Measure Theory for Probabilists

 17. Projective limitsPeter Pfaffelhuber

March 5, 2024

Purpose

- Let X_{1}, X_{2}, \ldots be coin tosses, i.e. random variables with values in $\{0,1\}$. What is the joint distribution of $\left(X_{1}, X_{2}, \ldots\right)$?
- Let $\left(X_{t}\right)_{t \in[0, \infty)}$ some random process. What is its distribution?
- \rightarrow We need to consider probability measures on (uncountably) infinite product spaces!!
- We will do this using our usual construction with outer measures based on a projective family.
- Recall für $H \subseteq J$ the projection $\pi_{H}^{J}: \Omega^{J} \rightarrow \Omega^{H}$.

Projective family and limit

- (Ω, \mathcal{F}) measurable space, $/$ arbitrary.
- Definition 5.21: A family $\left(\mathrm{P}_{J}\right)_{J \subseteq_{f} I}$, where P_{J} is a probability measure on $\mathcal{F}^{J}:=\mathcal{F}^{\otimes J}$, is called projective if

$$
\mathrm{P}_{H}=\left(\pi_{H}^{J}\right)_{*} \mathrm{P}_{J}, \quad H \subseteq J \subseteq_{f} I
$$

If there exists a measure P , on $\mathcal{F}^{I}:=\mathcal{F}^{\otimes I}$ with

$$
\mathrm{P}_{J}=\left(\pi_{J}\right)_{*} \mathrm{P}_{l}, \quad J \subseteq_{f} I,
$$

then we call $P_{\text {I }}$ its projective limit and write

$$
\mathrm{P}_{I}=\varliminf_{J \subseteq_{f} I} \mathrm{P}_{J}
$$

Uniqueness

- Remark 5.23: Projective limits are unique: Indeed:

$$
\mathcal{H}^{\prime}:=\left\{\underset{i \in J}{X} A_{i} \times \underset{i \in \backslash \backslash}{X} \Omega_{i}, A_{i} \in \mathcal{F}_{i}, i \in J \subseteq_{f} I\right\},
$$

is a \cap-stable generator of $\mathcal{F}^{\otimes I}$. If $P_{I}=\varliminf_{\lim _{J \subseteq} I} P_{J}$. and $A=\times_{i \in J} A_{i} \times \times_{i \in \Lambda \backslash J} \Omega \in \mathcal{H}^{\prime}$,

$$
P_{l}(A)=P_{J}\left(\underset{i \in J}{X} A_{i}\right) .
$$

Existence

- Theorem 5.24: Let Ω be Polish and $\left(\mathrm{P}_{J}\right)_{J \subseteq f f}$ a projective family. Then, the projective limit $\varliminf_{\lim _{\coprod_{f}} I} P_{J}$ exists.
- Proof: \mathcal{H}^{\prime} semi-ring as above. For $A=X_{i \in J} A_{i} \times X_{i \in \Lambda \backslash J} \Omega \in \mathcal{H}^{\prime}$, define

$$
\mu(A):=P_{J}\left(\underset{i \in J}{X} A_{i}\right)
$$

and use the compact system

$$
\mathcal{K}:=\left\{\underset{j \in J}{X} K_{j} \times \underset{i \in \Lambda \backslash}{X} \Omega: J \subseteq_{f} I, K_{j} \text { compact }\right\} \subseteq \mathcal{H}
$$

To show: μ is inner regular with respect to \mathcal{K}.
Then. According to Theorem 2.10, μ is σ-additive.
Furthermore, $\mu\left(\Omega^{\prime}\right)=1$, so μ can be uniquely extended to a measure P on $\sigma(\mathcal{H})=\mathcal{F}^{\prime}$ according to Theorem 2.16.

Existence

- Theorem 5.24: Let Ω be Polish and $\left(P_{J}\right)_{J \subseteq f l}$ a projective family. Then, the projective limit $\varliminf_{\lim _{\coprod_{f}} I} P_{J}$ exists.
- To show: μ is inner regular with respect to \mathcal{K}. For $\varepsilon>0$ and $j \in J$, there is $K_{j} \subseteq A_{j} \mathrm{cp}$ with $\mathrm{P}_{j}\left(A_{j} \backslash K_{j}\right)<\varepsilon$. Then,

$$
\begin{aligned}
& \mu\left(\left(\underset{i \in J}{X} A_{i} \times \underset{i \in \backslash \backslash}{X} \Omega\right) \backslash\left(\underset{i \in J}{X} K_{i} \times \underset{i \in \Lambda \backslash J}{X} \Omega\right)\right) \\
& \quad=\mu\left(\left(\left(\underset{i \in J}{X} A_{i}\right) \backslash\left(\underset{i \in J}{X} K_{i}\right)\right) \times \underset{i \in \backslash J}{\times} \Omega\right) \\
& \quad=P_{J}\left(\left(\underset{j \in J}{X} A_{j}\right) \backslash\left(\underset{j \in J}{X} K_{j}\right)\right) \\
& \quad \leq P_{J}\left(\bigcup_{j \in J}\left(A_{j} \backslash K_{j}\right) \times \underset{i \neq j}{X} \Omega\right) \\
& \quad \leq \sum_{j \in J} P_{J}\left(\left(A_{j} \backslash K_{j}\right) \times \underset{\substack{X \neq j}}{X}\right)=\sum_{j \in J} P_{j}\left(A_{j} \backslash K_{j}\right) \leq|J| \varepsilon
\end{aligned}
$$

