liminf_{n \to \infty} f_n]$$

by monotone convergence.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dominated convergence

► Theorem 3.28: $f, g, f_1, f_2, \dots : \Omega \to \mathbb{R}$ measurable with $|f_n| \le g$ almost everywhere, $\lim_{n\to\infty} f_n = f$ almost everywhere, and $g \in \mathcal{L}^1(\mu)$. Then,

$$\lim_{n\to\infty}\mu[f_n]=\mu[f].$$

Proof: Wlog, |f_n| ≤ g and lim_{n→∞} f_n = f everywhere. Use Fatou's lemma and g − f_n, g + f ≥ 0, i.e.

$$\mu[g+f] \le \liminf_{n \to \infty} \mu[g+f_n] = \mu[g] + \liminf_{n \to \infty} \mu[f_n],$$

$$\mu[g-f] \le \liminf_{n \to \infty} \mu[g-f_n] = \mu[g] - \limsup_{n \to \infty} \mu[f_n].$$

After subtracting $\mu[g]$,

$$\mu[f] \leq \liminf_{n \to \infty} \mu[f_n] \leq \limsup_{n \to \infty} \mu[f_n] \leq \mu[f].$$

Example

▶ λ : Lebesgue measure, $f_n = 1/n$. Then $f_n \downarrow 0$, but

$$\liminf_{n\to\infty}\mu[f_n]=\infty>0=\mu[0]=\mu[\liminf_{n\to\infty}f_n].$$

(ロ)、(型)、(E)、(E)、 E) の(()

Example

$$\begin{aligned} |f_n| &\leq g \in \mathcal{L}^1(\mu) \text{ is necessary (here for } \lambda \text{ Lebesgue measure)} \\ \bullet & f_n = n \cdot \mathbb{1}_{[0,1/n]} \xrightarrow{n \to \infty} \infty \cdot \mathbb{1}_0. \text{ There is no } g \in \mathcal{L}^1(\lambda) \text{ with } \\ & f_n \leq g \text{ and} \\ & \lim_{n \to \infty} \mu[f_n] = 1 \neq 0 = \mu[\lim_{n \to \infty} f_n]. \end{aligned}$$

$$\bullet & f_n = n \cdot \mathbb{1}_{[0,1/n^2]} \xrightarrow{n \to \infty} \infty \cdot \mathbb{1}_0. \text{ There is } f_n \leq g \in \mathcal{L}^1(\lambda) \text{ with } \\ & \sup_{n \in \mathbb{N}} f_n(x) = \sup\{n : x \leq 1/n^2\} = \left[\frac{1}{\sqrt{x}}\right] \leq \frac{1}{\sqrt{x}} = :g(x), \end{aligned}$$

and

$$\lim_{n\to\infty}\mu[f_n]=\lim_{n\to\infty}\frac{1}{n}=0=\mu[0]=\mu[\lim_{n\to\infty}f_n].$$

Measure Theory for Probabilists 12. Basics of \mathcal{L}^p -spaces

Peter Pfaffelhuber

February 6, 2024

Definition of an \mathcal{L}^{p} -space

• For
$$0 , set
 $\mathcal{L}^p := \mathcal{L}^p(\mu) := \{f : \Omega \to \overline{\mathbb{R}} \text{ measurable with } ||f||_p < \infty\}$
for$$

$$||f||_{p} := (\mu[|f|^{p}])^{1/p}, \qquad 0 (1)$$

and

$$||f||_{\infty} := \inf\{K : \mu(|f| > K) = 0\}.$$

Hölder's inequality

▶ Proposition 4.2.1: f, g be measurable, $0 < p, q, r \le \infty$ such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Then,

 $||fg||_r \leq ||f||_p ||g||_q$ (Hölder inequality)

Proof: p = ∞ or ||f||_p = 0, ||f||_p = ∞, ||g||_q = 0 or ||g||_q = ∞: ok, so assume any other case and define

$$\widetilde{f} := \frac{f}{||f||_p}, \qquad \widetilde{g} = \frac{g}{||g||_q}$$

To show $||\widetilde{fg}||_r \leq 1$. Convexity of the exponential function:

$$(xy)^r = \exp\left(\frac{r}{p}p\log x + \frac{r}{q}q\log y\right) \le \frac{r}{p}x^p + \frac{r}{q}y^q,$$

and thus

$$||\widetilde{f}\widetilde{g}||_{r}^{r} = \mu[(\widetilde{f}\widetilde{g})^{r}] \leq \frac{r}{p}\mu[\widetilde{f}^{p}] + \frac{r}{q}\mu[\widetilde{g}^{q}] = 1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Minkowski's inequality

