Measure Theory for Probabilists

12. Basics of \mathcal{L}^{p}-spaces

Peter Pfaffelhuber

February 6, 2024

Definition of an \mathcal{L}^{p}-space

- For $0<p \leq \infty$, set

$$
\mathcal{L}^{p}:=\mathcal{L}^{p}(\mu):=\left\{f: \Omega \rightarrow \overline{\mathbb{R}} \text { measurable with }\|f\|_{p}<\infty\right\}
$$

for

$$
\begin{equation*}
\|f\|_{p}:=\left(\mu\left[|f|^{p}\right]\right)^{1 / p}, \quad 0<p<\infty \tag{1}
\end{equation*}
$$

and

$$
\|f\|_{\infty}:=\inf \{K: \mu(|f|>K)=0\}
$$

Hölder's inequality

- Proposition 4.2.1: f, g be measurable, $0<p, q, r \leq \infty$ such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Then,

$$
\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q} \quad \text { (Hölder inequality) }
$$

- Proof: $p=\infty$ or $\|f\|_{p}=0,\|f\|_{p}=\infty,\|g\|_{q}=0$ or $\|g\|_{q}=\infty$: ok, so assume any other case and define

$$
\widetilde{f}:=\frac{f}{\|f\|_{p}}, \quad \widetilde{g}=\frac{g}{\|g\|_{q}}
$$

To show $\|\widetilde{f} \widetilde{g}\|_{r} \leq 1$. Convexity of the exponential function:

$$
(x y)^{r}=\exp \left(\frac{r}{p} p \log x+\frac{r}{q} q \log y\right) \leq \frac{r}{p} x^{p}+\frac{r}{q} y^{q}
$$

and thus

$$
\|\widetilde{f} \widetilde{g}\|_{r}^{r}=\mu\left[(\widetilde{f} \widetilde{g})^{r}\right] \leq \frac{r}{p} \mu\left[\widetilde{f}^{p}\right]+\frac{r}{q} \mu\left[\widetilde{g}^{q}\right]=1
$$

Minkowski's inequality

- Proposition 4.2.2: For $1 \leq p \leq \infty$,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

- Proof: $p=1, p=\infty$ clear. Else, let $q=p /(p-1)$ and $r=1 / p+1 / q=1$, so Hölder's inequality gives

$$
\begin{aligned}
\|f+g\|_{p}^{p} & \leq \mu\left[|f| \cdot|f+g|^{p-1}\right]+\mu\left[|g| \cdot|f+g|^{p-1}\right] \\
& \leq\|f\|_{p} \cdot\left\|(f+g)^{p-1}\right\|_{q}+\|g\|_{p} \cdot\left\|(f+g)^{p-1}\right\|_{q} \\
& =\left(\|f\|_{p}+\|g\|_{p}\right) \cdot\|f+g\|_{p}^{p-1},
\end{aligned}
$$

since

$$
\begin{aligned}
\left\|(f+g)^{p-1}\right\|_{q} & =\left\|(f+g)^{q(p-1)}\right\|_{1}^{1 / q}=\left\|(f+g)^{p}\right\|_{1}^{(p-1) / p} \\
& =\|f+g\|_{p}^{p-1} .
\end{aligned}
$$

Djviding by $\|f+g\|_{p}^{p-1}$ gives the result.

$p \mapsto \mathcal{L}^{p}$ is decreasing

- μ finite, $1 \leq r<q \leq \infty$. Then $\mathcal{L}^{q}(\mu) \subseteq \mathcal{L}^{r}(\mu)$.
- Counterexample for μ infinite: λ Lebesgue measure, $f: x \mapsto \frac{1}{x} \cdot 1_{x>1}$. Then $f \in \mathcal{L}^{2}(\lambda)$, but $f \notin \mathcal{L}^{1}(\lambda)$.
- Proof: $q=\infty$ clear; otherwise since $\|1\|_{p}<\infty$,

$$
\|f\|_{r}=\|1 \cdot f\|_{r} \leq\|1\|_{p} \cdot\|f\|_{q}<\infty
$$

for $\frac{1}{p}=\frac{1}{r}-\frac{1}{q}>0$

\mathcal{L}^{p}-convergence

- Definition 4.6: f_{1}, f_{2}, \ldots in $\mathcal{L}^{p}(\mu)$ converges to $f \in \mathcal{L}^{p}(\mu)$ iff

$$
\left\|f_{n}-f\right\|_{p} \xrightarrow{n \rightarrow \infty} 0
$$

We write $f_{n} \xrightarrow{n \rightarrow \infty} \mathcal{L}^{p} f$.

- Proposition 4.7: μ be finite, $1 \leq r<q \leq \infty$ and $f, f_{1}, f_{2}, \cdots \in \mathcal{L}^{q}$. If $f_{n} \xrightarrow{n \rightarrow \infty} \mathcal{L}^{q} f$, then also $f_{n} \xrightarrow{n \rightarrow \infty} \mathcal{L}^{r} f$.
- Proof: clear since $\|f-g\|_{r} \leq\|f-g\|_{q}$.

Completeness of \mathcal{L}^{p}

- Proposition 4.8: $p \geq 1, f_{1}, f_{2}, \ldots$ be a Cauchy sequence in \mathcal{L}^{p}. Then there is $f \in \mathcal{L}^{p}$ with $\left\|f_{n}-f\right\|_{p} \xrightarrow{n \rightarrow \infty} 0$.
- Proof: $\varepsilon_{1}, \varepsilon_{2}, \ldots$ summable. There is n_{k} for each k with $\left\|f_{m}-f_{n}\right\|_{p} \leq \varepsilon_{k}$ for all $m, n \geq n_{k}$. In particular,

$$
\sum_{k=1}^{\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p} \leq \sum_{k=1}^{\infty} \varepsilon_{k}<\infty
$$

Monotone convergence and Minkowski give

$$
\left\|\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right|\right\|_{p} \leq \sum_{k=1}^{\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<\infty
$$

In particular $\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right|<\infty$ almost everywhere, i.e. for almost all $\omega \in \Omega$, the sequence $f_{n_{1}}(\omega), f_{n_{2}}(\omega), \ldots$ is Cauchy in \mathbb{R}, hence converges to some f. Fatou gives

$$
\left\|f_{n}-f\right\|_{p} \leq \liminf _{k \rightarrow \infty}\left\|f_{n_{k}}-f_{n}\right\|_{p} \leq \sup _{m \geq n}\left\|f_{m}-f_{n}\right\|_{p} \xrightarrow{n \rightarrow \infty} 0
$$

universität ffieebur $\boldsymbol{\xi}_{h} \xrightarrow{n \rightarrow \infty} \mathcal{L}^{p} f$.

