Measure Theory for Probabilists 3. Generators and extensions

Peter Pfaffelhuber

Generated ring/ σ-algebra

- Let $\mathcal{C} \subseteq 2^{\Omega}$. Then,

$$
\begin{aligned}
& \mathcal{R}(\mathcal{C}):=\bigcap\{\mathcal{R} \supseteq \mathcal{C}: \mathcal{R} \text { ring }\}, \\
& \sigma(\mathcal{C}):=\bigcap\{F \supseteq \mathcal{C}: \mathcal{F} \sigma \text {-field }\}
\end{aligned}
$$

are the ring and σ-algebra generated from \mathcal{C},

- Example 1.6: Let $\mathcal{H}:=\{[a, b), a \leq b, a, b \in \mathbb{Q}\}$. Then,

$$
\begin{aligned}
\mathcal{R}(\mathcal{H})=\{ & \biguplus_{k=1}^{n}\left(a_{k}, b_{k}\right]: a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Q}, \\
& \left.a_{k}<b_{k}, k=1, \ldots, n \text { and } a_{k}<b_{k+1}, k=1, \ldots, n-1\right\}
\end{aligned}
$$

is the ring generated from \mathcal{H}.

Generated ring

- Lemma 1.5: \mathcal{H} semi-ring. Then,

$$
\mathcal{R}(\mathcal{H})=\left\{\biguplus_{k=1}^{n} A_{k}: A_{1}, \ldots, A_{n} \in \mathcal{H} \text { disjoint, } n \in \mathbb{N}\right\}
$$

is the ring generated from \mathcal{H}.

- Proof: $\mathcal{R}(\mathcal{H})$ is \cap-stable.

To show: $\mathcal{R}(\mathcal{H})$ set-difference-stable. Let $A_{1}, \ldots, A_{n} \in \mathcal{H}$ and $B_{1}, \ldots, B_{m} \in \mathcal{H}$ be disjoint. Then,

$$
\left(\biguplus_{i=1}^{n} A_{i}\right) \backslash\left(\biguplus_{j=1}^{m} B_{j}\right)=\biguplus_{i=1}^{n} \bigcap_{j=1}^{m} A_{i} \backslash B_{j} \in \mathcal{R}(\mathcal{H})
$$

To show: $\mathcal{R}(\mathcal{H})$ is \cup-stable:

$$
A \cup B=(A \cap B) \uplus(A \backslash B) \uplus(B \backslash A) \in \mathcal{R}(\mathcal{H})
$$

universitätfreiburg

Definitions from topology

- Ω some set. A set system $\mathcal{O} \subseteq 2^{\Omega}$ is called topology if (i) $\emptyset, \Omega \in \mathcal{O}$; (ii) if \mathcal{O} is \cap-stable; (iii) if I is arbitrary and if $A_{i} \in \mathcal{O}, i \in I$, then $\bigcup_{i \in I} A_{i} \in \mathcal{O}$. The pair (Ω, \mathcal{O}) is called topological space. Its members, i.e. every $A \in \mathcal{O}$, is called open; any set $A \subseteq \Omega$ with $A^{c} \in \mathcal{O}$ is called closed.
- (Ω, r) be a metric space and $B_{\varepsilon}(\omega):=\left\{\omega^{\prime} \in \Omega: r\left(\omega, \omega^{\prime}\right)<\varepsilon\right\}$ an open ball and

$$
\begin{equation*}
\mathcal{B}:=\left\{B_{\varepsilon}(\omega): \varepsilon>0, \omega \in \Omega\right\} \tag{1}
\end{equation*}
$$

Then,

$$
\begin{aligned}
\mathcal{O}(\mathcal{B}) & :=\{A \subseteq \Omega: \quad \forall \omega \in A \exists B \in \mathcal{B}: \omega \in B \subseteq A\} \\
& =\left\{\bigcup_{B \in \mathcal{C}} B: \mathcal{C} \subseteq \mathcal{B}\right\}
\end{aligned}
$$

is the topology generated by r.

Definitions from topology

- r is called complete, if every Cauchy-sequence converges.
- If there is some countable Ω^{\prime} such that $\inf _{x^{\prime} \in \Omega^{\prime}} r\left(x, x^{\prime}\right)=0$ for all $x \in \Omega$, we call (Ω, r) separable. In this case,

$$
\mathcal{B}^{\prime}:=\left\{B_{r}\left(\omega^{\prime}\right): \omega^{\prime} \in \Omega^{\prime}, r \in \mathbb{Q}_{+}\right\}
$$

is countable and $\mathcal{O}\left(\mathcal{B}^{\prime}\right)=\mathcal{O}(\mathcal{B})$.

- The space (Ω, \mathcal{O}) is called Polish, if it is separable and completely metrizable.

Borel's σ-field

- Definition 1.7: (Ω, \mathcal{O}) a topological space.

$$
\mathcal{B}(\Omega):=\sigma(\mathcal{O})
$$

is the Borel σ-algebra on Ω. Sets in $\mathcal{B}(\Omega)$ are also called (Borel-)measurable sets.

- Lemma 1.8: Let (Ω, \mathcal{O}) be a topological space with countable basis $\mathcal{C} \subseteq \mathcal{O}$. Then, $\sigma(\mathcal{O})=\sigma(\mathcal{C})$.
- