

Definition 5.9

$\left(\Omega_{i}, \mathcal{F}_{i}\right), i=1,2$ measurable spaces.

- $\kappa: \Omega_{1} \times \mathcal{F}_{2} \rightarrow \mathbb{R}_{+}$is a transition kernel from $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ to $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ if
(i) for all $\omega_{1} \in \Omega_{1}$, the map $\kappa\left(\omega_{1},.\right)$ is a measure on \mathcal{F}_{2} and
(ii) for all $A_{2} \in \mathcal{F}_{2} \kappa\left(., A_{2}\right)$ is \mathcal{F}_{1}-measurable.
- A transition kernel is called σ-finite if there is a sequence $\Omega_{21}, \Omega_{22}, \cdots \in \mathcal{F}_{2}$ with $\Omega_{2 n} \uparrow \Omega_{2}$ and $\sup _{\omega_{1}} \kappa\left(\omega_{1}, \Omega_{2 n}\right)<\infty$ for all $n=1,2, \ldots$
- It is called stochastic kernel or Markov kernel if for all $\omega_{1} \in \Omega_{1}$ the map $\kappa\left(\omega_{1},.\right)$ is a probability measure.

Example: Markov chain

- $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ finite and $P=\left(p_{i j}\right)_{1 \leq i, j \leq n}$ with $p_{i j} \in[0,1]$ and $\sum_{j=1}^{n} p_{i j}=1$. Then,

$$
\kappa\left(\omega_{i}, .\right):=\sum_{j=1}^{n} p_{i j} \cdot \delta_{\omega_{j}}
$$

is a Markov kernel from $\left(\Omega, 2^{\Omega}\right)$ to $\left(\Omega, 2^{\Omega}\right)$.

- P is the transition matrix of a homogeneous, Ω-valued Markov chain.
- $\left(\Omega_{i}, \mathcal{F}_{i}\right), i=1,2$ be measurable spaces, μ a σ-finite measure on \mathcal{F}_{0}, κ a σ-finite transition kernel from $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ to $\left(\Omega_{2}, \mathcal{F}_{2}\right)$
- Lemma 5.11: Let $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}_{+}$be $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ measurable. Then,

$$
\omega_{1} \mapsto \kappa\left(\omega_{1}, .\right)[f]:=\int \kappa\left(\omega_{1}, d \omega_{2}\right) f\left(\omega_{1}, \omega_{2}\right)
$$

is \mathcal{F}_{1}-measurable.

- Theorem 5.12: There is exactly one σ-finite measure $\mu \otimes \kappa$ on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ with

$$
(\mu \otimes \kappa)(A \times B)=\int_{A} \mu\left(d \omega_{1}\right)\left(\int_{B} \kappa\left(\omega_{1}, d \omega_{2}\right)\right)
$$

Fubini's Theorem

- Theorem 5.13: $\left(\Omega_{i}, \mathcal{F}_{i}\right), \mu, \kappa$ and $\mu \otimes \kappa$ as above. Let $f: \Omega_{1} \rightarrow \Omega_{2} \rightarrow \mathbb{R}_{+}$measurable with respect to $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$. Then,

$$
\int f d(\mu \otimes \kappa)=\int \mu\left(d \omega_{1}\right)\left(\int \kappa\left(\omega_{1}, d \omega_{2}\right) f\left(\omega_{1}, \omega_{2}\right)\right)
$$

Equality also applies if $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ is measurable with $\int|f| d(\mu \otimes \kappa)<\infty$.

- Corollary 5.14: Let $\Omega=\Omega_{1} \times \Omega_{2}$ and $\mathcal{H}_{i} \subseteq 2^{\Omega_{i}}$ be a semi-ring, and $\mu_{i}: \mathcal{H}_{i} \rightarrow \mathbb{R}_{+} \sigma$-finite and, σ-additive, $i=1,2$. Then there is exactly one measure $\mu_{1} \otimes \mu_{2}$ on $\sigma\left(\mathcal{H}_{1}\right) \otimes \sigma\left(\mathcal{H}_{2}\right)$ with

$$
\mu_{1} \otimes \mu_{2}\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \cdot \mu_{2}\left(A_{2}\right)
$$

For $f: \Omega \rightarrow \mathbb{R}_{+}$measurable, the value of the integral does not depend on the order of integration.