• Proposition 4.2.2: For
$$1 \le p \le \infty$$
,

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Proof: p = 1, p = ∞ clear. Else, let q = p/(p − 1) and r = 1/p + 1/q = 1, so Hölder's inequality gives

$$\begin{split} ||f + g||_{p}^{p} &\leq \mu[|f| \cdot |f + g|^{p-1}] + \mu[|g| \cdot |f + g|^{p-1}] \\ &\leq ||f||_{p} \cdot ||(f + g)^{p-1}||_{q} + ||g||_{p} \cdot ||(f + g)^{p-1}||_{q} \\ &= (||f||_{p} + ||g||_{p}) \cdot ||f + g||_{p}^{p-1}, \end{split}$$

since

$$\begin{aligned} ||(f+g)^{p-1}||_q &= ||(f+g)^{q(p-1)}||_1^{1/q} = ||(f+g)^p||_1^{(p-1)/p} \\ &= ||f+g||_p^{p-1}. \end{aligned}$$

Dividing by $||f + g||_p^{p-1}$ gives the result.

$p \mapsto \mathcal{L}^p$ is decreasing

- μ finite, $1 \leq r < q \leq \infty$. Then $\mathcal{L}^{q}(\mu) \subseteq \mathcal{L}^{r}(\mu)$.
- Counterexample for μ infinite: λ Lebesgue measure, $f: x \mapsto \frac{1}{x} \cdot 1_{x>1}$. Then $f \in \mathcal{L}^2(\lambda)$, but $f \notin \mathcal{L}^1(\lambda)$.
- Proof: $q = \infty$ clear; otherwise since $||1||_p < \infty$,

$$||f||_r = ||1 \cdot f||_r \le ||1||_p \cdot ||f||_q < \infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for
$$\frac{1}{p} = \frac{1}{r} - \frac{1}{q} > 0$$

\mathcal{L}^{p} -convergence

▶ Definition 4.6: $f_1, f_2, ...$ in $\mathcal{L}^p(\mu)$ converges to $f \in \mathcal{L}^p(\mu)$ iff

$$||f_n-f||_p \xrightarrow{n\to\infty} 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We write $f_n \xrightarrow{n \to \infty} \mathcal{L}^p f$.

- Proposition 4.7: μ be finite, $1 \le r < q \le \infty$ and $f, f_1, f_2, \dots \in \mathcal{L}^q$. If $f_n \xrightarrow{n \to \infty}_{\mathcal{L}^q} f$, then also $f_n \xrightarrow{n \to \infty}_{\mathcal{L}^r} f$.
- Proof: clear since $||f g||_r \le ||f g||_q$.

Completeness of \mathcal{L}^p

- ▶ Proposition 4.8: $p \ge 1, f_1, f_2, ...$ be a Cauchy sequence in \mathcal{L}^p . Then there is $f \in \mathcal{L}^p$ with $||f_n - f||_p \xrightarrow{n \to \infty} 0$.
- ▶ Proof: $\varepsilon_1, \varepsilon_2, \ldots$ summable. There is n_k for each k with $||f_m f_n||_p \le \varepsilon_k$ for all $m, n \ge n_k$. In particular,

$$\sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}||_p \leq \sum_{k=1}^{\infty} \varepsilon_k < \infty.$$

Monotone convergence and Minkowski give

$$\left|\left|\sum_{k=1}^{\infty}|f_{n_{k+1}}-f_{n_k}|\right|\right|_{p}\leq \sum_{k=1}^{\infty}||f_{n_{k+1}}-f_{n_k}||_{p}<\infty.$$

In particular $\sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}| < \infty$ almost everywhere, i.e. for almost all $\omega \in \Omega$, the sequence $f_{n_1}(\omega), f_{n_2}(\omega), \ldots$ is Cauchy in \mathbb{R} , hence converges to some f. Fatou gives

$$||f_n-f||_p \leq \liminf_{k\to\infty} ||f_{n_k}-f_n||_p \leq \sup_{m\geq n} ||f_m-f_n||_p \xrightarrow{n\to\infty} 0,$$

くしん 山 ふかく 山 く 山 く し く

universität freiburg $\xrightarrow{n\to\infty}_{\mathcal{L}^p} f$.

Measure Theory for Probabilists 13. The space \mathcal{L}^2

Peter Pfaffelhuber

February 6, 2024

A scalar product

• Apparently,
$$\langle ,.,\rangle : \mathcal{L}^2 imes \mathcal{L}^2 o \mathbb{R}$$
, given by

$$\langle f, g \rangle := \mu[fg],$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is bi-linear, symmetric and positive semi-definite.

 Complete normed spaces with a scalar product are called Hilbert spaces. So, L² is a Hilbert space.

