Measure Theory for Probabilists 17. Projective limits

Peter Pfaffelhuber

March 5, 2024

↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶

Purpose

- Let X₁, X₂,... be coin tosses, i.e. random variables with values in {0,1}. What is the joint distribution of (X₁, X₂,...)?
- ▶ Let (X_t)_{t∈[0,∞)} some random process. What is its distribution?
- ► → We need to consider probability measures on (uncountably) infinite product spaces!!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- We will do this using our usual construction with outer measures based on a projective family.
- Recall für $H \subseteq J$ the projection $\pi_H^J : \Omega^J \to \Omega^H$.

Projective family and limit

• (Ω, \mathcal{F}) measurable space, I arbitrary.

Definition 5.21: A family (P_J)_{J⊆_fI}, where P_J is a probability measure on F^J := F^{⊗J}, is called projective if

$$\mathsf{P}_H = (\pi_H^J)_* \mathsf{P}_J, \qquad H \subseteq J \subseteq_f I.$$

If there exists a measure P_I on $\mathcal{F}^I := \mathcal{F}^{\otimes I}$ with

$$\mathsf{P}_J = (\pi_J)_* \mathsf{P}_I, \qquad J \subseteq_f I,$$

then we call P_I its projective limit and write

$$\mathsf{P}_I = \varprojlim_{J \subseteq_f I} \mathsf{P}_J.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Uniqueness

Remark 5.23: Projective limits are unique: Indeed:

$$\mathcal{H}' := \Big\{ \underset{i \in J}{\times} A_i \times \underset{i \in I \setminus J}{\times} \Omega_i, A_i \in \mathcal{F}_i, i \in J \subseteq_f I \Big\},\$$

is a \cap -stable generator of $\mathcal{F}^{\otimes I}$. If $\mathsf{P}_I = \varprojlim_{J \subseteq_f I} \mathsf{P}_J$. and $A = \bigotimes_{i \in J} A_i \times \bigotimes_{i \in I \setminus J} \Omega \in \mathcal{H}'$,

$$\mathsf{P}_I(A) = \mathsf{P}_J\Big(\underset{i \in J}{\times} A_i \Big).$$

Existence

Theorem 5.24: Let Ω be Polish and (P_J)_{J⊆f} a projective family. Then, the projective limit lim _{I⊂f} P_J exists.

Proof: \mathcal{H}' semi-ring as above. For $A = \bigotimes_{i \in J} A_i \times \bigotimes_{i \in I \setminus J} \Omega \in \mathcal{H}'$, define $\mu(A) := \mathsf{P}_J(\bigotimes_{i \in J} A_i)$

and use the compact system

$$\mathcal{K} := \{ \bigotimes_{j \in J} K_j \times \bigotimes_{i \in I \setminus J} \Omega : J \subseteq_f I, K_j \text{ compact} \} \subseteq \mathcal{H}.$$

To show: μ is inner regular with respect to \mathcal{K} . Then. According to Theorem 2.10, μ is σ -additive. Furthermore, $\mu(\Omega') = 1$, so μ can be uniquely extended to a measure P on $\sigma(\mathcal{H}) = \mathcal{F}'$ according to Theorem 2.16.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Existence

- Theorem 5.24: Let Ω be Polish and (P_J)_{J⊆f} a projective family. Then, the projective limit lim_{J⊂f} P_J exists.
- To show: μ is inner regular with respect to K. For ε > 0 and j ∈ J, there is K_j ⊆ A_j cp with P_j(A_j \ K_j) < ε. Then,

$$\mu\Big(\Big(\underset{i\in J}{\times}A_{i}\times\underset{i\in I\setminus J}{\times}\Omega\Big)\setminus\Big(\underset{i\in J}{\times}K_{i}\times\underset{i\in I\setminus J}{\times}\Omega\Big)\Big)$$

= $\mu\Big(\Big((\underset{i\in J}{\times}A_{i})\setminus(\underset{i\in J}{\times}K_{i})\Big)\times\underset{i\in I\setminus J}{\times}\Omega\Big)$
= $\mathsf{P}_{J}\Big((\underset{j\in J}{\times}A_{j})\setminus(\underset{j\in J}{\times}K_{j})\Big)$
 $\leq \mathsf{P}_{J}\Big(\bigcup_{j\in J}(A_{j}\setminus K_{j})\times\underset{i\neq j}{\times}\Omega\Big)$
 $\leq \sum_{j\in J}\mathsf{P}_{J}\Big((A_{j}\setminus K_{j})\times\underset{i\neq j}{\times}\Omega\Big) = \sum_{j\in J}\mathsf{P}_{j}(A_{j}\setminus K_{j})\leq |J|\varepsilon.$