Measure Theory for Probabilists

6. σ-additivity

Peter Pfaffelhuber

January 6, 2024

Proposition 2.8

- μ is σ-additive iff

$$
\mu\left(\biguplus_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

- μ is σ-sub-additive iff

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

- μ is continuous from below, if for A, A_{1}, A_{2}, \ldots and $A_{1} \subseteq A_{2} \subseteq \ldots$ with $A=\bigcup_{n=1}^{\infty} A_{n}$,

$$
\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

- μ is continuous from above (in the \emptyset), if for $A(=\emptyset), A_{1}, A_{2}, \ldots, \mu\left(A_{1}\right)<\infty$ and $A_{1} \supseteq A_{2} \supseteq \ldots$ with $A=\bigcap_{n=1}^{\infty} A_{n}$,

$$
(0=) \mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proposition 2.8

- Let \mathcal{R} be a ring and $\mu: \mathcal{R} \rightarrow \overline{\mathbb{R}}_{+}$be additive and $\mu(A)<\infty$ for all $A \in \mathcal{R}$. Then, the following are equivalent:

1. μ is σ-additive;
2. μ is σ-subadditive;
3. μ is continuous from below;
4. μ is continuous from above in \emptyset;
5. μ is continuous from above.

- Proof: $1 . \Leftrightarrow 2$., $5 . \Rightarrow 4$.: clear.

1. \Rightarrow 3.: With $A_{0}=\emptyset, A=\biguplus_{n=1}^{\infty} A_{n} \backslash A_{n-1}$
2. $\Rightarrow 1$.: Set $A_{N}=\biguplus_{n=1}^{N} B_{n}$,
3. $\Rightarrow 5$.: With $B_{n}:=A_{n} \backslash A \downarrow \emptyset$,
$\mu\left(A_{n}\right)=\mu\left(B_{n}\right)+\mu(A) \xrightarrow{n \rightarrow \infty} \mu(A)$.
4. $\Rightarrow 4$.: Set $B_{n}:=A_{1} \backslash A_{n} \uparrow A_{1}$. Then,
$\mu\left(A_{1}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\mu\left(A_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
5. $\Rightarrow 3$. Set $B_{n}:=A \backslash A_{n} \downarrow \emptyset$. Then,
$0=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\mu(A)-\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Inner regularity of measures on Polish spaces

- Lemma 2.9: (Ω, \mathcal{O}) Polish, μ finite, $\varepsilon>0$.

There exists $K \subseteq \Omega$ compact with $\mu(\Omega \backslash K)<\varepsilon$.

- Proof: There is $\left\{\omega_{1}, \omega_{2}, \ldots\right\} \subseteq \Omega$ dense, so
$\Omega=\bigcup_{k=1}^{\infty} B_{1 / n}\left(\omega_{k}\right) . \mu$ is continuous from above \Rightarrow

$$
0=\mu\left(\Omega \backslash \bigcup_{k=1}^{\infty} B_{1 / n}\left(\omega_{k}\right)\right)=\lim _{N \rightarrow \infty} \mu\left(\Omega \backslash \bigcup_{k=1}^{N} B_{1 / n}\left(\omega_{k}\right)\right)
$$

Take $N_{n} \in \mathbb{N}$ with $\mu\left(\Omega \backslash \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}^{n}\right)\right)<\varepsilon / 2^{n}$ and $A:=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}\right)$ totally bounded, hence relatively compact with

$$
\begin{aligned}
\mu(\Omega \backslash \bar{A}) & \leq \mu(\Omega \backslash A) \leq \mu\left(\bigcup_{n=1}^{\infty}\left(\Omega \backslash \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}\right)\right)\right) \\
& \leq \sum_{n=1}^{\infty} \mu\left(\Omega \backslash \bigcup_{k=1}^{N_{n}} B_{1 / n}\left(\omega_{k}\right)\right)<\varepsilon .
\end{aligned}
$$

Inner regularity and σ-additivity

- Theorem 2.10: \mathcal{H} semi-ring, $\mu: \mathcal{H} \rightarrow \mathbb{R}_{+}$finite, finitely additive and inner $\mathcal{K} \subseteq \mathcal{H}$-regular. Then μ is σ-additive.
- Proof:Wlog, \mathcal{H} is ring and $\mathcal{K}=\mathcal{K}_{\cup}$

To show: μ is continuous from above in \emptyset. Let $A_{1}, A_{2}, \cdots \in \mathcal{H}$ with $A_{1} \supseteq A_{2} \supseteq \cdots$ and $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$ and $\varepsilon>0$. Choose $K_{1}, K_{2}, \cdots \in \mathcal{K}$ with $K_{n} \subseteq A_{n}, n \in \mathbb{N}$ and

$$
\mu\left(A_{n}\right) \leq \mu\left(K_{n}\right)+\varepsilon 2^{-n}
$$

Then, $\bigcap_{n=1}^{\infty} K_{n} \subseteq \bigcap_{n=1}^{\infty} A_{n}=\emptyset$, so there is $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_{n}=\emptyset$. From this,

$$
A_{N}=A_{N} \cap\left(\bigcup_{n=1}^{N} K_{n}^{c}\right)=\bigcup_{n=1}^{N} A_{N} \backslash K_{n} \subseteq \bigcup_{n=1}^{N} A_{n} \backslash K_{n}
$$

By subadditivity and monotonicity of μ, for $m \geq N$,

$$
\mu\left(A_{m}\right) \leq \mu\left(A_{N}\right) \leq \sum_{n=1}^{N} \mu\left(A_{n} \backslash K_{n}\right) \leq \varepsilon \sum_{n=1}^{N} 2^{-n} \leq \varepsilon
$$