• Write
$$f \perp g$$
 iff $\mu[fg] = 0$

Parallelogram identity

Decomposition

- Proposition 4.10: *M* closed, linear subspace of *L*² and *f* ∈ *L*². Then, there is an almost everywhere unique decomposition *f* = *g* + *h* with *g* ∈ *M*, *h* ⊥ *M*.
- ▶ Proof: For $f \in \mathcal{L}^2$, define $d_f := \inf_{g \in M} \{ ||f g||| \}$. Choose g_1, g_2, \ldots with $||f g_n|| \xrightarrow{n \to \infty} d_f$. Then

$$\begin{aligned} 4d_f^2 + ||g_m - g_n||^2 &\leq ||2f - g_m - g_n||^2 + ||g_m - g_n||^2 \\ &= 2||f - g_m||^2 + 2||f - g_n||^2 \xrightarrow{m, n \to \infty} 4d_f^2. \end{aligned}$$

Thus $||g_m - g_n||^2 \xrightarrow{m,n\to\infty} 0$, i.e. $||g_n - g|| \xrightarrow{n\to\infty} 0$ for some $g \in M$ with $||f - g|| = d_f$. For $t > 0, l \in M$,

$$d_f^2 \leq ||f - g + tI||^2 = d_f^2 + 2t\langle f - g, I \rangle + t^2 ||I||^2.$$

Since this applies to all t, $\langle f - g, I \rangle = 0$, i.e. $f - g \perp M$. Uniqueness: Let f = g + h = g' + h'. Then, $g - g' \in M$ as well as $g - g' = h - h' \perp M$, i.e. $g - g' \perp g - g'$. This universität finite $||g - g'|| = \langle g - g', g - g' \rangle = 0$, i.e. g = g'.

Theorem of Riesz-Fréchet

Proposition 4.11: F : L² → ℝ is continuous and linear iff there exists some h ∈ L² with

$$F(f) = \langle f, h \rangle, \qquad f \in \mathcal{L}^2.$$

Then, $h \in \mathcal{L}^2$ is unique.

▶ Proof: '⇐' linearity clear. Continuity:

$$|\langle |f-f'|,h\rangle| \leq ||f-f'|| \cdot ||h||.$$

For uniqueness, let $\langle f, h_1 - h_2 \rangle = 0$ for all $f \in \mathcal{L}^2$; in particular, with $f = h_1 - h_2$

$$||h_1 - h_2||^2 = \langle h_1 - h_2, h_1 - h_2 \rangle = 0,$$

thus $h_1 = h_2 \mu$ -almost everywhere.

Theorem of Riesz-Fréchet

Proposition 4.11: F : L² → ℝ is continuous and linear iff there exists some h ∈ L² with

$$F(f) = \langle f, h \rangle, \qquad f \in \mathcal{L}^2.$$

Then, $h \in \mathcal{L}^2$ is unique.

▶ Proof: '⇒': For
$$F = 0$$
 choose $h = 0$. For $F \neq 0$,
 $M = F^{-1}\{0\}$ is closed and linear, so for $f' \in \mathcal{L}^2 \setminus M$, write
 $f' = g' + h'$ with $g' \in M$ and $h' \perp M$ and
 $F(h') = F(f') - F(g') = F(f') \neq 0$. Set $h'' = \frac{h'}{F(h')}$, so that
 $h'' \perp M$ and $F(h'') = 1$ and for $f \in \mathcal{L}^2$

$$F(f - F(f)h'') = F(f) - F(f)F(h'') = 0$$

i.e. $f - F(f)h'' \in M$, in particular $\langle F(f)h'', h'' \rangle = \langle f, h'' \rangle$ and $F(f) = \frac{1}{||h''||^2} \cdot \langle F(f)h'', h'' \rangle = \frac{1}{||h''||^2} \cdot \langle f, h'' \rangle = \langle f, \frac{h''}{||h''||^2} \rangle.$

Now, the assertion follows with $h := \frac{h''}{||h''||^2}$.

Measure Theory for Probabilists 14. Theorem of Radon-Nikodým

Peter Pfaffelhuber

February 28, 2024

Theorem of Radon-Nikodým

- Corollary 4.17: μ, ν be σ-finite measures. Then, ν has a density with respect to μ if and only if ν ≪ μ.
- Theorem 4.16 (Lebesgue decomposition theorem): μ, ν be σ-finite measures. Then ν can be written uniquely as

$$\nu = \nu_a + \nu_s$$
 with $\nu_a \ll \mu, \nu_s \perp \mu$.

The measure ν_a has a density with respect to μ that is μ -almost everywhere finite.

Absolute continuity

Definition 4.13: *ν* has a *density f* with respect to *μ* if for all *A* ∈ *F*,

$$u(A) = \mu[f; A]$$

We write $f = \frac{d\nu}{d\mu}$ and $\nu = f \cdot \mu$.

