

Definition 2.1

- For $\mathcal{F} \subseteq 2^{\Omega}$, we call $\mu: \mathcal{F} \rightarrow \overline{\mathbb{R}}_{+}$a set function.
- μ is finitely additive if

$$
\mu\left(\biguplus_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} \mu\left(A_{k}\right)
$$

for disjoint $A_{1}, \ldots, A_{n} \in \mathcal{F}$.

- $\mu: \mathcal{F} \rightarrow \mathbb{R}_{+}$is σ-additive if the same holds for $n=\infty$.
- If \mathcal{F} is a σ-algebra, and μ is σ-additive, μ is a measure and $(\Omega, \mathcal{F}, \mu)$ is a measure space.
- If $\mu(\Omega)<\infty$, then μ is a finite measure; if $\mu(\Omega)=1, \mu$ is a probability measure. Then, $(\Omega, \mathcal{F}, \mu)$ is a probability space.

Definition 2.1

- μ is called sub-additive if

$$
\mu\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mu\left(A_{k}\right)
$$

for any $A_{1}, \ldots, A_{n} \in \mathcal{F}$.

- $\mu: \mathcal{F} \rightarrow \mathbb{R}_{+}$is σ-sub-additive if the same holds for $n=\infty$.
- μ is monotone if $(A \subseteq B \Rightarrow \mu(A) \leq \mu(B))$
- A σ-subadditive, monotone $\mu^{*}: 2^{\Omega} \rightarrow \mathbb{R}_{+}$with $\mu^{*}(\emptyset)=0$ is an outer measure.
- A set $A \subseteq \Omega$ is called μ^{*}-measurable if

$$
\mu(E)=\mu(E \cap A)+\mu\left(E \cap A^{c}\right), \quad E \subseteq \Omega
$$

Definition 2.1

- If there is $\Omega_{1}, \Omega_{2}, \ldots \in \mathcal{F}$ with $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega$ and $\mu\left(\Omega_{n}\right)<\infty$ for all $n=1,2, \ldots$, then μ is σ-finite.
- $\mathcal{F} \cap$-stable. μ is inner \mathcal{K}-regular if for all $A \in \mathcal{F}$

$$
\mu(A)=\sup _{\mathcal{K} \ni K \subseteq A} \mu(K) .
$$

- (Ω, \mathcal{O}) topological space, μ measure on $\mathcal{B}(\mathcal{O})$. The smallest closed set F with $\mu\left(F^{c}\right)=0$ is called the support of μ.

Examples

- Let $\mathcal{H}=\{(a, b]: a, b \in \mathbb{Q}, a \leq b\}$. Then, $\mu((a, b]):=b-a$ defines an additive, σ-finite set function.
- Let $\omega^{\prime} \in \Omega$. Then, $\delta_{\omega^{\prime}}(A):=1_{\left\{\omega^{\prime} \in A\right\}}$ is a probability measure.
- $\mu:=\sum_{i \in l} \delta_{\omega_{i}}$ is a counting measure.
- $\mu_{i}, i \in I$ measures and $a_{i} \in \mathbb{R}_{+}, i \in I$. Then, $\sum_{i \in I} a_{i} \mu_{i}$ is also a measure, e.g. the Poisson distribution on $2^{\mathbb{N}_{0}}$,

$$
\mu_{\operatorname{Poi}(\gamma)}:=\sum_{k=0}^{\infty} e^{-\gamma} \frac{\gamma^{k}}{k!} \cdot \delta_{k}
$$

the geometric distribution

$$
\mu_{\operatorname{geo}(p)}:=\sum_{k=1}^{\infty}(1-p)^{k-1} p \cdot \delta_{k}
$$

the binomial distribution

$$
\mu_{B(n, p)}:=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \cdot \delta_{k} .
$$

Unions and disjoint unions

- Lemma 2.4: \mathcal{H} semi-ring, $A, A_{1}, \ldots, A_{n} \in \mathcal{H}$. Then, there are $B_{1}, \ldots, B_{m} \in \mathcal{H}$ pairwise disjoint and $A \backslash \bigcup_{i=1}^{n} A_{i}=\biguplus_{j=1}^{m} B_{j}$.
- Proof: Induction on n. If $n=1$, clear. Assume the assertion holds for some n, i.e. there is B_{1}, \ldots, B_{m} with $A \backslash \bigcup_{i=1}^{n} A_{i}=\biguplus_{j=1}^{m} B_{j}$. Then, write $B_{j} \backslash A_{n+1}=\biguplus_{k=1}^{k_{j}} C_{k}^{j}$ for $C_{1}^{j}, \ldots, C_{k_{j}}^{j} \in \mathcal{H}$. Then,

$$
A \backslash \bigcup_{i=1}^{n+1} A_{i}=\left(A \backslash \bigcup_{i=1}^{n} A_{i}\right) \backslash A_{n+1}=\biguplus_{j=1}^{m} B_{j} \backslash A_{n+1}=\biguplus_{j=1}^{m} \biguplus_{k=1}^{k_{j}} C_{k}^{j}
$$

