Measure Theory for Probabilists 7. Uniqueness and extension of set functions

Peter Pfaffelhuber

January 8, 2024

┥□▶ ┥⁄// ↓ ↓ ミ▶ ┥ ミ▶

Question

- When does an additive set-function μ on H uniquely extend to a measure H̃ on σ(H)?
- ▶ Uniqueness: Proposition 2.11: Let $C \subseteq 2^{\Omega}$ be \cap -stable, and μ, ν be σ -finite measures on $\sigma(C)$. Then,

$$\mu = \nu \qquad \Longleftrightarrow \qquad \mu|_{\mathcal{C}} = \nu|_{\mathcal{C}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existence: See Carathéodory's Extension Theorem 2.13: Let μ* be an outer measure. Then, F* the set of μ*-measurable sets is a σ-algebra and μ := μ*|_{F*} is a measure.

	Lemma 2.5	Theorem 2.10	Theorem 2.16
μ additive	0	0	
μ finite		0	
$\mu~\sigma$ -finite			0
μ defined on semi-ring	0	0	0
hline $\mu~\sigma$ -additive	∘/∙	•	0
hline $\mu \sigma$ -subadditive	•/0		
μ inner $\mathcal K$ -regular		0	
μ extends uniquely to $\sigma(\mathcal{H})$			•

Proposition 2.11

Let C ⊆ 2^Ω be ∩-stable, and μ, ν be σ-finite measures on σ(C). Then,

$$\mu = \nu \qquad \Longleftrightarrow \qquad \mu|_{\mathcal{C}} = \nu|_{\mathcal{C}}.$$

$$\mathcal{D} := \{B \in \mathcal{F} : \mu(A) = \nu(A)\} \supseteq \mathcal{H}.$$

To show: \mathcal{D} is Dynkin. $\Rightarrow \sigma(\mathcal{H}) \subseteq \mathcal{D}$ by Theorem 1.13.

B, C ∈ D, B ⊆ C ⇒ µ(C \ B) = µ(C) − µ(B) = ν(C) − ν(B) = ν(C \ B), i.e. C \ B ∈ D.
B₁, B₂, ... ∈ D with B₁ ⊆ B₂ ⊆ B₃ ⊆ ... ∈ D and B = ⋃_{n=1}[∞] B_n ∈ F, then from continuity from below,

$$\mu(B) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \nu(B_n) = \nu(B) \quad \Rightarrow B \in \mathcal{D}.$$

- A σ-subadditive, monotone μ^{*} : 2^Ω → ℝ₊ with μ^{*}(Ø) = 0 is an *outer measure*.
- A set $A \subseteq \Omega$ is called μ^* -measurable if

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^c), \qquad E \subseteq \Omega.$$

Theorem 2.13: Let μ^{*} be an outer measure. Then, F^{*} the set of μ^{*}-measurable sets is a σ-algebra and μ := μ^{*}|_{F^{*}} is a measure. Furthermore, N := {N ⊆ Ω : μ^{*}(N) = 0} ⊆ F^{*}.

- Let μ^{*} be an outer measure. Then, F^{*} the set of μ^{*}-measurable sets is a σ-algebra and μ := μ^{*}|_{F^{*}} is a measure.
- ▶ Proof: Show:
 - $\emptyset \in \mathcal{F}^*$, since $\mu^*(E) = \mu^*(E \cap \emptyset) + \mu^*(E \cap \Omega)$.

$$\blacktriangleright A \in \mathcal{F}^* \Rightarrow A^c \in \mathcal{F}^*$$

► $A, B \in \mathcal{F}^* \Rightarrow A \cap B \in \mathcal{F}^*$, since

$$\mu^{*}(E) = \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c})$$

= $\mu^{*}((E \cap A) \cap B) + \mu^{*}((E \cap A) \cap B^{c}) + \mu^{*}(E \cap A^{c})$
 $\geq \mu^{*}(E \cap (A \cap B)) + \mu^{*}(E \cap (A \cap B)^{c}) \geq \mu^{*}(E),$

