Measure Theory for Probabilists 9. Approximation of measurable functions

Peter Pfaffelhuber

January 14, 2024

┥□▶ ┥⁄// ↓ ↓ ミ▶ ┥ ミ▶

Image measures

▶ If \mathcal{F}' is a σ -field on Ω' , and $f : \Omega \to \Omega'$. Then,

$$\sigma(f) := \{ f^{-1}(A') : A' \in \mathcal{F}' \}$$
 is a σ -field on Ω .

• Definition 2.23: $(\Omega, \mathcal{F}, \mu)$ measure space, (Ω', \mathcal{F}') measurable space, $f : \Omega \to \Omega'$ with $\sigma(f) \subseteq \mathcal{F}$. Then,

$$\mathcal{F}' \ni \mathcal{A}' \mapsto f_*\mu(\mathcal{A}') := \mu(f^{-1}(\mathcal{A}')) = \mu(f \in \mathcal{A}')$$

is the *image measure* of f under μ .

If \mathbb{P} is a probability measure, we call $X_*\mu$ the distribution of X under \mathbb{P} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Proposition 2.25: $f_*\mu$ is a measure on \mathcal{F}' .

Lemma 3.2

• (Ω', \mathcal{F}') measurable space, $f : \Omega \to \Omega', \mathcal{C}' \subseteq \mathcal{F}'$ with $\sigma(\mathcal{C}') = \mathcal{F}'$. Then $\sigma(f^{-1}(\mathcal{C}')) = f^{-1}(\sigma(\mathcal{C}'))$.

▶ Proof: '⊆': $f^{-1}(\sigma(\mathcal{C}'))$ is a σ -algebra. So,

$$\sigma(f^{-1}(\mathcal{C}')) \subseteq \sigma(f^{-1}(\sigma(\mathcal{C}'))) = f^{-1}(\sigma(\mathcal{C}'))$$

'⊇': define

$$\widetilde{\mathcal{F}}' = \{ \mathsf{A}' \in \sigma(\mathcal{C}') : f^{-1}(\mathsf{A}') \in \sigma(f^{-1}(\mathcal{C}')) \} \subseteq \sigma(\mathcal{C}').$$

Again, $\widetilde{\mathcal{F}}'$ is a σ -algebra and $\mathcal{C}' \subseteq \widetilde{\mathcal{F}}' \subseteq \sigma(\mathcal{C}')$. Thus, $\widetilde{\mathcal{F}}' = \sigma(\mathcal{C}')$. For $A' \in \sigma(\mathcal{C}')$, we find

$$f^{-1}(A') \in \sigma(f^{-1}(\mathcal{C}')),$$

which is equivalent to $f^{-1}(\sigma(\mathcal{C}')) \subseteq \sigma(f^{-1}(\mathcal{C}'))$.

Definition 3.3

• (Ω, \mathcal{F}) , (Ω', \mathcal{F}') measurable spaces and $f : \Omega \to \Omega'$.

- 1. f is \mathcal{F}/\mathcal{F}' -measurable if $f^{-1}(\mathcal{F}') \subseteq \mathcal{F}$. We define $\sigma(f) := f^{-1}(\mathcal{F}')$ the σ -algebra generated by f.
- If (Ω, F, P) is a probability space and X : Ω → Ω' measurable, then X is called an Ω'-valued random variable. The image measure X_{*}P from Definition 2.23 is called the *distribution of* X.
- If (Ω', F') = (ℝ, B(ℝ)), and f is F/F'-measurable, we say that f is (Borel-)measurable.
- 4. If $f = 1_A$ for $A \subseteq \Omega$, then f is called *indicator function*. If $f = \sum_{k=1}^{n} c_k 1_{A_k}$ for $c_1, \ldots, c_n \in \mathbb{R}$ pairwise different and $A_1, \ldots, A_n \subseteq \Omega$, then f is called *simple*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples

