Measure Theory for Probabilists 16. Measures on product spaces

Peter Pfaffelhuber

March 1, 2024

Definition 5.9

 $(\Omega_i, \mathcal{F}_i), i = 1, 2$ measurable spaces.

- κ: Ω₁ × F₂ → ℝ₊ is a transition kernel from (Ω₁, F₁) to (Ω₂, F₂) if
 (i) for all ω₁ ∈ Ω₁, the map κ(ω₁, .) is a measure on F₂ and
 (ii) for all A₂ ∈ F₂ κ(., A₂) is F₁-measurable.
- A transition kernel is called σ-finite if there is a sequence Ω₂₁, Ω₂₂, · · · ∈ F₂ with Ω_{2n} ↑ Ω₂ and sup_{ω1} κ(ω₁, Ω_{2n}) < ∞ for all n = 1, 2, . . .
- It is called stochastic kernel or Markov kernel if for all ω₁ ∈ Ω₁ the map κ(ω₁, .) is a probability measure.

Example: Markov chain

•
$$\Omega = \{\omega_1, \dots, \omega_n\}$$
 finite and $P = (p_{ij})_{1 \le i,j \le n}$ with $p_{ij} \in [0,1]$
and $\sum_{j=1}^n p_{ij} = 1$. Then,

$$\kappa(\omega_i,.):=\sum_{j=1}^n p_{ij}\cdot\delta_{\omega_j}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is a Markov kernel from $(\Omega, 2^{\Omega})$ to $(\Omega, 2^{\Omega})$.

 P is the transition matrix of a homogeneous, Ω-valued Markov chain.

(Ω_i, F_i), i = 1, 2 be measurable spaces, μ a σ-finite measure on F₀, κ a σ-finite transition kernel from (Ω₁, F₁) to (Ω₂, F₂)
Lemma 5.11: Let f : Ω₁ × Ω₂ → ℝ₊ be F₁ ⊗ F₂ measurable. Then,

$$\omega_1 \mapsto \kappa(\omega_1, .)[f] := \int \kappa(\omega_1, d\omega_2) f(\omega_1, \omega_2)$$

is \mathcal{F}_1 -measurable.

Theorem 5.12: There is exactly one σ-finite measure µ ⊗ κ on (Ω₁ × Ω₂, F₁ ⊗ F₂) with

$$(\mu\otimes\kappaig)(A imes B)=\int_A\mu(d\omega_1)\Big(\int_B\kappa(\omega_1,d\omega_2)\Big).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fubini's Theorem

• Theorem 5.13: $(\Omega_i, \mathcal{F}_i)$, μ , κ and $\mu \otimes \kappa$ as above. Let $f : \Omega_1 \to \Omega_2 \to \mathbb{R}_+$ measurable with respect to $\mathcal{F}_1 \otimes \mathcal{F}_2$. Then,

$$\int f d(\mu \otimes \kappa) = \int \mu(d\omega_1) \Big(\int \kappa(\omega_1, d\omega_2) f(\omega_1, \omega_2) \Big).$$

Equality also applies if $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is measurable with $\int |f| d(\mu \otimes \kappa) < \infty$.

• Corollary 5.14: Let $\Omega = \Omega_1 \times \Omega_2$ and $\mathcal{H}_i \subseteq 2^{\Omega_i}$ be a semi-ring, and $\mu_i : \mathcal{H}_i \to \mathbb{R}_+ \sigma$ -finite and, σ -additive, i = 1, 2. Then there is exactly one measure $\mu_1 \otimes \mu_2$ on $\sigma(\mathcal{H}_1) \otimes \sigma(\mathcal{H}_2)$ with

$$\mu_1\otimes\mu_2(A_1\times A_2)=\mu_1(A_1)\cdot\mu_2(A_2).$$

For $f : \Omega \to \mathbb{R}_+$ measurable, the value of the integral does not depend on the order of integration.

Definition and Example

▶ $\lambda^{\otimes d}$ is *d*-dimensional Lebesgue measure. Let

$$f(x,y) = \frac{xy}{(x^2+y^2)^2}$$

Then, for every $x \in \mathbb{R}$

$$\int \lambda(dy)f(x,y)=0,$$

since $f(x,.) \in \mathcal{L}^1(\lambda)$ and f(x,y) = -f(x,-y). Therefore, iterated integrals are 0. However, |f| is not integrable because f has a non-integrable pole in (0,0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Convolutions of measures 1

Definition 5.17: Let µ₁, µ₂ be σ-finite measures on B(ℝ) and µ₁ ⊗ µ₂ their product measure. Let S(x₁, x₂) := x₁ + x₂. Then S_{*}(µ₁ ⊗ · · · ⊗ µ_n) is the *convolution* of µ₁, µ₂ and is denoted by µ₁ * µ₂.

•
$$\gamma_1, \gamma_2 \geq 0$$
, $\mu_{\mathsf{Poi}(\gamma_1)}$ and $\mu_{\mathsf{Poi}(\gamma_2)}$. Then,

$$\begin{split} \mu_{\mathsf{Poi}(\gamma_{1})} * \mu_{\mathsf{Poi}(\gamma_{2})} &= \sum_{m,n} 1_{m+n=k} e^{-(\gamma_{1}+\gamma_{2})} \frac{\gamma_{1}^{m} \gamma_{2}^{m}}{m! n!} \cdot \delta_{k} \\ &= \sum_{m=0}^{k} e^{-(\gamma_{1}+\gamma_{2})} \frac{\gamma_{1}^{m} \gamma_{2}^{k-m}}{m! (k-m)} \cdot \delta_{k} \\ &= e^{-(\gamma_{1}+\gamma_{2})} \frac{(\gamma_{1}+\gamma_{2})^{k}}{k!} \cdot \delta_{k} \sum_{m=0}^{k} \binom{k}{m} \frac{\gamma_{1}^{m} \gamma_{2}^{k-m}}{(\gamma_{1}+\gamma_{2})^{k}} \\ &= \mu_{\mathsf{Poi}(\gamma_{1}+\gamma_{2})}. \end{split}$$

Convolutions of measures 2

Lemma 5.19: λ measure on B(ℝ), μ = f_μ · λ and ν = f_ν · λ. Then,μ * ν = f_{μ*ν} · λ with

$$f_{\mu*
u}(t) = \int f_{\mu}(s)f_{
u}(t-s)\lambda(ds).$$

• $f_{N(\mu_1,\sigma_1^2)}$ and $f_{N(\mu_2,\sigma_2^2)}$. Let $\mu := \mu_1 + \mu_2$ and $\sigma^2 = \sigma_1^2 + \sigma_2^2$. Then, the density of $N(\mu_1,\sigma_1^2) * N(\mu_2,\sigma_2^2)$ is

$$\begin{split} x \mapsto & \frac{1}{2\pi\sqrt{\sigma_1^2 \sigma_2^2}} \int \exp\left(-\frac{(y-\mu_1)^2}{2\sigma_1^2} - \frac{(x-y-\mu_2)^2}{2\sigma_2^2}\right) dy \\ &= \cdots = \\ &= \frac{1}{2\pi\sigma} \int \exp\left(-\frac{(\sigma y - \frac{\sigma_1}{\sigma_2}(x-\mu))^2}{2\sigma^2} - \frac{(x-\mu)^2 \left(\frac{\sigma^2}{\sigma_2^2} - \frac{\sigma_1^2}{\sigma_2^2}\right)}{2\sigma^2}\right) dy \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). \end{split}$$