- ν is absolutely continuous with respect to μ if all μ-zero sets are also ν-zero sets. We write ν ≪ μ. If both ν ≪ μ and μ ≪ ν, then μ and ν are called *equivalent*.
- µ and ν are called *singular* if there is an A ∈ F with µ(A) = 0 and ν(A^c) = 0. We write µ ⊥ ν.

Chain rule

• Lemma 4.14: Let μ be a measure on \mathcal{F} .

- 1. Let ν be a σ -finite measure. If g_1 and g_2 are densities of ν with respect to μ , then $g_1 = g_2$, μ -almost everywhere.
- 2. Let $f: \Omega \to \mathbb{R}_+$ and $g: \Omega \to \mathbb{R}$ be measurable. Then,

$$(f \cdot \mu)[g] = \mu[fg],$$

if one of the two sides exists.

Proof for finite μ: 1. Set A := {g₁ > g₂}. Since both g₁ and g₂ are densities of ν with respect to μ,

$$0 = \nu(A) - \nu(A) = \mu[g_1 - g_2; A].$$

Since only $g_1 > g_2$ is possible on A, $g_1 = g_2$ is $1_A \mu$ -almost everywhere.

2. For $g = 1_A$ with $A \in \mathcal{F}$, write

$$(f \cdot \mu)[g] = (f \cdot \mu)(A) = \mu[f, A] = \mu[f1_A] = \mu[fg]$$

universität freibisgextends up to the general case.

Examples

For
$$\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+$$

 $f_{\mathcal{N}(\mu,\sigma^2)}(x) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

and λ is the one-dimensional Lebesgue measure. Then, $f_{N(\mu,\sigma^2)} \cdot \lambda$ is a *normal distribution*. For $\gamma \geq 0$, let

$$f_{\exp(\gamma)}(x) := 1_{x \ge 0} \cdot \gamma e^{-\gamma x}.$$

Then, $f_{\exp(\gamma)} \cdot \lambda$ is called *exponential distribution with* parameter γ . From the chain rule,

$$\mathsf{E}[X] = f_{\mathsf{exp}(\gamma)} \cdot \lambda[\mathsf{id}] = \int_0^\infty \gamma e^{-\gamma x} x dx = \dots = \frac{1}{\gamma}$$

▶ Let µ be the counting measure on N₀ and

$$f(k) = e^{-\gamma} \frac{\gamma^k}{k!}, \qquad k = 0, 1, 2, ...,$$

Then $f \cdot \mu$ is the Poisson distribution for the parameter γ . universität freiburg

Theorem 4.16

Let μ, ν be σ -finite measures. Then ν can be written uniquely as

 $\nu = \nu_a + \nu_s$ with $\nu_a \ll \mu, \nu_s \perp \mu$.

The measure ν_a has a density with respect to μ that is μ -almost everywhere finite.

• Proof for finite μ, ν . The map

$$egin{cases} \mathcal{L}^2(\mu+
u) & o \mathbb{R}) \ f & \mapsto
u[f] \end{cases}$$

is continuous. By Riesz-Frechet, there is $h\in \mathcal{L}^2(\mu+
u)$ with

 $u[f] = (\mu + \nu)[fh], \qquad \nu[f(1-h)] = \mu[fh], \qquad f \in \mathcal{L}^2(\mu + \nu).$

For $f = 1_{\{h < 0\}}$ and $f = 1_{\{h > 1\}}$, we find

$$0 \le \nu \{h < 0\} = (\mu + \nu)[h; h < 0] \le 0,$$

$$0 \le \mu [h; \{h > 1\}] = \nu [1 - h; \{h > 1\} \le 0.$$

Theorem 4.16

Let μ, ν be σ -finite measures. Then ν can be written uniquely as

$$\nu = \nu_a + \nu_s$$
 with $\nu_a \ll \mu, \nu_s \perp \mu$.

The measure ν_a has a density with respect to μ that is μ -almost everywhere finite.

▶ Proof: Let $E := h^{-1}\{1\}$, and $f = 1_E$. Then,

$$\mu(E) = \mu[h; E] = \nu[1 - h; E] = 0.$$

Define $\nu = \nu_{a} + \nu_{s}$ and $\nu_{s} \perp \mu$ using

$$u_a(A) = \nu(A \setminus E), \qquad \nu_s(A) = \nu(A \cap E),$$

To show: $\nu_a \ll \mu$, so choose $A \in \mathcal{F}$ with $\mu(A) = 0$, so

$$\nu[1-h;A\setminus E]=\mu[h;A\setminus E]=0.$$

universität for $A \setminus E$, $\nu_a(A) = \nu(A \setminus E) = 0$, i.e. $\nu_a \ll \mu$.

Theorem 4.16

Let μ, ν be σ -finite measures. Then ν can be written uniquely as

$$\nu = \nu_a + \nu_s$$
 with $\nu_a \ll \mu, \nu_s \perp \mu$.

