Measure Theory for Probabilists 4. Dynkin systems and compact systems

Peter Pfaffelhuber

January 2, 2024

< □ > < @ > < ≧ > < ≧ >

Connections between set-systems

	${\mathcal C}$ semi-ring	${\mathcal C}$ ring	$\mathcal{C} \sigma$ -field
${\mathcal C}$ is \cap -stable	•	0	0
\mathcal{C} is σ - \cap -stable			0
${\mathcal C}$ is \cup -stable		•	0
${\mathcal C}$ is $\sigma ext{-}\cup ext{-stable}$			•
\mathcal{C} is set-difference-stable		•	0
${\mathcal C}$ is complement-stable			•
$B \setminus A = \biguplus_{i=1}^n C_i$	•	0	0
$\Omega\in\mathcal{C}$			•

Dynkin systems

- Let C ⊆ 2^Ω. It is often easy to show that C is a (semi-)ring. However, it is hard to show that C is a σ-algebra. It is often easier to show that C is a Dynkin system:
- Definition 1.11: A set system D is called Dynkin system (on Ω) if (i) Ω ∈ D, (ii) it is set-difference-stable for subsets (i.e. A, B ∈ D and A ⊆ B imply B \ A ∈ D and (iii) A₁, A₂,... ∈ D and A₁ ⊆ A₂ ⊆ A₃ ⊆ ... imply ⋃_{n=1}[∞] A_n ∈ D.
- Goal is Theorem 1.13:

A \cap -stable Dynkin system is a σ -algebra.

Example 1.12:

 $\mathcal{F} \sigma$ -algebra $\Rightarrow \mathcal{F}$ Dynkin-system

 \mathcal{F} Dynkin system $\Rightarrow \mathcal{F}$ complement-stable

Theorem 1.13:

▶ \mathcal{D} Dynkin system, $\mathcal{C} \subseteq \mathcal{D}$ is \cap -stable $\Rightarrow \sigma(\mathcal{C}) \subseteq \mathcal{D}$.

Proof: Set

$$\lambda(\mathcal{C}) := \bigcap \{ \mathcal{D}' \supseteq \mathcal{C}, \mathcal{D}' \text{ Dynkin-system} \} \supseteq \lambda(\mathcal{C}).$$

Claim: $\lambda(\mathcal{C})$ is a σ -algebra ($\Rightarrow \sigma(\mathcal{C}) \subseteq \sigma(\lambda(\mathcal{C})) = \lambda(\mathcal{C}) \subseteq \mathcal{D}$) Suffices: $\lambda(\mathcal{C})$ is \cap -stable. Then, $A \cup B = (A^c \cap B^c)^c$, so $\lambda(\mathcal{C})$ is \cup -stable and for $A_1, A_2, \ldots \in \lambda(\mathcal{C})$, we find $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} \bigcup_{n=1}^{n} \bigcup_{i=1}^{n} A_i \in \lambda(\mathcal{C})$.

 $A_1, A_2, \dots \in \lambda(C)$, we find $\bigcup_{n=1} A_n = \bigcup_{n=1} \bigcup_{i=1} A_i \in \lambda(C)$. For $B \in C$, set

$$\mathcal{D}_B := \{A \subseteq \Omega : A \cap B \in \lambda(\mathcal{C})\} \supseteq \mathcal{C}.$$

Then \mathcal{D}_B is a Dynkin system... So, $\lambda(\mathcal{C}) \subseteq \mathcal{D}_B$. So, for an $A \in \lambda(\mathcal{C})$,

 $\mathcal{B}_{\mathcal{A}} := \{B \subseteq \Omega : \mathcal{A} \cap B \in \lambda(\mathcal{C})\} \supseteq \lambda(\mathcal{C}) \text{ is Dynkin system.}$

Compact sets

• $J \subseteq_f I$ if $J \subseteq I$ and J is finite

• Definition A.7: (Ω, r) metric space, $K \subseteq \Omega$.

