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Outline

I Goal: For a measure µ, define for many functions f : Ω→ R

µ[f ] =

∫
fdµ =

∫
f (ω)µ(dω).

I Initial step: For f = 1A for some A ∈ F , define

µ[f ] := µ(A).

I Definition 3.10: For f =
∑m

k=1 ck1Ak
with

c1, . . . , cm ≥ 0,A1, . . . ,Am ∈ F , define

µ[f ] :=
m∑
i=1

ciµ(Ai ).

I Final step: f measurbale: use approximating sequence of
simple functions.



Simple properties

I Lemma 3.12: f , g non-negative, simple functions and α ≥ 0.
Then,

µ[af + bg ] = aµ[f ] + bµ[g ], f ≤ g ⇒ µ[f ] ≤ µ[g ].

I If f = 1A for A ∈ F , note that f is in general not piecewise
continuous. In particular,

∫
f (x)dx does not exist in the sense

of Riemann.



Integral of non-negative measurable functions

I Definition 3.14: (Ω,F , µ) measue space, f : Ω→ R+

measurable. Define

µ[f ] :=

∫
fdµ :=

∫
f (ω)µ(dω)

:= sup{µ[g ] : g simple, non-negative, g ≤ f }.

I Definition 3.17: f : Ω→ R measurable. Then f is said to be
µ-integrable if µ[|f |] <∞,

µ[f ] :=

∫
f (ω)µ(dω) :=

∫
fdµ := µ[f +]− µ[f −].

I For A ∈ F we also write

µ[f ,A] :=

∫
A
fdµ := µ[f 1A].



Proposition 3.16
I f , g , f1, f2, · · · : Ω→ R+ measurable. Then,

1. If f ≤ g , then µ[f ] ≤ µ[g ].
2. If

fn ↑ f , then µ[fn] ↑ µ[f ].

3. If a, b ≥ 0, then µ[af + bg ] = aµ[f ] + bµ[g ].
I Proof: 1. clear.

2. Since f1, f2, ... ≤ f , limn→∞ µ[fn] = supn∈N µ[fn] ≤ µ[f ].
For the reverse it suffices to show

µ[g ] ≤ sup
n∈N

µ[fn]

for all simple functions g =
∑m

k=1 ck1Ak
≤ f . Let

Bε
n := {fn ≥ (1− ε)g}. Since fn ↑ f and g ≤ f ,

⋃∞
n=1 B

ε
n = Ω

µ[fn] ≥ µ[(1− ε)g1Bε
n
] =

m∑
k=1

(1− ε)ckµ(Ak ∩ Bε
n)

n→∞−−−→
m∑

k=1

(1− ε)ckµ(Ak) = (1− ε)µ[g ].



Some properties
I Define

L1(µ) :=
{
f : Ω→ R : µ[|f |1] <∞

}
.

I Let f , g ∈ L1(µ). Then
1. The integral is monotone, i.e.

f ≤ g almost everywhere =⇒ µ[f ] ≤ µ[g ].

In particular,
|µ[f ]| ≤ µ[|f |].

2. The integral is linear, so if a, b ∈ R, then af + bg ∈ L1(µ) and

µ[af + bg ] = aµ[f ] + bµ[g ].

3. g ∈ L1(f∗µ), then g ◦ f ∈ L1(µ) and

µ[g ◦ f ] = f∗µ[g ].

I Proof: 4. for simple, non-negative functions g . Note
g ◦ f =

∑m
k=1 ck1f ∈A′k , hence

µ[g ◦ f ] =
m∑

k=1

ckµ(f ∈ A′k) =
m∑

k=1

ck f∗µ(A′k) = f∗µ[g ].



Properties almost everywhere
I f : Ω→ R+ measurable.

1. f = 0 almost everywhere iff µ[f ] = 0.
2. If µ[f ] <∞, then f <∞ almost everywhere.

I Proof: 1. Let N := {f > 0} ∈ F .
’⇒’: µ(N) = 0, so

0 ≤ µ[f ] = µ[f ,N] = lim
n→∞

µ[n ∧ f ,N] ≤ lim
n→∞

µ[n,N] = 0.

’⇐’ Let Nn := {f ≥ 1/n}, so Nn ↑ N and nf ≥ 1Nn , i.e.

0 = µ[f ] ≥ 1
nµ(Nn).

This means that µ(Nn) = 0 and therefore
µ(N) = µ(

⋃∞
n=1Nn) = 0 by σ-sub-additivity of µ.

2. Let A := {f =∞}. Since f 1f≥n ≥ n1f≥n,

µ(A) = µ[1A] ≤ µ[1f≥n] ≤ 1
nµ[f , 1f≥n] ≤ 1

nµ[f ]
n→∞−−−→ 0.



Lebesgue and Riemann integral

I f : R→ R be a piece-wise constant function, i.e.

f (x) =
∞∑

j=−∞
aj1[xj−1,xj )(x)

f : [a, b]→ R is Riemann-integrable if λ[|f |] <∞ and there
are piece-wise constant functions f −n ≤ f ≤ f +n and
λ[f +n − f −n ]

n→∞−−−→ 0. Then, the Riemann integral and
Lebesgue integral then coincide.

I f : R→ R is called Riemann-integrable if f 1K is
Riemann-integrable for all compact intervals K ⊆ R and
λ[f 1[−n,n]] converges.



Riemann integrability

I Proposition 3.23: f : [0, t]→ R piecewise continuous. Then f
is integrable, Riemann-integrable, and

λ[f ] = lim
n→∞

∞∑
k=1

f (yn,k)(xn,k − xn,k−1)

for 0 = xn,0 ≤ ... ≤ xn,kn = t with

maxk |xn,k − xn,k−1|
n→∞−−−→ 0 and any xn,k−1 ≤ yn,k ≤ xn,k .

I Proof for continuous f . Choose εn ↓ 0 and xn,0 ≤ ... ≤ xn,kn
such that K ⊆ [xn,0, xn,kn ] and
maxxn,k−1≤y<xn,k |f (xn,k−1)− f (y)| < εn. Then, find piecewise
constant f +n , f

−
n with f −n ≤ f ≤ f +n and ||f +n − f −n || ≤ εn.

Integrability and Riemann-integrability follows. The formula
follows from uniform approximation of the function f .



Lebesgue and Riemann integral

I f = 1[0,1]∩Q is not Riemann-integrable.

I f (t) = (−1)dte+1

dte . Then

λ[f 1[0,2n]] =
2n∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

=
n∑

k=1

1

2k − 1
− 1

2k
=

n∑
k=1

1

(2k − 1)2k

So, f is Riemann-integrable. However

λ[|f |] =
∞∑
k=1

1

k
=∞.

So, |f | is not integrable, hence f is not Lebesgue-integrable.