The measure ν_a has a density with respect to μ that is μ -almost everywhere finite.

▶ Proof: Define $\nu = \nu_a + \nu_s$ and $\nu_s \perp \mu$ using

$$u_{a}(A) = \nu(A \setminus E), \qquad \nu_{s}(A) = \nu(A \cap E),$$

To show: $g := \frac{h}{1-h} \mathbb{1}_{\Omega \setminus E}$ is the density of ν_a with respect to μ :

$$\mu[g;A] = \mu\left[\frac{h}{1-h};A\setminus E\right] = \nu(A\setminus E) = \nu_a(A)$$

Uniqueness: let $\nu = \nu_a + \nu_s = \widetilde{\nu}_a + \widetilde{\nu}_s$ Choose $A, \widetilde{A} \in \mathcal{A}$ with $\nu_s(A) = \mu(A^c) = \widetilde{\nu}_s(\widetilde{A}) = \mu(\widetilde{A}^c) = 0$. Then,

$$\nu_{a} = \mathbf{1}_{A \cap \widetilde{A}} \cdot \nu_{a} = \mathbf{1}_{A \cap \widetilde{A}} \cdot \nu = \mathbf{1}_{A \cap \widetilde{A}} \cdot \widetilde{\nu}_{a} = \widetilde{\nu}_{a}.$$

Corollary 4.17

- Let μ , ν be σ -finite measures. Then, ν has a density with respect to μ if and only if $\nu \ll \mu$.
- Proof: '⇒': clear. '⇐': Lebesgue decomposition Theorem, there is a unique decomposition v = v_a + v_s with v_a ≪ µ, v_s ⊥ µ. Since v ≪ µ, v_s = 0 must apply and therefore v = v_a. In particular, the density of v exists with respect to µ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Measure Theory for Probabilists 15. Set systems on product spaces

Peter Pfaffelhuber

March 1, 2024

Product spaces

For an index set *I* and a family of sets (Ω_i)_{i∈I}, define the product space

$$\Omega := \bigotimes_{i \in I} \Omega_i := \{ (\omega_i)_{i \in I} : \omega_i \in \Omega_i \}$$

For $H \subseteq J \subseteq I$, define projections

$$\pi_H^J: \underset{i\in J}{\times} \Omega_i \to \underset{i\in H}{\times} \Omega_i,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and $\pi_H := \pi_H^I$ and $\pi_i := \pi_{\{i\}}$, $i \in I$.

Topology on product spaces

Definition 5.1: Let (Ω_i, O_i)_{i∈I} be a family of topologcal spaces. Then,

$$\mathcal{O} := \mathcal{O}(\mathcal{C}), \qquad \mathcal{C} := \left\{ A_i \times \bigotimes_{j \in I, j \neq i} \Omega_j; i \in I, A_i \in \mathcal{O}_i \right\}$$

is called the *product topology* on Ω .

All π_i, i ∈ I are continuous with respect to the product topology.
 Indeed, for A_i ∈ O_i,

$$\pi_i^{-1}(A_i) = A_i \times \underset{I \ni j \neq i}{\times} \Omega_j \in \mathcal{C} \subseteq \mathcal{O}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The product σ -algebra

Definition 5.3: Let (Ω_i, F_i)_{i∈I} be a family of measurable spaces. Then,

$$\bigotimes_{i\in I} \mathcal{F}_i := \sigma(\mathcal{E}), \qquad \mathcal{E} := \left\{ A_i \times \bigotimes_{j\in I, j\neq i} \Omega_j : i\in I, A_i\in \mathcal{F}_i \right\}$$

is the *product-* σ *-algebra* on Ω .

We denote the Borel σ -algebra of \mathcal{O} by $\mathcal{B}(\Omega)$.

- Projections are measurable.
- ▶ Lemma 5.5: Let $\mathcal{F}_i = \mathcal{B}(\Omega_i)$. For arbitrary *I*, we have $\bigotimes_{i \in I} \mathcal{B}(\Omega_i) \subseteq \mathcal{B}(\Omega)$. If *I* is countable and $(\Omega_i, \mathcal{O}_i)_{i \in I}$ are separable metric spaces, then $\mathcal{B}(\Omega) = \bigotimes_{i \in I} \mathcal{B}(\Omega_i)$.
- ▶ Proof: Clearly, $C \subseteq O(C)$, $C \subseteq E$ and $E \subseteq \sigma(C)$. So,

$$\bigotimes_{i\in I} \mathcal{B}(\Omega_i) = \sigma(\mathcal{E}) = \sigma(\mathcal{C}) \subseteq \sigma(\mathcal{O}(\mathcal{C})) = \mathcal{B}(\Omega).$$

If *I* is countable and all spaces are separable, every $A \in \mathcal{O}(\mathcal{C})$ is a countable union of sets in \mathcal{C} , so $\mathcal{O}(\mathcal{C}) \subseteq \sigma(\mathcal{C})$. Hence,

$$\sigma(\mathcal{O}(\mathcal{C})) \subseteq \sigma(\sigma(\mathcal{C})) = \sigma(\mathcal{C}).$$

Products of generators

Lemma 5.7: Let (Ω_i, F_i) be measurable spaces and Ω = ×_{i∈I} Ω_i.

