Measure Theory for Probabilists 5. Set functions and outer measures

Peter Pfaffelhuber

January 6, 2024

Definition 2.1

► For $\mathcal{F} \subseteq 2^{\Omega}$, we call $\mu : \mathcal{F} \to \overline{\mathbb{R}}_+$ a set function.

μ is finitely additive if

$$\mu\Big(\biguplus_{k=1}^n A_k\Big) = \sum_{k=1}^n \mu(A_k).$$

for disjoint $A_1, \ldots, A_n \in \mathcal{F}$.

• $\mu : \mathcal{F} \to \mathbb{R}_+$ is σ -additive if the same holds for $n = \infty$.

- If *F* is a σ-algebra, and µ is σ-additive, µ is a measure and (Ω, *F*, µ) is a measure space.
- If µ(Ω) < ∞, then µ is a finite measure; if µ(Ω) = 1, µ is a probability measure. Then, (Ω, F, µ) is a probability space.</p>

Definition 2.1

• μ is called *sub-additive* if

$$\mu\Big(\bigcup_{k=1}^n A_k\Big) \leq \sum_{k=1}^n \mu(A_k).$$

for any $A_1, \ldots, A_n \in \mathcal{F}$.

- $\mu : \mathcal{F} \to \mathbb{R}_+$ is σ -sub-additive if the same holds for $n = \infty$.
- μ is monotone if $(A \subseteq B \Rightarrow \mu(A) \le \mu(B))$
- A σ-subadditive, monotone μ^{*} : 2^Ω → ℝ₊ with μ^{*}(Ø) = 0 is an *outer measure*.
- A set $A \subseteq \Omega$ is called μ^* -measurable if

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^c), \qquad E \subseteq \Omega.$$

Definition 2.1

- If there is Ω₁, Ω₂, ... ∈ F with U[∞]_{n=1} Ω_n = Ω and μ(Ω_n) < ∞ for all n = 1, 2, ..., then μ is σ-finite.</p>
- ▶ $\mathcal{F} \cap$ -stable. μ is inner \mathcal{K} -regular if for all $A \in \mathcal{F}$

$$\mu(A) = \sup_{\mathcal{K} \ni \mathcal{K} \subseteq A} \mu(\mathcal{K}).$$

(Ω, O) topological space, μ measure on B(O). The smallest closed set F with μ(F^c) = 0 is called the support of μ.

Examples

Let H = {(a, b] : a, b ∈ Q, a ≤ b}. Then, μ((a, b]) := b − a defines an additive, σ-finite set function.

▶ Let
$$\omega' \in \Omega$$
. Then, $\delta_{\omega'}(A) := 1_{\{\omega' \in A\}}$ is a probability measure.

•
$$\mu := \sum_{i \in I} \delta_{\omega_i}$$
 is a counting measure.

▶ $\mu_i, i \in I$ measures and $a_i \in \mathbb{R}_+, i \in I$. Then, $\sum_{i \in I} a_i \mu_i$ is also a measure, e.g. the Poisson distribution on $2^{\mathbb{N}_0}$,

$$\mu_{\mathsf{Poi}(\gamma)} := \sum_{k=0}^{\infty} e^{-\gamma} \frac{\gamma^k}{k!} \cdot \delta_k,$$

the geometric distribution

$$\mu_{\text{geo}(p)} := \sum_{k=1}^{\infty} (1-p)^{k-1} p \cdot \delta_k,$$

the binomial distribution

$$\mu_{B(n,p)} := \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} \cdot \delta_{k}.$$

Unions and disjoint unions

- ▶ Lemma 2.4: \mathcal{H} semi-ring, $A, A_1, ..., A_n \in \mathcal{H}$. Then, there are $B_1, ..., B_m \in \mathcal{H}$ pairwise disjoint and $A \setminus \bigcup_{i=1}^n A_i = \bigoplus_{i=1}^m B_j$.
- ▶ Proof: Induction on *n*. If n = 1, clear. Assume the assertion holds for some *n*, i.e. there is $B_1, ..., B_m$ with
 - $A \setminus \bigcup_{i=1}^{n} A_i = \biguplus_{j=1}^{m} B_j$. Then, write $B_j \setminus A_{n+1} = \biguplus_{k=1}^{k_j} C_k^j$ for $C_1^j, ..., C_{k_j}^j \in \mathcal{H}$. Then,

$$A \setminus \bigcup_{i=1}^{n+1} A_i = \left(A \setminus \bigcup_{i=1}^n A_i\right) \setminus A_{n+1} = \bigoplus_{j=1}^m B_j \setminus A_{n+1} = \bigoplus_{j=1}^m \bigoplus_{k=1}^{k_j} C_k^j.$$

Set-functions on semi-rings

▶ Lemma 2.5: \mathcal{H} semi-ring, $\mu : \mathcal{H} \to [0, \infty]$ additive. Then, *m* is monotone and sub-additive.