► $A_1, A_2, \dots \in \mathcal{F}^*$ disjoint, $B_n = \bigcup_{k=1}^n A_k \in \mathcal{F}^*$, $B_n \uparrow B$. Show $\mu^*(E \cap B_n) = \sum_{k=1}^n \mu^*(E \cap A_k)$ by induction on *n*:

$$\mu^*(E \cap B_{n+1}) = \mu^*(E \cap B_{n+1} \cap B_n) + \mu^*(E \cap B_{n+1} \cap B_n^c)$$
$$= \mu^*(E \cap B_n) + \mu^*(E \cap A_{n+1}) = \sum_{k=1}^{n+1} \mu^*(E \cap A_k).$$

universität freiburg

・ロト・(四ト・(日下・(日下))

- Let μ^{*} be an outer measure. Then, F^{*} the set of μ^{*}-measurable sets is a σ-algebra and μ := μ^{*}|_{F^{*}} is a measure.
- ▶ Then, $\mu^*(E \cap B) = \sum_{k=1}^{\infty} \mu^*(E \cap A_k) = \lim_{n \to \infty} \mu^*(E \cap B_n)$ since

$$\mu^*(E \cap B) \leq \sum_{k=1}^{\infty} \mu^*(E \cap A_k) = \lim_{n \to \infty} \sum_{k=1}^n \mu^*(E \cap A_k)$$
$$= \lim_{n \to \infty} \mu^*(E \cap B_n) \leq \mu^*(E \cap B),$$

▶ $B \in \mathcal{F}^*$, since $B_1, B_2, ... \in \mathcal{F}^*$, so

$$\mu^*(E) = \lim_{n \to \infty} \mu^*(E \cap B_n) + \mu^*(E \cap B_n^c)$$

$$\geq \mu^*(E \cap B) + \mu^*(E \cap B^c) \geq \mu^*(E).$$

So, \mathcal{F}^* is a σ -algebra and μ^* is σ -additive on \mathcal{F}^* , i.e. universität fikeitarg $\mu^*|_{\mathcal{F}^*}$ is a measure.

$$\blacktriangleright \mathcal{N} := \{ \mathcal{N} \subseteq \Omega : \mu^*(\mathcal{N}) = 0 \} \subseteq \mathcal{F}^*.$$

- N ∈ N are called (µ*-)null sets.
 If A^c ∈ N, we say that A holds (µ)-almost everywhere or almost surely.
- ▶ Proof: For $N \in \mathcal{N}$, by monotonicity $\mu^*(E \cap N) = 0$, so

$$\mu^*(E \cap N^c) + \mu^*(E \cap N) \ge \mu^*(E) \ge \mu^*(E \cap N^c)$$
$$= \mu^*(E \cap N^c) + \mu^*(E \cap N).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Zweite Folie

universität-freiburg

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Zweite Folie

universität-freiburg

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Proposition 2.8

 $\blacktriangleright \mu$ is σ -additive iff

$$\mu\Big(\underset{n=1}{\overset{\infty}{\vdash}} A_n\Big) = \sum_{n=1}^{\infty} \mu(A_n).$$

• μ is σ -sub-additive iff

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

• μ is continuous from below, if for A, A_1, A_2, \ldots and $A_1 \subseteq A_2 \subseteq \ldots$ with $A = \bigcup_{n=1}^{\infty} A_n$, $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

• μ is continuous from above (in the \emptyset), if for $A(=\emptyset), A_1, A_2, \dots, \mu(A_1) < \infty$ and $A_1 \supseteq A_2 \supseteq \dots$ with $A = \bigcap_{n=1}^{\infty} A_n$,

$$(0 =)\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Proposition 2.8

- ▶ Let \mathcal{R} be a ring and $\mu : \mathcal{R} \to \overline{\mathbb{R}}_+$ be additive and $\mu(A) < \infty$ for all $A \in \mathcal{R}$. Then, the following are equivalent:
 - 1. μ is σ -additive;
 - 2. μ is σ -subadditive;
 - 3. μ is continuous from below;
 - 4. μ is continuous from above in \emptyset ;
 - 5. μ is continuous from above.

