Measure Theory for Probabilists

 11. Convergence results

m制
 4

Outline

- Theorem 3.25 for Riemann integral:
$f, f_{1}, f_{2}, \ldots:[a, b] \rightarrow \mathbb{R}$ be piecewise continuous with
$f_{n} \xrightarrow{n \rightarrow \infty} f$ uniformly. Then

$$
\int_{a}^{b} f_{n}(x) d x \xrightarrow{n \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

- Theorem 3.26, monotone convergence:
$f_{1}, f_{2}, \cdots \in \mathcal{L}^{1}(\mu)$ and $f: \Omega \rightarrow \overline{\mathbb{R}}$ measurable with $f_{n} \uparrow f$ almost everywhere. Then,

$$
\lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=\mu[f]
$$

- Theorem 3.28, dominated convergence: $f, g, f_{1}, f_{2}, \cdots: \Omega \rightarrow \overline{\mathbb{R}}$ measurable with $\left|f_{n}\right| \leq g$ almost everywhere, $\lim _{n \rightarrow \infty} f_{n}=f$ almost everywhere, and $g \in \mathcal{L}^{1}(\mu)$. Then,

$$
\lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=\mu[f] .
$$

Monotone Convergence

- Theorem 3.26, monotone convergence: $f_{1}, f_{2}, \cdots \in \mathcal{L}^{1}(\mu)$ and $f: \Omega \rightarrow \overline{\mathbb{R}}$ measurable with $f_{n} \uparrow f$ almost everywhere. Then,

$$
\lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=\mu[f] .
$$

- Proof: $N \in \mathcal{F}$ be such that $\mu(N)=0$ and $f_{n}(\omega) \uparrow f(\omega)$ for $\omega \notin N$. Set $g_{n}:=\left(f_{n}-f_{1}\right) 1_{N^{c}} \geq 0$. This means that $g_{n} \uparrow\left(f-f_{1}\right) 1_{N^{c}}=: g$ and with Proposition 3.16.2,

$$
\mu\left[f_{n}\right]=\mu\left[f_{1}\right]+\mu\left[g_{n}\right] \xrightarrow{n \rightarrow \infty} \mu\left[f_{1}\right]+\mu[g]=\mu[f] .
$$

Lemma von Fatou

- Theorem 3.27: $f_{1}, f_{2}, \cdots: \Omega \rightarrow \overline{\mathbb{R}}_{+}$measurable. Then,

$$
\liminf _{n \rightarrow \infty} \mu\left[f_{n}\right] \geq \mu\left[\liminf _{n \rightarrow \infty} f_{n}\right]
$$

- Proof: For all $k \geq n, f_{k} \geq \inf _{\ell \geq n} f_{\ell}$ and thus, for all n,

$$
\inf _{k \geq n} \mu\left[f_{k}\right] \geq \mu\left[\inf _{\ell \geq n} f_{\ell}\right]
$$

So,

$$
\liminf _{n \rightarrow \infty} \mu\left[f_{n}\right]=\sup _{n \in \mathbb{N}} \inf _{k \geq n} \mu\left[f_{k}\right] \geq \sup _{n \in \mathbb{N}} \mu\left[\inf _{k \geq n} f_{k}\right]=\mu\left[\liminf _{n \rightarrow \infty} f_{n}\right]
$$

by monotone convergence.

Dominated convergence

- Theorem 3.28: $f, g, f_{1}, f_{2}, \cdots: \Omega \rightarrow \overline{\mathbb{R}}$ measurable with $\left|f_{n}\right| \leq g$ almost everywhere, $\lim _{n \rightarrow \infty} f_{n}=f$ almost everywhere, and $g \in \mathcal{L}^{1}(\mu)$. Then,

$$
\lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=\mu[f]
$$

- Proof: Wlog, $\left|f_{n}\right| \leq g$ and $\lim _{n \rightarrow \infty} f_{n}=f$ everywhere. Use Fatou's lemma and $g-f_{n}, g+f \geq 0$, i.e.

$$
\begin{aligned}
& \mu[g+f] \leq \liminf _{n \rightarrow \infty} \mu\left[g+f_{n}\right]=\mu[g]+\liminf _{n \rightarrow \infty} \mu\left[f_{n}\right] \\
& \mu[g-f] \leq \liminf _{n \rightarrow \infty} \mu\left[g-f_{n}\right]=\mu[g]-\limsup _{n \rightarrow \infty} \mu\left[f_{n}\right] .
\end{aligned}
$$

After subtracting $\mu[g]$,

$$
\mu[f] \leq \liminf _{n \rightarrow \infty} \mu\left[f_{n}\right] \leq \limsup _{n \rightarrow \infty} \mu\left[f_{n}\right] \leq \mu[f]
$$

Example

- λ : Lebesgue measure, $f_{n}=1 / n$. Then $f_{n} \downarrow 0$, but

$$
\liminf _{n \rightarrow \infty} \mu\left[f_{n}\right]=\infty>0=\mu[0]=\mu\left[\liminf _{n \rightarrow \infty} f_{n}\right] .
$$

Example

$\left|f_{n}\right| \leq g \in \mathcal{L}^{1}(\mu)$ is necessary (here for λ Lebesgue measure)

- $f_{n}=n \cdot 1_{[0,1 / n]} \xrightarrow{n \rightarrow \infty} \infty \cdot 1_{0}$. There is no $g \in \mathcal{L}^{1}(\lambda)$ with $f_{n} \leq g$ and

$$
\lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=1 \neq 0=\mu\left[\lim _{n \rightarrow \infty} f_{n}\right] .
$$

- $f_{n}=n \cdot 1_{\left[0,1 / n^{2}\right]} \xrightarrow{n \rightarrow \infty} \infty \cdot 1_{0}$. There is $f_{n} \leq g \in \mathcal{L}^{1}(\lambda)$ with

$$
\sup _{n \in \mathbb{N}} f_{n}(x)=\sup \left\{n: x \leq 1 / n^{2}\right\}=\left[\frac{1}{\sqrt{x}}\right] \leq \frac{1}{\sqrt{x}}=: g(x)
$$

and

$$
\lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}=0=\mu[0]=\mu\left[\lim _{n \rightarrow \infty} f_{n}\right]
$$