- $f: \omega \mapsto \omega$ is measurable, since $f^{-1}(\mathcal{F}) = \mathcal{F}$.
- (Ω, O) and (Ω'.O') topological spaces, f : Ω → Ω' continuous. Then f is measurable.
 Indeed: Since f⁻¹(O') ⊆ O. From Lemma 3.2,

$$f^{-1}(\mathcal{B}(\Omega')) = f^{-1}(\sigma(\mathcal{O}')) = \sigma(f^{-1}(\mathcal{O}') \subseteq \sigma(\mathcal{O}) = \mathcal{B}(\Omega).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A function $f : \Omega \to \{0, 1\}$ is measurable if and only if $f^{-1}(\{1\}) \in \mathcal{F}$. Then, $\sigma(f) = \{\emptyset, f^{-1}(\{1\}), (f^{-1}(\{1\}))^c, \Omega\}$.
- For a non-measurable set/function, see Example 2.27 in the manuscript.

Examples for random variables

- ► (E, r) metric space, X an E-valued random variable on some probability space, Y an E-valued random variable on another probability space. If X_{*}P = Y_{*}Q, X and Y are *identically distributed* and we write X ~ Y.
- Let (X_i)_{i∈I} family of random variables on a probability space. The distribution of ((X_i)_{i∈I})_{*}P is called the *joint distribution* of (X_i)_{i∈I}.

Lemma 3.6

- If C' ⊆ F' with F' = σ(C'), then f : Ω → Ω' is F/F'-measurable if and only if f⁻¹(C') ⊆ F.
- ▶ If $f : \Omega \to \Omega'$ is measurable and $g : \Omega' \to \Omega''$ is measurable, then $g \circ f : \Omega \to \Omega''$ is measuarble.
- A real-valued function f (i.e. f : Ω → ℝ) is measurable (with respect to F/B(ℝ)) if and only if {ω : f(ω) ≤ x} ∈ F for all x ∈ ℚ.
- A simple function $f = \sum_{k=1}^{n} c_k \mathbf{1}_{A_k}$ with pairwise different $c_1, \ldots, c_n \in \mathbb{R}$ and $A_1, \ldots, A_n \subseteq \Omega$ is measurable if and only if $A_1, \ldots, A_n \in \mathcal{F}$.
- ▶ Proof of 1.: $f^{-1}(\mathcal{F}') = f^{-1}(\sigma(\mathcal{C}')) = \sigma(f^{-1}(\mathcal{C}')) \subseteq \sigma(\mathcal{F}) = \mathcal{F}$. This means that f is \mathcal{F}/\mathcal{F}' -measurable.

Algebraic structures of measurability

Lemma 3.7: Let f, g, f₁, f₂,... be measurable. Then, the following are measurable: fg, af + bg for a, b ∈ ℝ, f/g if g(ω) ≠ 0 for all ω ∈ Ω,

$\sup f_n$,	inf f _n ,	$\limsup_{n\to\infty} f_n,$	lim inf f_n .
$n \in \mathbb{N}$	$n \in \mathbb{N}$	$n \rightarrow \infty$	$n \rightarrow \infty$ "

- ▶ In particular, $f^+, f^-, |f|$ are measurable.
- Proof: Consider ψ(ω) := (f(ω), g(ω)) measruable. Then, (x, y) → ax + by, (x, y) → xy, (x, y) → x/y are continuous, hence measurbale.
 - 2. for measurability of $\sup_{n \in \mathbb{N}} f_n$. Write, for $x \in \mathbb{R}$,

$$\left\{\omega: \sup_{n\in\mathbb{N}}f_n(\omega)\leq x\right\}=\bigcap_{n=1}^{\infty}\underbrace{\left\{\omega:f_n(\omega)\leq x\right\}}_{\in\mathcal{F}}\in\mathcal{F}.$$

Approximation by simple functions

Theorem 3.9: f : Ω → ℝ₊ measurable. Then there is f₁, f₂, · · · : Ω → ℝ of simple functions with f_n ↑ f.
 Proof: Write

$$f_n(\omega) = n \wedge 2^{-n} [2^n f(\omega)] \uparrow f$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

by construction. Furthermore, $\omega \mapsto [2^n f(\omega)]$ is measurable according to Lemma 3.6.