## Measure Theory for Probabilists

 8. Measures on $\mathbb{R}$ and image measuresPeter Pfaffelhuber

January 9, 2024


## Lebesgue measure

- Proposition 2.18: There is exactly one measure $\lambda$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with

$$
\lambda((a, b])=b-a
$$

for $a, b \in \mathbb{Q}$ with $a \leq b$.

- Proof: $\mathcal{H}=\{(a, b]: a, b \in \mathbb{Q}, a \leq b\}$ is a semi-ring with $\sigma(\mathcal{H})=\mathcal{B}(\mathbb{R})$.
$\sigma$-additivity: let $a_{1}, a_{2}, \ldots$ be such that
$\bigcup_{n=1}^{\infty}\left(a_{n+1}, a_{n}\right]=(a, b] \in \mathcal{H}$, i.e., $b=a_{1}$ and $a_{n} \downarrow a$. Then,
$\lambda(a, b]=b-a=a_{1}-\lim _{N \rightarrow \infty} a_{N}=\sum_{n=1}^{\infty} a_{n}-a_{n+1}=\sum_{n=1}^{\infty} \lambda\left(\left(a_{n+1}, a_{n}\right]\right)$.
Conclude with Theorem 2.16.


## $\sigma$-finite measures on $\mathbb{R}$

- Proposition 2.19: $\mu: \mathcal{B}(\mathbb{R}) \rightarrow \overline{\mathbb{R}}_{+}$is a $\sigma$-finite measure iff there is $G: \mathbb{R} \rightarrow \mathbb{R}$, non-decreasing and right-continuous with

$$
\begin{equation*}
\mu((a, b])=G(b)-G(a), \quad a, b \in \mathbb{Q}, a \leq b \tag{*}
\end{equation*}
$$

If $\widetilde{G}$ also satisfies $(*)$, then $\widetilde{G}=G+c$ for some $c \in \mathbb{R}$.

- Proof: ' $\Rightarrow$ ': Define $G(0)=0$ and
$G(x):= \begin{cases}\mu((0, x]), & x>0, \\ -\mu((x, 0]), & x<0 .\end{cases}$
$' \Leftarrow$ ': Similar to the proof of Proposition 2.18.
Let $\widetilde{G}$ satisfy $(*)$. Then, for $a \in \mathbb{R}$,

$$
\widetilde{G}(b)=\widetilde{G}(a)+\mu((a, b])=G(b)+\widetilde{G}(a)-G(a)
$$

and the assertion follows with $c=\widetilde{G}(a)-G(a)$.

## Probability measures on $\mathbb{R}$

- Corollary 2.20: $\mu: \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ is probability measure iff there is $F: \mathbb{R} \rightarrow[0,1]$ non-decreasing and right-continuous with $\lim _{b \rightarrow \infty} F(b)=1$ and

$$
\mu((a, b])=F(b)-F(a), \quad a, b \in \mathbb{Q}, a \leq b .
$$

$F$ is uniquely defined by $\mu$.
$F$ is called the distribution function of $\mu$.

## Examples

- Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a density (piecewise continuous with $\int_{-\infty}^{\infty} f(x) d x=1$ ). A densitiy defines a distribution function via

$$
F(x):=\int_{-\infty}^{x} f(a) d a
$$

therefore uniquely a probability measures.

$$
\begin{aligned}
& F_{U(0,1)}(x)=\int_{-\infty}^{x} 1_{[0,1]}(a) d a= \begin{cases}0, & x \leq 0, \\
x, & 0<x \leq 1, \\
1, & x>1,\end{cases} \\
& F_{\exp (\lambda)}(x)=\int_{-\infty}^{x} 1_{[0, \infty)}(a) \lambda e^{-\lambda a} d a=1-e^{-\lambda x} \\
& F_{N\left(\mu, \sigma^{2}\right)}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{x} \exp \left(-\frac{(a-\mu)^{2}}{2 \sigma^{2}}\right) d a=: \Phi(x)
\end{aligned}
$$

## Image measures

- If $\mathcal{F}^{\prime}$ is a $\sigma$-field on $\Omega^{\prime}$, and $f: \Omega \rightarrow \Omega^{\prime}$. Then,

$$
\sigma(f):=\left\{f^{-1}\left(A^{\prime}\right): A^{\prime} \in \mathcal{F}^{\prime}\right\} \text { is a } \sigma \text {-field on } \Omega .
$$

- Definition 2.23: $(\Omega, \mathcal{F}, \mu)$ measure space, $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ measurable space, $f: \Omega \rightarrow \Omega^{\prime}$ with $\sigma(f) \subseteq \mathcal{F}$. Then,

$$
\mathcal{F}^{\prime} \ni A^{\prime} \mapsto f_{*} \mu\left(A^{\prime}\right):=\mu\left(f^{-1}\left(A^{\prime}\right)\right)=\mu\left(f \in A^{\prime}\right)
$$

is the image measure of $f$ under $\mu$. If $\mathbb{P}$ is a probability measure, we call $X_{*} \mu$ the distribution of $X$ under $\mathbb{P}$.

- Proposition 2.25: $f_{*} \mu$ is a measure on $\mathcal{F}^{\prime}$.
- Proof: $A_{1}^{\prime}, A_{2}^{\prime}, \cdots \in \mathcal{F}^{\prime}$ disjoint, then

$$
f_{*} \mu\left(\biguplus_{n=1}^{\infty} A_{n}^{\prime}\right)=\mu\left(f^{-1}\left(\biguplus_{n=1}^{\infty} A_{n}^{\prime}\right)\right)
$$

$$
=\mu\left(\biguplus_{n=1}^{\infty}\left(f^{-1}\left(A_{n}^{\prime}\right)\right)=\sum_{n=1}^{\infty} \mu\left(f^{-1}\left(A_{n}^{\prime}\right)\right)=\sum_{n=1}^{\infty} f_{*} \mu\left(A_{n}^{\prime}\right) .\right.
$$

## Examples

- For $\Omega=[0,1], \mathcal{H}:=\{[0, b): 0 \leq b \leq 1\}$ has

$$
\sigma(\mathcal{H})=\mathcal{B}([0,1])
$$

$$
\mu=\mu_{U(0,1)}, f: u \mapsto 1-u \text {. Then } f_{*} \mu=\mu \text {, because }
$$

$$
f_{*} \mu([0, b))=\mu\left(f^{-1}([0, b))\right)=\mu([1-b, 1])=1-(1-b)=b
$$

- $\Omega=\mathbb{R}, y \in \mathbb{R}, f_{y}: x \mapsto x+y$
$\lambda$ Lebesgue measure. Then $\left(f_{y}\right)_{*} \lambda=\lambda$, because

$$
\left(f_{y}\right)_{*} \lambda([a, b])=\lambda\left(f_{y}^{-1}([a, b])\right)=\lambda([a-y, b-y])=b-a
$$

- $\Omega=[0,1], \Omega^{\prime}=\mathbb{R}_{+}, f: x \mapsto-\frac{1}{\lambda} \log (x)$ for $\lambda>0$ $\mu=\mu_{U(0,1)}$. Then, $f_{*} \mu=\mu_{\exp (\lambda)}$, because for $x \geq 0$

$$
f_{*} \mu([0, x])=\mu\left(f^{-1}([0, x])\right)=\mu\left(\left[e^{-\lambda x}, 1\right]\right)=1-e^{-\lambda x} .
$$

