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Connections between set-systems

C semi-ring C ring C σ-field

C is ∩-stable • ◦ ◦

C is σ-∩-stable ◦

C is ∪-stable • ◦

C is σ-∪-stable •

C is set-difference-stable • ◦

C is complement-stable •

B \ A =
⊎n

i=1 Ci • ◦ ◦

Ω ∈ C •



Dynkin systems

I Let C ⊆ 2Ω. It is often easy to show that C is a (semi-)ring.
However, it is hard to show that C is a σ-algebra.
It is often easier to show that C is a Dynkin system:

I Definition 1.11: A set system D is called Dynkin system (on
Ω) if (i) Ω ∈ D, (ii) it is set-difference-stable for subsets (i.e.
A,B ∈ D and A ⊆ B imply B \ A ∈ D and (iii)
A1,A2, . . . ∈ D and A1 ⊆ A2 ⊆ A3 ⊆ . . . imply

⋃∞
n=1 An ∈ D.

I Goal is Theorem 1.13:
A ∩-stable Dynkin system is a σ-algebra.

I Example 1.12:
F σ-algebra ⇒ F Dynkin-system
F Dynkin system ⇒ F complement-stable



Theorem 1.13:

I D Dynkin system, C ⊆ D is ∩-stable ⇒ σ(C) ⊆ D.

I Proof: Set

λ(C) :=
⋂
{D′ ⊇ C,D′ Dynkin-system} ⊇ λ(C).

Claim: λ(C) is a σ-algebra (⇒ σ(C) ⊆ σ(λ(C)) = λ(C) ⊆ D)
Suffices: λ(C) is ∩-stable.
Then, A ∪ B = (Ac ∩ Bc)c , so λ(C) is ∪-stable and for
A1,A2, ... ∈ λ(C), we find

⋃∞
n=1 An =

⋃∞
n=1

⋃n
i=1 Ai ∈ λ(C).

For B ∈ C, set

DB := {A ⊆ Ω : A ∩ B ∈ λ(C)} ⊇ C.

Then DB is a Dynkin system...
So, λ(C) ⊆ DB . So, for an A ∈ λ(C),

BA := {B ⊆ Ω : A ∩ B ∈ λ(C)} ⊇ λ(C) is Dynkin system.



Compact sets

I J ⊆f I if J ⊆ I and J is finite
I Definition A.7: (Ω, r) metric space, K ⊆ Ω.

1. K is compact if every open cover has a finite partial cover:
If Oi ∈ O, i ∈ I and K ⊆

⋃
i∈I Oi , then there is J ⊂f I with

K ⊆
⋃

i∈J Oi .

2. K is relatively compact if K is compact.
3. K is relatively sequentially compact if for every sequence in K

there is a convergent subsequence.
4. K ⊆ Ω is totally bounded if for every ε > 0 there is an N ∈ N

and ω1, . . . , ωN ∈ K such that K ⊆
⋃N

n=1 Bε(ωn).

I Lemma A.8:: K ⊆ Ω compact ⇒ K is closed.



Compact sets

I Proposition A.9: K ⊆ Ω.

1. K is relatively compact.
2. If Fi ⊆ K is closed, i ∈ I , and

⋂
i∈I Fi = ∅, then there is

J ⊆f I with
⋂

i∈J Fi = ∅.
3. K is relatively sequentially compact.
4. K is totally bounded.

Then
4.⇐= 1. ⇐⇒ 2. =⇒ 3.

Furthermore, 3. =⇒ 2. also holds if (Ω,O) is separable and
4. =⇒ 3. if (Ω, r) is complete.



Compact systems

I Definition 1.14: K ∩-stable is compact system if
⋂∞

n=1 Kn = ∅
with K1,K2, . . . ∈ K implies that there is a N ∈ N with⋂N

n=1 Kn = ∅.
I Example 1.15: K ⊆ {K ⊆ Ω : K compact} ∩-stable is

compact system.
Indeed: Let

⋂∞
n=1 Kn = ∅. Then, K1 and Ln := K1 ∩ Kn ⊆ K1

are compact and (because of the compactness of K1) there is
an N with

⋂N
n=1 Kn = ∅ due to Proposition A.9.



Compact systems

I Lemma 1.16: K compact system. Then,

K∪ :=
{ n⋃

i=1

Ki : K1, . . . ,Kn ∈ K, n ∈ N
}

is also a compact system.

I Proof: K∪ is ∩-stable. Let
L1 =

⋃m1
j=1 K

1
j , L2 =

⋃m2
j=1 K

2
j , . . . ∈ K∪ with

⋂N
n=1 Ln 6= ∅ for

all N ∈ N. To show:
⋂∞

n=1 Ln 6= ∅. Use induction over N for:

For every N ∈ N there are sets K1, . . . ,KN ∈ K with
Kn ⊆ Ln, n = 1, . . . ,N, such that for all k ∈ N0 we have
K1 ∩ · · · ∩ KN ∩ LN+1 ∩ · · · ∩ LN+k 6= ∅.

Then, use k = 0. So we see that there are K1,K2, . . . ∈ K and
Kn ⊆ Ln, n ∈ N with

⋂N
n=1 Kn 6= ∅ for all N ∈ N. Hence,

∅ 6=
⋂∞

n=1 Kn ⊆
⋂∞

n=1 Ln.


