Measure Theory for Probabilists

10. Defining the integral, and some properties

Outline

- Goal: For a measure μ, define for many functions $f: \Omega \rightarrow \mathbb{R}$

$$
\mu[f]=\int f d \mu=\int f(\omega) \mu(d \omega)
$$

- Initial step: For $f=1_{A}$ for some $A \in \mathcal{F}$, define

$$
\mu[f]:=\mu(A)
$$

- Definition 3.10: For $f=\sum_{k=1}^{m} c_{k} 1_{A_{k}}$ with $c_{1}, \ldots, c_{m} \geq 0, A_{1}, \ldots, A_{m} \in \mathcal{F}$, define

$$
\mu[f]:=\sum_{i=1}^{m} c_{i} \mu\left(A_{i}\right)
$$

- Final step: f measurbale: use approximating sequence of simple functions.

Simple properties

- Lemma 3.12: f, g non-negative, simple functions and $\alpha \geq 0$. Then,

$$
\mu[a f+b g]=a \mu[f]+b \mu[g], \quad f \leq g \Rightarrow \mu[f] \leq \mu[g] .
$$

- If $f=1_{A}$ for $A \in \mathcal{F}$, note that f is in general not piecewise continuous. In particular, $\int f(x) d x$ does not exist in the sense of Riemann.

Integral of non-negative measurable functions

- Definition 3.14: $(\Omega, \mathcal{F}, \mu)$ measue space, $f: \Omega \rightarrow \overline{\mathbb{R}}_{+}$ measurable. Define

$$
\begin{aligned}
\mu[f] & :=\int f d \mu:=\int f(\omega) \mu(d \omega) \\
& :=\sup \{\mu[g]: g \text { simple, non-negative, } g \leq f\}
\end{aligned}
$$

- Definition 3.17: $f: \Omega \rightarrow \overline{\mathbb{R}}$ measurable. Then f is said to be μ-integrable if $\mu[|f|]<\infty$,

$$
\mu[f]:=\int f(\omega) \mu(d \omega):=\int f d \mu:=\mu\left[f^{+}\right]-\mu\left[f^{-}\right]
$$

- For $A \in \mathcal{F}$ we also write

$$
\mu[f, A]:=\int_{A} f d \mu:=\mu\left[f 1_{A}\right] .
$$

Proposition 3.16

- $f, g, f_{1}, f_{2}, \cdots: \Omega \rightarrow \overline{\mathbb{R}}_{+}$measurable. Then, 1. If $f \leq g$, then $\mu[f] \leq \mu[g]$.

2. If

$$
f_{n} \uparrow f, \quad \text { then } \quad \mu\left[f_{n}\right] \uparrow \mu[f] .
$$

3. If $a, b \geq 0$, then $\mu[a f+b g]=a \mu[f]+b \mu[g]$.

- Proof: 1. clear.

2. Since $f_{1}, f_{2}, \ldots \leq f, \lim _{n \rightarrow \infty} \mu\left[f_{n}\right]=\sup _{n \in \mathbb{N}} \mu\left[f_{n}\right] \leq \mu[f]$. For the reverse it suffices to show

$$
\mu[g] \leq \sup _{n \in \mathbb{N}} \mu\left[f_{n}\right]
$$

for all simple functions $g=\sum_{k=1}^{m} c_{k} 1_{A_{k}} \leq f$. Let $B_{n}^{\varepsilon}:=\left\{f_{n} \geq(1-\varepsilon) g\right\}$. Since $f_{n} \uparrow f$ and $g \leq f, \bigcup_{n=1}^{\infty} B_{n}^{\varepsilon}=\Omega$

$$
\begin{aligned}
\mu\left[f_{n}\right] & \geq \mu\left[(1-\varepsilon) g 1_{B_{n}^{\varepsilon}}\right]=\sum_{k=1}^{m}(1-\varepsilon) c_{k} \mu\left(A_{k} \cap\right. \\
& \xrightarrow{n \rightarrow \infty} \sum_{k=1}^{m}(1-\varepsilon) c_{k} \mu\left(A_{k}\right)=(1-\varepsilon) \mu[g] .
\end{aligned}
$$

Some properties

- Define

$$
\mathcal{L}^{1}(\mu):=\left\{f: \Omega \rightarrow \overline{\mathbb{R}}: \mu\left[|f|^{1}\right]<\infty\right\} .
$$

- Let $f, g \in \mathcal{L}^{1}(\mu)$. Then

1. The integral is monotone, i.e.

$$
f \leq g \text { almost everywhere } \quad \Longrightarrow \quad \mu[f] \leq \mu[g] .
$$

In particular,

$$
|\mu[f]| \leq \mu[|f|] .
$$

2. The integral is linear, so if $a, b \in \mathbb{R}$, then $a f+b g \in \mathcal{L}^{1}(\mu)$ and

$$
\mu[a f+b g]=a \mu[f]+b \mu[g] .
$$

3. $g \in \mathcal{L}^{1}\left(f_{*} \mu\right)$, then $g \circ f \in \mathcal{L}^{1}(\mu)$ and

$$
\mu[g \circ f]=f_{*} \mu[g] .
$$

- Proof: 4. for simple, non-negative functions g. Note $g \circ f=\sum_{k=1}^{m} c_{k} 1_{f \in A_{k}^{\prime}}$, hence
$\underset{\text { universitätfreiburg }}{\mu}[g \circ f]=\sum_{k=1}^{m} c_{k} \mu\left(f \in A_{k}^{\prime}\right)=\sum_{k=1}^{m} c_{k} f_{*} \mu\left(A_{k}^{\prime}\right)=f_{*} \mu[g]$.