▶ Proof: Monotonicity for
$$A, B \in \mathcal{H}$$
 with $A \subseteq B$ and $C_1, ..., C_k \in \mathcal{H}$ with $B \setminus A = \biguplus_{i=1}^k C_i$. Write $\mu(A) \leq \mu(A) + \sum_{i=1}^k \mu(C_i) = \mu(B)$.
Claim: $\biguplus_{I \in \mathcal{I}} A_I \subseteq A \Rightarrow \sum_{i=1}^n \mu(A_i) \leq m(A)$.
Write $A \setminus \biguplus_{i=1}^n A_i = \biguplus_{j=1}^m B_j$. Then,

$$\mu(A) = \mu\left(\bigcup_{i=1}^{n} A_i \uplus \bigcup_{j=1}^{m} B_j\right) = \sum_{i=1}^{n} \mu(A_i) + \sum_{j=1}^{m} \mu(B_j) \ge \sum_{i=1}^{n} \mu(A_i).$$

Sub-additivity: To show $\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mu(A_{i})$. Write

$$\mu\Big(\bigcup_{i=1}^{n}A_i\Big)=\mu\Big(\underset{i=1}{\overset{n}{\biguplus}}\Big(A_i\setminus\underset{j=1}{\overset{i-1}{\bigcup}}A_j\Big)\Big)=\sum_{k=1}^{n}\sum_{k=1}^{k_i}\mu(C_k^i)\leq \sum_{i=1}^{n}\mu(A_i).$$

universität freiburg

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

Set-functions on semi-rings

Lemma 2.5: μ is σ-additive iff μ is σ-sub-additive.

Proof: '⇒': Copy the proof of sub-additivity using n = ∞.
'⇐': Let A = ⋃_{i=1}[∞] A_i ∈ H.
Then, ∑_{i=1}ⁿ μ(A_i) ≤ μ(A) by monotonicity and

$$\sum_{i=1}^{\infty} \mu(A_i) = \sup_{n \in \mathbb{N}} \sum_{i=1}^{n} \mu(A_i) \le \mu(A) \le \sum_{i=1}^{\infty} \mu(A_i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

by σ -sub-additivity.

Extension of set-functions on semi-rings

 Lemma 2.6: *H* semi-ring, *R* ring generated by *H*, μ additive on *H*. Then,

$$\widetilde{\mu}\Big(\biguplus_{i=1}^{n}A_{i}\Big):=\sum_{i=1}^{n}\mu(A_{i})$$

 $\widetilde{\mu}$ is the only additive extension of μ on \mathcal{R} that coincides with μ on \mathcal{H} .

▶ Proof: Suffices to show that $\tilde{\mu}$ is well-defined. Let $\biguplus_{i=1}^{m} A_i = \biguplus_{j=1}^{n} B_j$. Since

$$A_i = \biguplus_{j=1}^n A_i \cap B_j, \qquad B_j = \biguplus_{i=1}^m A_i \cap B_j,$$

$$\sum_{i=1}^{m} \mu(A_i) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mu(A_i \cap B_j) = \sum_{j=1}^{n} \sum_{i=1}^{m} \mu(A_i \cap B_j) = \sum_{j=1}^{n} \mu(B_j).$$

Inclusion exclusion principle

Proposition 2.7: µ be additive set function on ring R and I finite. Then for A_i ∈ R, i ∈ I, it holds that

$$\mu\Big(\bigcup_{i\in I}A_i\Big)=\sum_{J\subseteq I}(-1)^{|J|+1}\mu\Big(\bigcap_{j\in J}A_j\Big)$$

In particular, if $I = \{1, 2\}$,

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof for
$$|I| = 2$$
: $A_1 \cup A_2 = A_1 \uplus (A_2 \setminus A_1)$ and $(A_2 \setminus A_1) \uplus (A_1 \cap A_2) = A_2$.