Measure Theory for Probabilists

13. The space \mathcal{L}^{2}

Peter Pfaffelhuber

February 6, 2024

A scalar product

- Apparently, $\langle, .\rangle:, \mathcal{L}^{2} \times \mathcal{L}^{2} \rightarrow \mathbb{R}$, given by

$$
\langle f, g\rangle:=\mu[f g],
$$

is bi-linear, symmetric and positive semi-definite.

- Complete normed spaces with a scalar product are called Hilbert spaces. So, \mathcal{L}^{2} is a Hilbert space.
- Write $f \perp g$ iff $\mu[f g]=0$

Parallelogram identity

- Lemma 4.9: For $f, g \in \mathcal{L}^{2}$,

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}
$$

- Proof:

$$
\begin{aligned}
\|f+g\|^{2}+\|f-g\|^{2} & =\langle f+g, f+g\rangle+\langle f-g, f-g\rangle \\
& =2\langle f, f\rangle+2\langle g, g\rangle=2\|f\|^{2}+2\|g\|^{2}
\end{aligned}
$$

universitätfreiburg

Decomposition

- Proposition 4.10: M closed, linear subspace of \mathcal{L}^{2} and $f \in \mathcal{L}^{2}$. Then, there is an almost everywhere unique decomposition $f=g+h$ with $g \in M, h \perp M$.
- Proof: For $f \in \mathcal{L}^{2}$, define $d_{f}:=\inf _{g \in M}\{\|f-g\| \|\}$. Choose g_{1}, g_{2}, \ldots with $\left\|f-g_{n}\right\| \xrightarrow{n \rightarrow \infty} d_{f}$. Then

$$
\begin{aligned}
4 d_{f}^{2}+\left\|g_{m}-g_{n}\right\|^{2} & \leq\left\|2 f-g_{m}-g_{n}\right\|^{2}+\left\|g_{m}-g_{n}\right\|^{2} \\
& =2\left\|f-g_{m}\right\|^{2}+2\left\|f-g_{n}\right\|^{2} \xrightarrow{m, n \rightarrow \infty} 4 d_{f}^{2} .
\end{aligned}
$$

Thus $\left\|g_{m}-g_{n}\right\|^{2} \xrightarrow{m, n \rightarrow \infty} 0$, i.e. $\left\|g_{n}-g\right\| \xrightarrow{n \rightarrow \infty} 0$ for some $g \in M$ with $\|f-g\|=d_{f}$. For $t>0, I \in M$,

$$
d_{f}^{2} \leq\|f-g+t /\|^{2}=d_{f}^{2}+2 t\langle f-g, I\rangle+t^{2}\|I\|^{2}
$$

Since this applies to all $t,\langle f-g, I\rangle=0$, i.e. $f-g \perp M$. Uniqueness: Let $f=g+h=g^{\prime}+h^{\prime}$. Then, $g-g^{\prime} \in M$ as well as $g-g^{\prime}=h-h^{\prime} \perp M$, i.e. $g-g^{\prime} \perp g-g^{\prime}$. This universitätfumbeags $\left\|g-g^{\prime}\right\|=\left\langle g-g^{\prime}, g-g^{\prime}\right\rangle=0$, i.e. $g=g^{\prime}$.

Theorem of Riesz-Fréchet

- Proposition 4.11: $F: \mathcal{L}^{2} \rightarrow \mathbb{R}$ is continuous and linear iff there exists some $h \in \mathcal{L}^{2}$ with

$$
F(f)=\langle f, h\rangle, \quad f \in \mathcal{L}^{2} .
$$

Then, $h \in \mathcal{L}^{2}$ is unique.

- Proof: ' \Leftarrow ' linearity clear. Continuity:

$$
\left.\left|\langle | f-f^{\prime}\right|, h\right\rangle \mid \leq\left\|f-f^{\prime}\right\| \cdot\|h\| .
$$

For uniqueness, let $\left\langle f, h_{1}-h_{2}\right\rangle=0$ for all $f \in \mathcal{L}^{2}$; in particular, with $f=h_{1}-h_{2}$

$$
\left\|h_{1}-h_{2}\right\|^{2}=\left\langle h_{1}-h_{2}, h_{1}-h_{2}\right\rangle=0
$$

thus $h_{1}=h_{2} \mu$-almost everywhere.

Theorem of Riesz-Fréchet

- Proposition 4.11: $F: \mathcal{L}^{2} \rightarrow \mathbb{R}$ is continuous and linear iff there exists some $h \in \mathcal{L}^{2}$ with

$$
F(f)=\langle f, h\rangle, \quad f \in \mathcal{L}^{2} .
$$

Then, $h \in \mathcal{L}^{2}$ is unique.

- Proof: ' \Rightarrow ': For $F=0$ choose $h=0$. For $F \not \equiv 0$, $M=F^{-1}\{0\}$ is closed and linear, so for $f^{\prime} \in \mathcal{L}^{2} \backslash M$, write $f^{\prime}=g^{\prime}+h^{\prime}$ with $g^{\prime} \in M$ and $h^{\prime} \perp M$ and $F\left(h^{\prime}\right)=F\left(f^{\prime}\right)-F\left(g^{\prime}\right)=F\left(f^{\prime}\right) \neq 0$. Set $h^{\prime \prime}=\frac{h^{\prime}}{F\left(h^{\prime}\right)}$, so that $h^{\prime \prime} \perp M$ and $F\left(h^{\prime \prime}\right)=1$ and for $f \in \mathcal{L}^{2}$

$$
F\left(f-F(f) h^{\prime \prime}\right)=F(f)-F(f) F\left(h^{\prime \prime}\right)=0
$$

i.e. $f-F(f) h^{\prime \prime} \in M$, in particular $\left\langle F(f) h^{\prime \prime}, h^{\prime \prime}\right\rangle=\left\langle f, h^{\prime \prime}\right\rangle$ and

$$
F(f)=\frac{1}{\left\|h^{\prime \prime}\right\|^{2}} \cdot\left\langle F(f) h^{\prime \prime}, h^{\prime \prime}\right\rangle=\frac{1}{\left\|h^{\prime \prime}\right\|^{2}} \cdot\left\langle f, h^{\prime \prime}\right\rangle=\left\langle f, \frac{h^{\prime \prime}}{\left\|h^{\prime \prime}\right\|^{2}}\right\rangle .
$$

Now, the assertion follows with $h:=\frac{h^{\prime \prime}}{\left\|h^{\prime \prime}\right\|^{2}}$.

