Measure Theory for Probabilists

7. Uniqueness and extension of set functions

Question

- When does an additive set-function μ on \mathcal{H} uniquely extend to a measure $\widetilde{\mathcal{H}}$ on $\sigma(\mathcal{H})$?
- Uniqueness: Proposition 2.11: Let $\mathcal{C} \subseteq 2^{\Omega}$ be \cap-stable, and μ, ν be σ-finite measures on $\sigma(\mathcal{C})$. Then,

$$
\mu=\left.\nu \quad \Longleftrightarrow \quad \mu\right|_{\mathcal{C}}=\left.\nu\right|_{\mathcal{C}}
$$

- Existence: See Carathéodory's Extension Theorem 2.13: Let μ^{*} be an outer measure. Then, \mathcal{F}^{*} the set of μ^{*}-measurable sets is a σ-algebra and $\mu:=\left.\mu^{*}\right|_{\mathcal{F} *}$ is a measure.

Theorem 2.16

	Lemma 2.5	Theorem 2.10	Theorem 2.16
μ additive	\circ	\circ	
μ finite		\circ	
$\mu \sigma$-finite			\circ
μ defined on semi-ring	\circ	\circ	\circ
hline $\mu \sigma$-additive	\bullet / \circ		\circ
hline $\mu \sigma$-subadditive		\circ	
μ inner \mathcal{K}-regular			\bullet
μ extends uniquely to $\sigma(\mathcal{H})$			

Proposition 2.11

- Let $\mathcal{C} \subseteq 2^{\Omega}$ be \cap-stable, and μ, ν be σ-finite measures on $\sigma(\mathcal{C})$. Then,

$$
\mu=\left.\nu \quad \Longleftrightarrow \quad \mu\right|_{\mathcal{C}}=\left.\nu\right|_{\mathcal{C}}
$$

- Proof for finite μ, ν with $\mu(\Omega)=\nu(\Omega): \Rightarrow$: clear \Leftarrow : Let

$$
\mathcal{D}:=\{B \in \mathcal{F}: \mu(A)=\nu(A)\} \supseteq \mathcal{H} .
$$

To show: \mathcal{D} is Dynkin. $\Rightarrow \sigma(\mathcal{H}) \subseteq \mathcal{D}$ by Theorem 1.13.

- $B, C \in \mathcal{D}, B \subseteq C \Rightarrow \mu(C \backslash B)=\mu(C)-\mu(B)=$ $\nu(C)-\nu(B)=\nu(C \backslash B)$, i.e. $C \backslash B \in \mathcal{D}$.
- $B_{1}, B_{2}, \cdots \in \mathcal{D}$ with $B_{1} \subseteq B_{2} \subseteq B_{3} \subseteq \cdots \in \mathcal{D}$ and $B=\bigcup_{n=1}^{\infty} B_{n} \in \mathcal{F}$, then from continuity from below,

$$
\mu(B)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(B_{n}\right)=\nu(B) \quad \Rightarrow B \in \mathcal{D}
$$

Theorem 2.13

- A σ-subadditive, monotone $\mu^{*}: 2^{\Omega} \rightarrow \mathbb{R}_{+}$with $\mu^{*}(\emptyset)=0$ is an outer measure.
- A set $A \subseteq \Omega$ is called μ^{*}-measurable if

$$
\mu(E)=\mu(E \cap A)+\mu\left(E \cap A^{c}\right), \quad E \subseteq \Omega
$$

- Theorem 2.13: Let μ^{*} be an outer measure. Then, \mathcal{F}^{*} the set of μ^{*}-measurable sets is a σ-algebra and $\mu:=\left.\mu^{*}\right|_{\mathcal{F}^{*}}$ is a measure. Furthermore, $\mathcal{N}:=\left\{N \subseteq \Omega: \mu^{*}(N)=0\right\} \subseteq \mathcal{F}^{*}$.

Theorem 2.13

- Let μ^{*} be an outer measure. Then, \mathcal{F}^{*} the set of μ^{*}-measurable sets is a σ-algebra and $\mu:=\left.\mu^{*}\right|_{\mathcal{F}^{*}}$ is a measure.
- Proof: Show:
- $\emptyset \in \mathcal{F}^{*}$, since $\mu^{*}(E)=\mu^{*}(E \cap \emptyset)+\mu^{*}(E \cap \Omega)$.
- $A \in \mathcal{F}^{*} \Rightarrow A^{c} \in \mathcal{F}^{*}$
- $A, B \in \mathcal{F}^{*} \Rightarrow A \cap B \in \mathcal{F}^{*}$, since

$$
\begin{aligned}
\mu^{*}(E) & =\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \\
& =\mu^{*}((E \cap A) \cap B)+\mu^{*}\left((E \cap A) \cap B^{c}\right)+\mu^{*}\left(E \cap A^{c}\right) \\
& \geq \mu^{*}(E \cap(A \cap B))+\mu^{*}\left(E \cap(A \cap B)^{c}\right) \geq \mu^{*}(E),
\end{aligned}
$$