Set-functions on semi-rings

- Lemma 2.5: \mathcal{H} semi-ring, $\mu: \mathcal{H} \rightarrow[0, \infty]$ additive. Then, m is monotone and sub-additive.
- Proof: Monotonicity for $A, B \in \mathcal{H}$ with $A \subseteq B$ and $C_{1}, \ldots, C_{k} \in \mathcal{H}$ with $B \backslash A=\biguplus_{i=1}^{k} C_{i}$. Write $\mu(A) \leq \mu(A)+\sum_{i=1}^{k} \mu\left(C_{i}\right)=\mu(B)$.
Claim: $\biguplus_{l \in \mathcal{I}} A_{i} \subseteq A \Rightarrow \sum_{i=1}^{n} \mu\left(A_{i}\right) \leq m(A)$. Write $A \backslash \biguplus_{i=1}^{n} A_{i}=\biguplus_{j=1}^{m} B_{j}$. Then,

$$
\mu(A)=\mu\left(\biguplus_{i=1}^{n} A_{i} \uplus \biguplus_{j=1}^{m} B_{j}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)+\sum_{j=1}^{m} \mu\left(B_{j}\right) \geq \sum_{i=1}^{n} \mu\left(A_{i}\right) .
$$

Sub-additivity: To show $\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mu\left(A_{i}\right)$. Write

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\mu\left(\biguplus_{i=1}^{n}\left(A_{i} \backslash \bigcup_{j=1}^{i-1} A_{j}\right)\right)=\sum_{k=1}^{n} \sum_{k=1}^{k_{i}} \mu\left(C_{k}^{i}\right) \leq \sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

Set-functions on semi-rings

- Lemma 2.5: μ is σ-additive iff μ is σ-sub-additive.
- Proof: ' \Rightarrow ': Copy the proof of sub-additivity using $n=\infty$.
' \Leftarrow ': Let $A=\biguplus_{i=1}^{\infty} A_{i} \in \mathcal{H}$.
Then, $\sum_{i=1}^{n} \mu\left(A_{i}\right) \leq \mu(A)$ by monotonicity and

$$
\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\sup _{n \in \mathbb{N}} \sum_{i=1}^{n} \mu\left(A_{i}\right) \leq \mu(A) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

by σ-sub-additivity.

Extension of set-functions on semi-rings

- Lemma 2.6: \mathcal{H} semi-ring, \mathcal{R} ring generated by \mathcal{H}, μ additive on \mathcal{H}. Then,

$$
\widetilde{\mu}\left(\biguplus_{i=1}^{n} A_{i}\right):=\sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

$\widetilde{\mu}$ is the only additive extension of μ on \mathcal{R} that coincides with μ on \mathcal{H}.

- Proof: Suffices to show that $\widetilde{\mu}$ is well-defined. Let $\biguplus_{i=1}^{m} A_{i}=\biguplus_{j=1}^{n} B_{j}$. Since

$$
\begin{gathered}
A_{i}=\biguplus_{j=1}^{n} A_{i} \cap B_{j}, \quad B_{j}=\biguplus_{i=1}^{m} A_{i} \cap B_{j}, \\
\sum_{i=1}^{m} \mu\left(A_{i}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{n} \sum_{i=1}^{m} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{n} \mu\left(B_{j}\right) .
\end{gathered}
$$

Inclusion exclusion principle

- Proposition 2.7: μ be additive set function on ring \mathcal{R} and I finite. Then for $A_{i} \in \mathcal{R}, i \in I$, it holds that

$$
\mu\left(\bigcup_{i \in I} A_{i}\right)=\sum_{J \subseteq I}(-1)^{|J|+1} \mu\left(\bigcap_{j \in J} A_{j}\right)
$$

In particular, if $I=\{1,2\}$,

$$
\mu\left(A_{1} \cup A_{2}\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)-\mu\left(A_{1} \cap A_{2}\right)
$$

- Proof for $|I|=2: A_{1} \cup A_{2}=A_{1} \uplus\left(A_{2} \backslash A_{1}\right)$ and $\left(A_{2} \backslash A_{1}\right) \uplus\left(A_{1} \cap A_{2}\right)=A_{2}$.