1. *I* finite, \mathcal{H}_i semi-ring with $\sigma(\mathcal{H}_i) = \mathcal{F}_i$. Then

$$\mathcal{H} := \left\{ \sum_{i \in I} A_i : A_i \in \mathcal{H}_i, i \in I \right\}$$

is semi-ring with $\sigma(\mathcal{H}) = \bigotimes_{i \in I} \mathcal{F}_i$.

2. I arbitrary, \mathcal{H}_i a \cap -stable generator of \mathcal{F}_i , $i \in I$. Then

$$\mathcal{H} := \{ \bigotimes_{i \in J} A_i \times \bigotimes_{i \in I \setminus J} \Omega_i : J \subseteq_f I, A_i \in \mathcal{H}_i, i \in J \}$$

is \cap -stable generator of $\bigotimes_{i \in I} \mathcal{F}_i$.

σ -algebra on \mathbb{R}^d

• Corollary 5.8: Let $\Omega = \mathbb{R}^d$. For $\underline{a}, \underline{b} \in \mathbb{R}^d$, denote $(\underline{a}, \underline{b}] = (a_1, b_1] \times \cdots \times (a_d, b_d]$.

Then,

$$\mathcal{H} := \{ (\underline{a}, \underline{b}] : \underline{a}, \underline{b} \in \mathbb{Q}, \underline{a} \le \underline{b} \}$$

is a semi-ring with $\sigma(\mathcal{H}) = \mathcal{B}(\mathbb{R}^d)$.

▶ Proof: \mathcal{H} is a semi-ring that generates $\bigotimes_{i=1}^{d} \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^{d})$

Measure Theory for Probabilists 16. Measures on product spaces

Peter Pfaffelhuber

March 1, 2024

Definition 5.9

 $(\Omega_i, \mathcal{F}_i), i = 1, 2$ measurable spaces.

- κ: Ω₁ × F₂ → ℝ₊ is a transition kernel from (Ω₁, F₁) to (Ω₂, F₂) if
 (i) for all ω₁ ∈ Ω₁, the map κ(ω₁, .) is a measure on F₂ and
 (ii) for all A₂ ∈ F₂ κ(., A₂) is F₁-measurable.
- A transition kernel is called σ-finite if there is a sequence Ω₂₁, Ω₂₂, · · · ∈ F₂ with Ω_{2n} ↑ Ω₂ and sup_{ω1} κ(ω₁, Ω_{2n}) < ∞ for all n = 1, 2, . . .
- It is called stochastic kernel or Markov kernel if for all ω₁ ∈ Ω₁ the map κ(ω₁, .) is a probability measure.

Example: Markov chain

•
$$\Omega = \{\omega_1, \dots, \omega_n\}$$
 finite and $P = (p_{ij})_{1 \le i,j \le n}$ with $p_{ij} \in [0,1]$
and $\sum_{j=1}^n p_{ij} = 1$. Then,

$$\kappa(\omega_i,.):=\sum_{j=1}^n p_{ij}\cdot\delta_{\omega_j}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is a Markov kernel from $(\Omega, 2^{\Omega})$ to $(\Omega, 2^{\Omega})$.

 P is the transition matrix of a homogeneous, Ω-valued Markov chain.

(Ω_i, F_i), i = 1, 2 be measurable spaces, μ a σ-finite measure on F₀, κ a σ-finite transition kernel from (Ω₁, F₁) to (Ω₂, F₂)
Lemma 5.11: Let f : Ω₁ × Ω₂ → ℝ₊ be F₁ ⊗ F₂ measurable. Then,

$$\omega_1 \mapsto \kappa(\omega_1, .)[f] := \int \kappa(\omega_1, d\omega_2) f(\omega_1, \omega_2)$$

is \mathcal{F}_1 -measurable.

Theorem 5.12: There is exactly one σ-finite measure µ ⊗ κ on (Ω₁ × Ω₂, F₁ ⊗ F₂) with

$$(\mu\otimes\kappaig)(A imes B)=\int_A\mu(d\omega_1)\Big(\int_B\kappa(\omega_1,d\omega_2)\Big).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fubini's Theorem

• Theorem 5.13: $(\Omega_i, \mathcal{F}_i)$, μ , κ and $\mu \otimes \kappa$ as above. Let $f : \Omega_1 \to \Omega_2 \to \mathbb{R}_+$ measurable with respect to $\mathcal{F}_1 \otimes \mathcal{F}_2$. Then,

$$\int f d(\mu \otimes \kappa) = \int \mu(d\omega_1) \Big(\int \kappa(\omega_1, d\omega_2) f(\omega_1, \omega_2) \Big).$$

Equality also applies if $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is measurable with $\int |f| d(\mu \otimes \kappa) < \infty$.