- $A_{1}, A_{2}, \cdots \in \mathcal{F}^{*}$ disjoint, $B_{n}=\biguplus_{k=1}^{n} A_{k} \in \mathcal{F}^{*}, B_{n} \uparrow B$. Show $\mu^{*}\left(E \cap B_{n}\right)=\sum_{k=1}^{n} \mu^{*}\left(E \cap A_{k}\right)$ by induction on n :

$$
\begin{aligned}
\mu^{*}\left(E \cap B_{n+1}\right) & =\mu^{*}\left(E \cap B_{n+1} \cap B_{n}\right)+\mu^{*}\left(E \cap B_{n+1} \cap B_{n}^{c}\right) \\
& =\mu^{*}\left(E \cap B_{n}\right)+\mu^{*}\left(E \cap A_{n+1}\right)=\sum_{k=1}^{n+1} \mu^{*}\left(E \cap A_{k}\right) .
\end{aligned}
$$

Theorem 2.13

- Let μ^{*} be an outer measure. Then, \mathcal{F}^{*} the set of μ^{*}-measurable sets is a σ-algebra and $\mu:=\left.\mu^{*}\right|_{\mathcal{F}^{*}}$ is a measure.
- Then, $\mu^{*}(E \cap B)=\sum_{k=1}^{\infty} \mu^{*}\left(E \cap A_{k}\right)=\lim _{n \rightarrow \infty} \mu^{*}\left(E \cap B_{n}\right)$ since

$$
\begin{aligned}
\mu^{*}(E \cap B) & \leq \sum_{k=1}^{\infty} \mu^{*}\left(E \cap A_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu^{*}\left(E \cap A_{k}\right) \\
& =\lim _{n \rightarrow \infty} \mu^{*}\left(E \cap B_{n}\right) \leq \mu^{*}(E \cap B)
\end{aligned}
$$

- $B \in \mathcal{F}^{*}$, since $B_{1}, B_{2}, \ldots \in \mathcal{F}^{*}$, so

$$
\begin{aligned}
\mu^{*}(E) & =\lim _{n \rightarrow \infty} \mu^{*}\left(E \cap B_{n}\right)+\mu^{*}\left(E \cap B_{n}^{c}\right) \\
& \geq \mu^{*}(E \cap B)+\mu^{*}\left(E \cap B^{c}\right) \geq \mu^{*}(E)
\end{aligned}
$$

- So, \mathcal{F}^{*} is a σ-algebra and μ^{*} is σ-additive on \mathcal{F}^{*}, i.e. universität flukibजtrg $\left.\iota^{*}\right|_{\mathcal{F} *}$ is a measure.

Theorem 2.13

- $\mathcal{N}:=\left\{N \subseteq \Omega: \mu^{*}(N)=0\right\} \subseteq \mathcal{F}^{*}$.
- $N \in \mathcal{N}$ are called (μ^{*}-)null sets. If $A^{c} \in \mathcal{N}$, we say that A holds (μ)-almost everywhere or almost surely.
- Proof: For $N \in \mathcal{N}$, by monotonicity $\mu^{*}(E \cap N)=0$, so

$$
\begin{aligned}
\mu^{*}\left(E \cap N^{c}\right)+\mu^{*}(E \cap N) & \geq \mu^{*}(E) \geq \mu^{*}\left(E \cap N^{c}\right) \\
& =\mu^{*}\left(E \cap N^{c}\right)+\mu^{*}(E \cap N)
\end{aligned}
$$

Zweite Folie

- Test

Zweite Folie

- Test

Proposition 2.8

- μ is σ-additive iff

$$
\mu\left(\biguplus_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

- μ is σ-sub-additive iff

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

- μ is continuous from below, if for A, A_{1}, A_{2}, \ldots and $A_{1} \subseteq A_{2} \subseteq \ldots$ with $A=\bigcup_{n=1}^{\infty} A_{n}$,

$$
\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

- μ is continuous from above (in the \emptyset), if for $A(=\emptyset), A_{1}, A_{2}, \ldots, \mu\left(A_{1}\right)<\infty$ and $A_{1} \supseteq A_{2} \supseteq \ldots$ with $A=\bigcap_{n=1}^{\infty} A_{n}$,

$$
(0=) \mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proposition 2.8

- Let \mathcal{R} be a ring and $\mu: \mathcal{R} \rightarrow \overline{\mathbb{R}}_{+}$be additive and $\mu(A)<\infty$ for all $A \in \mathcal{R}$. Then, the following are equivalent:

1. μ is σ-additive;
2. μ is σ-subadditive;
3. μ is continuous from below;
4. μ is continuous from above in \emptyset;
5. μ is continuous from above.

