Measure Theory for Probabilists 6. σ -additivity

Peter Pfaffelhuber

January 6, 2024

Proposition 2.8

 $\blacktriangleright \mu$ is σ -additive iff

$$\mu\Big(\underset{n=1}{\overset{\infty}{\vdash}} A_n\Big) = \sum_{n=1}^{\infty} \mu(A_n).$$

• μ is σ -sub-additive iff

$$\mu\Big(\bigcup_{n=1}^{\infty}A_n\Big)\leq\sum_{n=1}^{\infty}\mu(A_n).$$

• μ is continuous from below, if for A, A_1, A_2, \ldots and $A_1 \subseteq A_2 \subseteq \ldots$ with $A = \bigcup_{n=1}^{\infty} A_n$, $\mu(A) = \lim_{n \to \infty} \mu(A_n)$.

• μ is continuous from above (in the \emptyset), if for $A(=\emptyset), A_1, A_2, \dots, \mu(A_1) < \infty$ and $A_1 \supseteq A_2 \supseteq \dots$ with $A = \bigcap_{n=1}^{\infty} A_n$,

$$(0 =)\mu(A) = \lim_{n \to \infty} \mu(A_n).$$

Proposition 2.8

- ▶ Let \mathcal{R} be a ring and $\mu : \mathcal{R} \to \overline{\mathbb{R}}_+$ be additive and $\mu(A) < \infty$ for all $A \in \mathcal{R}$. Then, the following are equivalent:
 - 1. μ is σ -additive;
 - 2. μ is σ -subadditive;
 - 3. μ is continuous from below;
 - 4. μ is continuous from above in \emptyset ;
 - 5. μ is continuous from above.

▶ Proof: 1.⇔2., 5.⇒4.: clear.
1.⇒3.: With
$$A_0 = \emptyset$$
, $A = \biguplus_{n=1}^{\infty} A_n \setminus A_{n-1}$
3.⇒1.: Set $A_N = \biguplus_{n=1}^N B_n$,
4.⇒5.: With $B_n := A_n \setminus A \downarrow \emptyset$,
 $\mu(A_n) = \mu(B_n) + \mu(A) \xrightarrow{n \to \infty} \mu(A)$.
3.⇒4.: Set $B_n := A_1 \setminus A_n \uparrow A_1$. Then,
 $\mu(A_1) = \lim_{n\to\infty} \mu(B_n) = \mu(A_1) - \lim_{n\to\infty} \mu(A_n)$.
4.⇒3. Set $B_n := A \setminus A_n \downarrow \emptyset$. Then,
 $0 = \lim_{n\to\infty} \mu(B_n) = \mu(A) - \lim_{n\to\infty} \mu(A_n)$.

Inner regularity of measures on Polish spaces

Lemma 2.9: (Ω, O) Polish, μ finite, ε > 0. There exists K ⊆ Ω compact with μ(Ω \ K) < ε.</p>

• Proof: There is
$$\{\omega_1, \omega_2, \dots\} \subseteq \Omega$$
 dense, so
 $\Omega = \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k)$. μ is continuous from above \Rightarrow

$$0 = \mu \Big(\Omega \setminus \bigcup_{k=1}^{\infty} B_{1/n}(\omega_k) \Big) = \lim_{N \to \infty} \mu \Big(\Omega \setminus \bigcup_{k=1}^{N} B_{1/n}(\omega_k) \Big).$$

Take $N_n \in \mathbb{N}$ with $\mu\left(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k^n)\right) < \varepsilon/2^n$ and $A := \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)$ totally bounded, hence relatively compact with

$$\mu(\Omega \setminus \overline{A}) \leq \mu(\Omega \setminus A) \leq \mu\Big(\bigcup_{n=1}^{\infty} \Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big)\Big)$$

 $\leq \sum_{n=1}^{\infty} \mu\Big(\Omega \setminus \bigcup_{k=1}^{N_n} B_{1/n}(\omega_k)\Big) < \varepsilon.$

Inner regularity and σ -additivity

- Theorem 2.10: *H* semi-ring, μ : *H* → ℝ₊ finite, finitely additive and inner *K* ⊆ *H*-regular. Then μ is σ-additive.
- Proof:Wlog, *H* is ring and *K* = *K*_∪
 To show: μ is continuous from above in Ø. Let *A*₁, *A*₂, ··· ∈ *H* with *A*₁ ⊇ *A*₂ ⊇ ··· and ⋂_{n=1}[∞] *A*_n = Ø and ε > 0.
 Choose *K*₁, *K*₂, ··· ∈ *K* with *K*_n ⊆ *A*_n, n ∈ ℕ and

$$\mu(A_n) \leq \mu(K_n) + \varepsilon 2^{-n}.$$

Then, $\bigcap_{n=1}^{\infty} K_n \subseteq \bigcap_{n=1}^{\infty} A_n = \emptyset$, so there is $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_n = \emptyset$. From this,

$$A_N = A_N \cap \left(\bigcup_{n=1}^N K_n^c\right) = \bigcup_{n=1}^N A_N \setminus K_n \subseteq \bigcup_{n=1}^N A_n \setminus K_n.$$

By subadditivity and monotonicity of μ , for $m \ge N$,

$$\mu(A_m) \leq \mu(A_N) \leq \sum_{n=1}^N \mu(A_n \setminus K_n) \leq \varepsilon \sum_{\substack{n=1 \\ \langle n \rangle \prec \langle n \rangle \land \langle n$$