• Corollary 5.14: Let $\Omega = \Omega_1 \times \Omega_2$ and $\mathcal{H}_i \subseteq 2^{\Omega_i}$ be a semi-ring, and $\mu_i : \mathcal{H}_i \to \mathbb{R}_+ \sigma$ -finite and, σ -additive, i = 1, 2. Then there is exactly one measure $\mu_1 \otimes \mu_2$ on $\sigma(\mathcal{H}_1) \otimes \sigma(\mathcal{H}_2)$ with

$$\mu_1\otimes\mu_2(A_1\times A_2)=\mu_1(A_1)\cdot\mu_2(A_2).$$

For $f : \Omega \to \mathbb{R}_+$ measurable, the value of the integral does not depend on the order of integration.

Definition and Example

▶ $\lambda^{\otimes d}$ is *d*-dimensional Lebesgue measure. Let

$$f(x,y) = \frac{xy}{(x^2+y^2)^2}$$

Then, for every $x \in \mathbb{R}$

$$\int \lambda(dy)f(x,y)=0,$$

since $f(x,.) \in \mathcal{L}^1(\lambda)$ and f(x,y) = -f(x,-y). Therefore, iterated integrals are 0. However, |f| is not integrable because f has a non-integrable pole in (0,0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Convolutions of measures 1

Definition 5.17: Let µ₁, µ₂ be σ-finite measures on B(ℝ) and µ₁ ⊗ µ₂ their product measure. Let S(x₁, x₂) := x₁ + x₂. Then S_{*}(µ₁ ⊗ · · · ⊗ µ_n) is the *convolution* of µ₁, µ₂ and is denoted by µ₁ * µ₂.

•
$$\gamma_1, \gamma_2 \geq 0$$
, $\mu_{\mathsf{Poi}(\gamma_1)}$ and $\mu_{\mathsf{Poi}(\gamma_2)}$. Then,

$$\begin{split} \mu_{\mathsf{Poi}(\gamma_{1})} * \mu_{\mathsf{Poi}(\gamma_{2})} &= \sum_{m,n} 1_{m+n=k} e^{-(\gamma_{1}+\gamma_{2})} \frac{\gamma_{1}^{m} \gamma_{2}^{m}}{m! n!} \cdot \delta_{k} \\ &= \sum_{m=0}^{k} e^{-(\gamma_{1}+\gamma_{2})} \frac{\gamma_{1}^{m} \gamma_{2}^{k-m}}{m! (k-m)} \cdot \delta_{k} \\ &= e^{-(\gamma_{1}+\gamma_{2})} \frac{(\gamma_{1}+\gamma_{2})^{k}}{k!} \cdot \delta_{k} \sum_{m=0}^{k} \binom{k}{m} \frac{\gamma_{1}^{m} \gamma_{2}^{k-m}}{(\gamma_{1}+\gamma_{2})^{k}} \\ &= \mu_{\mathsf{Poi}(\gamma_{1}+\gamma_{2})}. \end{split}$$

Convolutions of measures 2

Lemma 5.19: λ measure on B(ℝ), μ = f_μ · λ and ν = f_ν · λ. Then,μ * ν = f_{μ*ν} · λ with

$$f_{\mu*
u}(t) = \int f_{\mu}(s)f_{
u}(t-s)\lambda(ds).$$

• $f_{N(\mu_1,\sigma_1^2)}$ and $f_{N(\mu_2,\sigma_2^2)}$. Let $\mu := \mu_1 + \mu_2$ and $\sigma^2 = \sigma_1^2 + \sigma_2^2$. Then, the density of $N(\mu_1,\sigma_1^2) * N(\mu_2,\sigma_2^2)$ is

$$\begin{split} x \mapsto & \frac{1}{2\pi\sqrt{\sigma_1^2 \sigma_2^2}} \int \exp\left(-\frac{(y-\mu_1)^2}{2\sigma_1^2} - \frac{(x-y-\mu_2)^2}{2\sigma_2^2}\right) dy \\ &= \cdots = \\ &= \frac{1}{2\pi\sigma} \int \exp\left(-\frac{(\sigma y - \frac{\sigma_1}{\sigma_2}(x-\mu))^2}{2\sigma^2} - \frac{(x-\mu)^2 \left(\frac{\sigma^2}{\sigma_2^2} - \frac{\sigma_1^2}{\sigma_2^2}\right)}{2\sigma^2}\right) dy \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). \end{split}$$

Measure Theory for Probabilists 17. Projective limits

Peter Pfaffelhuber

March 5, 2024

↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶

Purpose

- Let X₁, X₂,... be coin tosses, i.e. random variables with values in {0,1}. What is the joint distribution of (X₁, X₂,...)?
- ▶ Let (X_t)_{t∈[0,∞)} some random process. What is its distribution?
- ► → We need to consider probability measures on (uncountably) infinite product spaces!!