Properties almost everywhere

- $f: \Omega \rightarrow \overline{\mathbb{R}}_{+}$measurable.

1. $f=0$ almost everywhere iff $\mu[f]=0$.
2. If $\mu[f]<\infty$, then $f<\infty$ almost everywhere.

- Proof: 1. Let $N:=\{f>0\} \in \mathcal{F}$.
' \Rightarrow ': $\mu(N)=0$, so
$0 \leq \mu[f]=\mu[f, N]=\lim _{n \rightarrow \infty} \mu[n \wedge f, N] \leq \lim _{n \rightarrow \infty} \mu[n, N]=0$.
' \Leftarrow ' Let $N_{n}:=\{f \geq 1 / n\}$, so $N_{n} \uparrow N$ and $n f \geq 1_{N_{n}}$, i.e.

$$
0=\mu[f] \geq \frac{1}{n} \mu\left(N_{n}\right)
$$

This means that $\mu\left(N_{n}\right)=0$ and therefore $\mu(N)=\mu\left(\bigcup_{n=1}^{\infty} N_{n}\right)=0$ by σ-sub-additivity of μ. 2. Let $A:=\{f=\infty\}$. Since $f 1_{f \geq n} \geq n 1_{f \geq n}$,

$$
\mu(A)=\mu\left[1_{A}\right] \leq \mu\left[1_{f \geq n}\right] \leq \frac{1}{n} \mu\left[f, 1_{f \geq n}\right] \leq \frac{1}{n} \mu[f] \xrightarrow{n \rightarrow \infty} 0 .
$$

universitätfreiburg

Lebesgue and Riemann integral

- $f: \mathbb{R} \rightarrow \mathbb{R}$ be a piece-wise constant function, i.e.

$$
f(x)=\sum_{j=-\infty}^{\infty} a_{j} 1_{\left[x_{j-1}, x_{j}\right)}(x)
$$

$f:[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable if $\lambda[|f|]<\infty$ and there are piece-wise constant functions $f_{n}^{-} \leq f \leq f_{n}^{+}$and $\lambda\left[f_{n}^{+}-f_{n}^{-}\right] \xrightarrow{n \rightarrow \infty} 0$. Then, the Riemann integral and Lebesgue integral then coincide.

- $f: \mathbb{R} \rightarrow \mathbb{R}$ is called Riemann-integrable if $f 1_{K}$ is Riemann-integrable for all compact intervals $K \subseteq \mathbb{R}$ and $\lambda\left[f 1_{[-n, n]}\right]$ converges.

Riemann integrability

- Proposition 3.23: $f:[0, t] \rightarrow \mathbb{R}$ piecewise continuous. Then f is integrable, Riemann-integrable, and

$$
\lambda[f]=\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} f\left(y_{n, k}\right)\left(x_{n, k}-x_{n, k-1}\right)
$$

for $0=x_{n, 0} \leq \ldots \leq x_{n, k_{n}}=t$ with $\max _{k}\left|x_{n, k}-x_{n, k-1}\right| \xrightarrow{n \rightarrow \infty} 0$ and any $x_{n, k-1} \leq y_{n, k} \leq x_{n, k}$.

- Proof for continuous f. Choose $\varepsilon_{n} \downarrow 0$ and $x_{n, 0} \leq \ldots \leq x_{n, k_{n}}$ such that $K \subseteq\left[x_{n, 0}, x_{n, k_{n}}\right]$ and $\max _{x_{n, k-1} \leq y<x_{n, k}}\left|f\left(x_{n, k-1}\right)-f(y)\right|<\varepsilon_{n}$. Then, find piecewise constant f_{n}^{+}, f_{n}^{-}with $f_{n}^{-} \leq f \leq f_{n}^{+}$and $\left\|f_{n}^{+}-f_{n}^{-}\right\| \leq \varepsilon_{n}$. Integrability and Riemann-integrability follows. The formula follows from uniform approximation of the function f.

Lebesgue and Riemann integral

- $f=1_{[0,1] \cap \mathbb{Q}}$ is not Riemann-integrable.
- $f(t)=\frac{(-1)^{[t]+1}}{|t|}$. Then

$$
\begin{aligned}
\lambda\left[f 1_{[0,2 n]}\right] & =\sum_{k=1}^{2 n} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \\
& =\sum_{k=1}^{n} \frac{1}{2 k-1}-\frac{1}{2 k}=\sum_{k=1}^{n} \frac{1}{(2 k-1) 2 k}
\end{aligned}
$$

So, f is Riemann-integrable. However

$$
\lambda[|f|]=\sum_{k=1}^{\infty} \frac{1}{k}=\infty .
$$

So, $|f|$ is not integrable, hence f is not Lebesgue-integrable.

