Measure Theory for Probabilists 15. Set systems on product spaces

Peter Pfaffelhuber

March 1, 2024

Product spaces

For an index set *I* and a family of sets (Ω_i)_{i∈I}, define the product space

$$\Omega := \bigotimes_{i \in I} \Omega_i := \{ (\omega_i)_{i \in I} : \omega_i \in \Omega_i \}$$

For $H \subseteq J \subseteq I$, define projections

$$\pi_H^J: \underset{i\in J}{\times} \Omega_i \to \underset{i\in H}{\times} \Omega_i,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and $\pi_H := \pi_H^I$ and $\pi_i := \pi_{\{i\}}$, $i \in I$.

Topology on product spaces

Definition 5.1: Let (Ω_i, O_i)_{i∈I} be a family of topologcal spaces. Then,

$$\mathcal{O} := \mathcal{O}(\mathcal{C}), \qquad \mathcal{C} := \left\{ A_i \times \bigotimes_{j \in I, j \neq i} \Omega_j; i \in I, A_i \in \mathcal{O}_i \right\}$$

is called the *product topology* on Ω .

All π_i, i ∈ I are continuous with respect to the product topology.
Indeed, for A_i ∈ O_i,

$$\pi_i^{-1}(A_i) = A_i \times \underset{I \ni j \neq i}{\times} \Omega_j \in \mathcal{C} \subseteq \mathcal{O}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The product σ -algebra

Definition 5.3: Let (Ω_i, F_i)_{i∈I} be a family of measurable spaces. Then,

$$\bigotimes_{i\in I} \mathcal{F}_i := \sigma(\mathcal{E}), \qquad \mathcal{E} := \left\{ A_i \times \bigotimes_{j\in I, j\neq i} \Omega_j : i\in I, A_i\in \mathcal{F}_i \right\}$$

is the *product-* σ *-algebra* on Ω .

We denote the Borel σ -algebra of \mathcal{O} by $\mathcal{B}(\Omega)$.

- Projections are measurable.
- ▶ Lemma 5.5: Let $\mathcal{F}_i = \mathcal{B}(\Omega_i)$. For arbitrary *I*, we have $\bigotimes_{i \in I} \mathcal{B}(\Omega_i) \subseteq \mathcal{B}(\Omega)$. If *I* is countable and $(\Omega_i, \mathcal{O}_i)_{i \in I}$ are separable metric spaces, then $\mathcal{B}(\Omega) = \bigotimes_{i \in I} \mathcal{B}(\Omega_i)$.
- ▶ Proof: Clearly, $C \subseteq O(C)$, $C \subseteq E$ and $E \subseteq \sigma(C)$. So,

$$\bigotimes_{i\in I} \mathcal{B}(\Omega_i) = \sigma(\mathcal{E}) = \sigma(\mathcal{C}) \subseteq \sigma(\mathcal{O}(\mathcal{C})) = \mathcal{B}(\Omega).$$

If *I* is countable and all spaces are separable, every $A \in \mathcal{O}(\mathcal{C})$ is a countable union of sets in \mathcal{C} , so $\mathcal{O}(\mathcal{C}) \subseteq \sigma(\mathcal{C})$. Hence,

$$\sigma(\mathcal{O}(\mathcal{C})) \subseteq \sigma(\sigma(\mathcal{C})) = \sigma(\mathcal{C}).$$

Products of generators

Lemma 5.7: Let (Ω_i, F_i) be measurable spaces and Ω = ×_{i∈I} Ω_i.

1. *I* finite, \mathcal{H}_i semi-ring with $\sigma(\mathcal{H}_i) = \mathcal{F}_i$. Then

$$\mathcal{H} := \left\{ \sum_{i \in I} A_i : A_i \in \mathcal{H}_i, i \in I \right\}$$

is semi-ring with $\sigma(\mathcal{H}) = \bigotimes_{i \in I} \mathcal{F}_i$.

2. I arbitrary, \mathcal{H}_i a \cap -stable generator of \mathcal{F}_i , $i \in I$. Then

$$\mathcal{H} := \{ \bigotimes_{i \in J} A_i \times \bigotimes_{i \in I \setminus J} \Omega_i : J \subseteq_f I, A_i \in \mathcal{H}_i, i \in J \}$$

is \cap -stable generator of $\bigotimes_{i \in I} \mathcal{F}_i$.

σ -algebra on \mathbb{R}^d

• Corollary 5.8: Let $\Omega = \mathbb{R}^d$. For $\underline{a}, \underline{b} \in \mathbb{R}^d$, denote $(\underline{a}, \underline{b}] = (a_1, b_1] \times \cdots \times (a_d, b_d]$.

Then,

$$\mathcal{H} := \{ (\underline{a}, \underline{b}] : \underline{a}, \underline{b} \in \mathbb{Q}, \underline{a} \leq \underline{b} \}$$

is a semi-ring with $\sigma(\mathcal{H}) = \mathcal{B}(\mathbb{R}^d)$.

▶ Proof: \mathcal{H} is a semi-ring that generates $\bigotimes_{i=1}^{d} \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^{d})$