- 1. *K* is *compact* if every open cover has a finite partial cover: If $O_i \in O$, $i \in I$ and $K \subseteq \bigcup_{i \in I} O_i$, then there is $J \subset_f I$ with $K \subseteq \bigcup_{i \in J} O_i$.
- 2. K is relatively compact if \overline{K} is compact.
- 3. *K* is *relatively sequentially compact* if for every sequence in *K* there is a convergent subsequence.
- 4. $K \subseteq \Omega$ is totally bounded if for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ and $\omega_1, \ldots, \omega_N \in K$ such that $K \subseteq \bigcup_{n=1}^N B_{\varepsilon}(\omega_n)$.

• Lemma A.8:: $K \subseteq \Omega$ compact $\Rightarrow K$ is closed.

Compact sets

• Proposition A.9: $K \subseteq \Omega$.

- 1. K is relatively compact.
- 2. If $F_i \subseteq \overline{K}$ is closed, $i \in I$, and $\bigcap_{i \in I} F_i = \emptyset$, then there is $J \subseteq_f I$ with $\bigcap_{i \in J} F_i = \emptyset$.
- 3. K is relatively sequentially compact.
- 4. *K* is totally bounded.

Then

$$4. \Longleftrightarrow 1. \iff 2. \Longrightarrow 3.$$

Furthermore, 3. \Longrightarrow 2. also holds if (Ω, \mathcal{O}) is separable and 4. \Longrightarrow 3. if (Ω, r) is complete.

Compact systems

- ▶ Definition 1.14: $\mathcal{K} \cap$ -stable is *compact system* if $\bigcap_{n=1}^{\infty} K_n = \emptyset$ with $K_1, K_2, \ldots \in \mathcal{K}$ implies that there is a $N \in \mathbb{N}$ with $\bigcap_{n=1}^{N} K_n = \emptyset$.
- Example 1.15: K ⊆ {K ⊆ Ω : K compact} ∩-stable is compact system.

Indeed: Let $\bigcap_{n=1}^{\infty} K_n = \emptyset$. Then, K_1 and $L_n := K_1 \cap K_n \subseteq K_1$ are compact and (because of the compactness of K_1) there is an N with $\bigcap_{n=1}^{N} K_n = \emptyset$ due to Proposition A.9.

Compact systems

▶ Lemma 1.16: *K* compact system. Then,

$$\mathcal{K}_{\cup} := \left\{ \bigcup_{i=1}^{n} K_{i} : K_{1}, \dots, K_{n} \in \mathcal{K}, n \in \mathbb{N} \right\}$$

is also a compact system.

▶ Proof:
$$\mathcal{K}_{\cup}$$
 is ∩-stable. Let
 $L_1 = \bigcup_{j=1}^{m_1} K_j^1, L_2 = \bigcup_{j=1}^{m_2} K_j^2, \ldots \in \mathcal{K}_{\cup}$ with $\bigcap_{n=1}^N L_n \neq \emptyset$ for
all $N \in \mathbb{N}$. To show: $\bigcap_{n=1}^{\infty} L_n \neq \emptyset$. Use induction over N for:
For every $N \in \mathbb{N}$ there are sets $K_1, \ldots, K_N \in \mathcal{K}$ with
 $K_n \subseteq L_n, n = 1, \ldots, N$, such that for all $k \in \mathbb{N}_0$ we have
 $K_1 \cap \cdots \cap K_N \cap L_{N+1} \cap \cdots \cap L_{N+k} \neq \emptyset$.

Then, use k = 0. So we see that there are $K_1, K_2, \ldots \in \mathcal{K}$ and $K_n \subseteq L_n, n \in \mathbb{N}$ with $\bigcap_{n=1}^N K_n \neq \emptyset$ for all $N \in \mathbb{N}$. Hence, $\emptyset \neq \bigcap_{n=1}^\infty K_n \subseteq \bigcap_{n=1}^\infty L_n$.