▶ Proof: 1.⇔2., 5.⇒4.: clear.
1.⇒3.: With
$$A_0 = \emptyset$$
, $A = \biguplus_{n=1}^{\infty} A_n \setminus A_{n-1}$
3.⇒1.: Set $A_N = \biguplus_{n=1}^N B_n$,
4.⇒5.: With $B_n := A_n \setminus A \downarrow \emptyset$,
 $\mu(A_n) = \mu(B_n) + \mu(A) \xrightarrow{n \to \infty} \mu(A)$.
3.⇒4.: Set $B_n := A_1 \setminus A_n \uparrow A_1$. Then,
 $\mu(A_1) = \lim_{n\to\infty} \mu(B_n) = \mu(A_1) - \lim_{n\to\infty} \mu(A_n)$.
4.⇒3. Set $B_n := A \setminus A_n \downarrow \emptyset$. Then,
 $0 = \lim_{n\to\infty} \mu(B_n) = \mu(A) - \lim_{n\to\infty} \mu(A_n)$.

Inner regularity of measures on Polish spaces

Lemma 2.9: (Ω, O) Polish, μ finite, ε > 0. There exists K ⊆ Ω compact with μ(Ω \ K) < ε.</p>

• Proof: There is
$$\{\omega_1, \omega_2, \dots\} \subseteq \Omega$$
 dense, so
 $\Omega = \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k)$. μ is continuous from above \Rightarrow

$$0 = \mu \Big(\Omega \setminus \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k) \Big) = \lim_{N \to \infty} \mu \Big(\Omega \setminus \bigcup_{k=1}^{N} B_{1/n}(\omega_k) \Big).$$

Take $N_n \in \mathbb{N}$ with $\mu\left(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k^n)\right) < \varepsilon/2^n$ and $A := \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)$ totally bounded, hence relatively compact with

$$\mu(\Omega \setminus \overline{A}) \leq \mu(\Omega \setminus A) \leq \mu\Big(\bigcup_{n=1}^{\infty} \Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big)\Big)$$

 $\leq \sum_{n=1}^{\infty} \mu\Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big) < \varepsilon.$

Inner regularity and σ -additivity

- Theorem 2.10: *H* semi-ring, μ : *H* → ℝ₊ finite, finitely additive and inner *K* ⊆ *H*-regular. Then μ is σ-additive.
- Proof:Wlog, *H* is ring and *K* = *K*_∪
 To show: μ is continuous from above in Ø. Let *A*₁, *A*₂, ... ∈ *H* with *A*₁ ⊇ *A*₂ ⊇ ··· and ⋂_{n=1}[∞] *A*_n = Ø and ε > 0.
 Choose *K*₁, *K*₂, ... ∈ *K* with *K*_n ⊆ *A*_n, n ∈ ℕ and

$$\mu(A_n) \leq \mu(K_n) + \varepsilon 2^{-n}.$$

Then, $\bigcap_{n=1}^{\infty} K_n \subseteq \bigcap_{n=1}^{\infty} A_n = \emptyset$, so there is $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_n = \emptyset$. From this,

$$A_N = A_N \cap \left(\bigcup_{n=1}^N K_n^c\right) = \bigcup_{n=1}^N A_N \setminus K_n \subseteq \bigcup_{n=1}^N A_n \setminus K_n.$$

By subadditivity and monotonicity of μ , for $m \ge N$,

$$\mu(A_m) \leq \mu(A_N) \leq \sum_{n=1}^N \mu(A_n \setminus K_n) \leq \varepsilon \sum_{\substack{n=1 \\ \langle n \rangle \prec \langle n \rangle \land \langle n$$