- Proof: $1 . \Leftrightarrow 2$., $5 . \Rightarrow 4$.: clear.

1. \Rightarrow 3.: With $A_{0}=\emptyset, A=\biguplus_{n=1}^{\infty} A_{n} \backslash A_{n-1}$
2. $\Rightarrow 1$.: Set $A_{N}=\biguplus_{n=1}^{N} B_{n}$,
3. $\Rightarrow 5$.: With $B_{n}:=A_{n} \backslash A \downarrow \emptyset$,
$\mu\left(A_{n}\right)=\mu\left(B_{n}\right)+\mu(A) \xrightarrow{n \rightarrow \infty} \mu(A)$.
4. $\Rightarrow 4$.: Set $B_{n}:=A_{1} \backslash A_{n} \uparrow A_{1}$. Then,
$\mu\left(A_{1}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\mu\left(A_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
5. $\Rightarrow 3$. Set $B_{n}:=A \backslash A_{n} \downarrow \emptyset$. Then,
$0=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\mu(A)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Inner regularity of measures on Polish spaces

- Lemma 2.9: (Ω, \mathcal{O}) Polish, μ finite, $\varepsilon>0$.

There exists $K \subseteq \Omega$ compact with $\mu(\Omega \backslash K)<\varepsilon$.

- Proof: There is $\left\{\omega_{1}, \omega_{2}, \ldots\right\} \subseteq \Omega$ dense, so
$\Omega=\bigcup_{k=1}^{\infty} B_{1 / n}\left(\omega_{k}\right) . \mu$ is continuous from above \Rightarrow

$$
0=\mu\left(\Omega \backslash \bigcup_{k=1}^{\infty} B_{1 / n}\left(\omega_{k}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(\Omega \backslash \bigcup_{k=1}^{N} B_{1 / n}\left(\omega_{k}\right)\right)
$$

Take $N_{n} \in \mathbb{N}$ with $\mu\left(\Omega \backslash \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}^{n}\right)\right)<\varepsilon / 2^{n}$ and $A:=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}\right)$ totally bounded, hence relatively compact with

$$
\begin{aligned}
\mu(\Omega \backslash \bar{A}) & \leq \mu(\Omega \backslash A) \leq \mu\left(\bigcup_{n=1}^{\infty}\left(\Omega \backslash \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}\right)\right)\right) \\
& \leq \sum_{n=1}^{\infty} \mu\left(\Omega \backslash \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}\right)\right)<\varepsilon .
\end{aligned}
$$

Inner regularity and σ-additivity

- Theorem 2.10: \mathcal{H} semi-ring, $\mu: \mathcal{H} \rightarrow \mathbb{R}_{+}$finite, finitely additive and inner $\mathcal{K} \subseteq \mathcal{H}$-regular. Then μ is σ-additive.
- Proof:Wlog, \mathcal{H} is ring and $\mathcal{K}=\mathcal{K}_{\cup}$

To show: μ is continuous from above in \emptyset. Let $A_{1}, A_{2}, \cdots \in \mathcal{H}$ with $A_{1} \supseteq A_{2} \supseteq \cdots$ and $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$ and $\varepsilon>0$. Choose $K_{1}, K_{2}, \cdots \in \mathcal{K}$ with $K_{n} \subseteq A_{n}, n \in \mathbb{N}$ and

$$
\mu\left(A_{n}\right) \leq \mu\left(K_{n}\right)+\varepsilon 2^{-n}
$$

Then, $\bigcap_{n=1}^{\infty} K_{n} \subseteq \bigcap_{n=1}^{\infty} A_{n}=\emptyset$, so there is $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_{n}=\emptyset$. From this,

$$
A_{N}=A_{N} \cap\left(\bigcup_{n=1}^{N} K_{n}^{c}\right)=\bigcup_{n=1}^{N} A_{N} \backslash K_{n} \subseteq \bigcup_{n=1}^{N} A_{n} \backslash K_{n}
$$

By subadditivity and monotonicity of μ, for $m \geq N$,

$$
\mu\left(A_{m}\right) \leq \mu\left(A_{N}\right) \leq \sum_{n=1}^{N} \mu\left(A_{n} \backslash K_{n}\right) \leq \varepsilon \sum_{n=1}^{N} 2^{-n} \leq \varepsilon
$$