- We will do this using our usual construction with outer measures based on a projective family.
- Recall für $H \subseteq J$ the projection $\pi_H^J : \Omega^J \to \Omega^H$.

Projective family and limit

• (Ω, \mathcal{F}) measurable space, I arbitrary.

Definition 5.21: A family (P_J)_{J⊆_fI}, where P_J is a probability measure on F^J := F^{⊗J}, is called projective if

$$\mathsf{P}_H = (\pi_H^J)_* \mathsf{P}_J, \qquad H \subseteq J \subseteq_f I.$$

If there exists a measure P_I on $\mathcal{F}^I := \mathcal{F}^{\otimes I}$ with

$$\mathsf{P}_J = (\pi_J)_* \mathsf{P}_I, \qquad J \subseteq_f I,$$

then we call P_I its projective limit and write

$$\mathsf{P}_I = \varprojlim_{J \subseteq_f I} \mathsf{P}_J.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Uniqueness

Remark 5.23: Projective limits are unique: Indeed:

$$\mathcal{H}' := \Big\{ \underset{i \in J}{\times} A_i \times \underset{i \in I \setminus J}{\times} \Omega_i, A_i \in \mathcal{F}_i, i \in J \subseteq_f I \Big\},\$$

is a \cap -stable generator of $\mathcal{F}^{\otimes I}$. If $\mathsf{P}_I = \varprojlim_{J \subseteq_f I} \mathsf{P}_J$. and $A = \bigotimes_{i \in J} A_i \times \bigotimes_{i \in I \setminus J} \Omega \in \mathcal{H}'$,

$$\mathsf{P}_I(A) = \mathsf{P}_J\Big(\underset{i \in J}{\times} A_i \Big).$$

Existence

Theorem 5.24: Let Ω be Polish and (P_J)_{J⊆f} a projective family. Then, the projective limit lim _{I⊂f} P_J exists.

Proof: \mathcal{H}' semi-ring as above. For $A = \bigotimes_{i \in J} A_i \times \bigotimes_{i \in I \setminus J} \Omega \in \mathcal{H}'$, define $\mu(A) := \mathsf{P}_J(\bigotimes_{i \in J} A_i)$

and use the compact system

$$\mathcal{K} := \{ \bigotimes_{j \in J} K_j \times \bigotimes_{i \in I \setminus J} \Omega : J \subseteq_f I, K_j \text{ compact} \} \subseteq \mathcal{H}.$$

To show: μ is inner regular with respect to \mathcal{K} . Then. According to Theorem 2.10, μ is σ -additive. Furthermore, $\mu(\Omega') = 1$, so μ can be uniquely extended to a measure P on $\sigma(\mathcal{H}) = \mathcal{F}'$ according to Theorem 2.16.

Existence

- Theorem 5.24: Let Ω be Polish and (P_J)_{J⊆f} a projective family. Then, the projective limit lim_{J⊂f} P_J exists.
- To show: μ is inner regular with respect to K. For ε > 0 and j ∈ J, there is K_j ⊆ A_j cp with P_j(A_j \ K_j) < ε. Then,

$$\mu\Big(\Big(\underset{i\in J}{\times}A_{i}\times\underset{i\in I\setminus J}{\times}\Omega\Big)\setminus\Big(\underset{i\in J}{\times}K_{i}\times\underset{i\in I\setminus J}{\times}\Omega\Big)\Big)$$

= $\mu\Big(\Big((\underset{i\in J}{\times}A_{i})\setminus(\underset{i\in J}{\times}K_{i})\Big)\times\underset{i\in I\setminus J}{\times}\Omega\Big)$
= $\mathsf{P}_{J}\Big((\underset{j\in J}{\times}A_{j})\setminus(\underset{j\in J}{\times}K_{j})\Big)$
 $\leq \mathsf{P}_{J}\Big(\bigcup_{j\in J}(A_{j}\setminus K_{j})\times\underset{i\neq j}{\times}\Omega\Big)$
 $\leq \sum_{j\in J}\mathsf{P}_{J}\Big((A_{j}\setminus K_{j})\times\underset{i\neq j}{\times}\Omega\Big) = \sum_{j\in J}\mathsf{P}_{j}(A_{j}\setminus K_{j})\leq |J|\varepsilon.$