Definition and Example

- $\lambda^{\otimes d}$ is d-dimensional Lebesgue measure. Let

$$
f(x, y)=\frac{x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Then, for every $x \in \mathbb{R}$

$$
\int \lambda(d y) f(x, y)=0
$$

since $f(x,.) \in \mathcal{L}^{1}(\lambda)$ and $f(x, y)=-f(x,-y)$. Therefore, iterated integrals are 0 . However, $|f|$ is not integrable because f has a non-integrable pole in (0,0).

Convolutions of measures 1

- Definition 5.17: Let μ_{1}, μ_{2} be σ-finite measures on $\mathcal{B}(\mathbb{R})$ and $\mu_{1} \otimes \mu_{2}$ their product measure. Let $S\left(x_{1}, x_{2}\right):=x_{1}+x_{2}$. Then $S_{*}\left(\mu_{1} \otimes \cdots \otimes \mu_{n}\right)$ is the convolution of μ_{1}, μ_{2} and is denoted by $\mu_{1} * \mu_{2}$.
- $\gamma_{1}, \gamma_{2} \geq 0, \mu_{\operatorname{Poi}\left(\gamma_{1}\right)}$ and $\mu_{\mathrm{Poi}\left(\gamma_{2}\right)}$. Then,

$$
\begin{aligned}
\mu_{\mathrm{Poi}\left(\gamma_{1}\right)} * \mu_{\mathrm{Poi}\left(\gamma_{2}\right)} & =\sum_{m, n} 1_{m+n=k} e^{-\left(\gamma_{1}+\gamma_{2}\right)} \frac{\gamma_{1}^{m} \gamma_{2}^{n}}{m!n!} \cdot \delta_{k} \\
& =\sum_{m=0}^{k} e^{-\left(\gamma_{1}+\gamma_{2}\right)} \frac{\gamma_{1}^{m} \gamma_{2}^{k-m}}{m!(k-m)} \cdot \delta_{k} \\
& =e^{-\left(\gamma_{1}+\gamma_{2}\right)} \frac{\left(\gamma_{1}+\gamma_{2}\right)^{k}}{k!} \cdot \delta_{k} \sum_{m=0}^{k}\binom{k}{m} \frac{\gamma_{1}^{m} \gamma_{2}^{k-m}}{\left(\gamma_{1}+\gamma_{2}\right)^{k}} \\
& =\mu_{\operatorname{Poi}\left(\gamma_{1}+\gamma_{2}\right)}
\end{aligned}
$$

Convolutions of measures 2

- Lemma 5.19: λ measure on $\mathcal{B}(\mathbb{R}), \mu=f_{\mu} \cdot \lambda$ and $\nu=f_{\nu} \cdot \lambda$. Then, $\mu * \nu=f_{\mu * \nu} \cdot \lambda$ with

$$
f_{\mu * \nu}(t)=\int f_{\mu}(s) f_{\nu}(t-s) \lambda(d s)
$$

- $f_{N\left(\mu_{1}, \sigma_{1}^{2}\right)}$ and $f_{N\left(\mu_{2}, \sigma_{2}^{2}\right)}$. Let $\mu:=\mu_{1}+\mu_{2}$ and $\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}$. Then, the density of $N\left(\mu_{1}, \sigma_{1}^{2}\right) * N\left(\mu_{2}, \sigma_{2}^{2}\right)$ is

$$
\begin{aligned}
x \mapsto & \frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}} \int \exp \left(-\frac{\left(y-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}-\frac{\left(x-y-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right) d y \\
& =\cdots= \\
& =\frac{1}{2 \pi \sigma} \int \exp \left(-\frac{\left(\sigma y-\frac{\sigma_{1}}{\sigma_{2}}(x-\mu)\right)^{2}}{2 \sigma^{2}}-\frac{(x-\mu)^{2}\left(\frac{\sigma^{2}}{\sigma_{2}^{2}}-\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)}{2 \sigma^{2}}\right) d y \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
\end{aligned}
$$

