Measure Theory for Probabilists 8. Measures on \mathbb{R} and image measures

Peter Pfaffelhuber

January 9, 2024

< □ > < @ > < ≧ > < ≧ >

Lebesgue measure

Proposition 2.18: There is exactly one measure λ on (ℝ, B(ℝ)) with

$$\lambda((a,b])=b-a$$

for $a, b \in \mathbb{Q}$ with $a \leq b$.

▶ Proof: $\mathcal{H} = \{(a, b] : a, b \in \mathbb{Q}, a \leq b\}$ is a semi-ring with $\sigma(\mathcal{H}) = \mathcal{B}(\mathbb{R})$. σ -additivity: let a_1, a_2, \ldots be such that $\bigcup_{n=1}^{\infty} (a_{n+1}, a_n] = (a, b] \in \mathcal{H}$, i.e., $b = a_1$ and $a_n \downarrow a$. Then,

$$\lambda(a, b] = b - a = a_1 - \lim_{N \to \infty} a_N = \sum_{n=1}^{\infty} a_n - a_{n+1} = \sum_{n=1}^{\infty} \lambda((a_{n+1}, a_n)).$$

Conclude with Theorem 2.16.

σ -finite measures on $\mathbb R$

Proposition 2.19: μ : B(ℝ) → ℝ₊ is a σ-finite measure iff there is G : ℝ → ℝ, non-decreasing and right-continuous with

$$\mu((a,b]) = G(b) - G(a), \qquad a,b \in \mathbb{Q}, a \leq b. \qquad (*)$$

If \widetilde{G} also satisfies (*), then $\widetilde{G} = G + c$ for some $c \in \mathbb{R}$. Proof: ' \Rightarrow ': Define G(0) = 0 and $G(x) := \begin{cases} \mu((0, x]), & x > 0, \\ -\mu((x, 0]), & x < 0. \end{cases}$ ' \Leftarrow ': Similar to the proof of Proposition 2.18. Let \widetilde{G} satisfy (*). Then, for $a \in \mathbb{R}$, $\widetilde{G}(b) = \widetilde{G}(a) + \mu((a, b]) = G(b) + \widetilde{G}(a) - G(a),$

and the assertion follows with $c = \widetilde{G}(a) - G(a)$.

Probability measures on $\mathbb R$

Corollary 2.20: µ : B(ℝ) → [0, 1] is probability measure iff there is F : ℝ → [0, 1] non-decreasing and right-continuous with lim_{b→∞} F(b) = 1 and

$$\mu((a,b]) = F(b) - F(a), \qquad a, b \in \mathbb{Q}, a \leq b.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

F is uniquely defined by μ . F is called the distribution function of μ .

Examples

Let f : ℝ → ℝ₊ be a density (piecewise continuous with ∫[∞]_{-∞} f(x)dx = 1). A densitiy defines a distribution function via

$$F(x):=\int_{-\infty}^{x}f(a)da,$$

therefore uniquely a probability measures.

$$F_{U(0,1)}(x) = \int_{-\infty}^{x} \mathbb{1}_{[0,1]}(a) da = \begin{cases} 0, & x \le 0, \\ x, & 0 < x \le 1, \\ 1, & x > 1, \end{cases}$$
$$F_{\exp(\lambda)}(x) = \int_{-\infty}^{x} \mathbb{1}_{[0,\infty)}(a) \lambda e^{-\lambda a} da = 1 - e^{-\lambda x}$$
$$F_{N(\mu,\sigma^2)}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} \exp\left(-\frac{(a-\mu)^2}{2\sigma^2}\right) da =: \Phi(x)$$

Image measures

• If \mathcal{F}' is a σ -field on Ω' , and $f : \Omega \to \Omega'$. Then,

$$\sigma(f) := \{ f^{-1}(A') : A' \in \mathcal{F}' \}$$
 is a σ -field on Ω .

Definition 2.23: (Ω, F, μ) measure space, (Ω', F') measurable space, f : Ω → Ω' with σ(f) ⊆ F. Then,

$$\mathcal{F}'
i A' \mapsto f_*\mu(A') := \mu(f^{-1}(A')) = \mu(f \in A')$$

is the *image measure* of f under μ .

If \mathbb{P} is a probability measure, we call $X_*\mu$ the distribution of X under \mathbb{P} .

- Proposition 2.25: $f_*\mu$ is a measure on \mathcal{F}' .
- ▶ Proof: $A'_1, A'_2, \dots \in \mathcal{F}'$ disjoint, then

$$f_*\mu\Big(\underset{n=1}{\overset{\infty}{\mapsto}} A'_n\Big) = \mu\Big(f^{-1}\Big(\underset{n=1}{\overset{\infty}{\mapsto}} A'_n\Big)\Big)$$
$$= \mu\Big(\underset{n=1}{\overset{\infty}{\mapsto}} (f^{-1}(A'_n)\Big) = \sum_{n=1}^{\infty} \mu(f^{-1}(A'_n)) = \sum_{n=1}^{\infty} f_*\mu(A'_n).$$

Examples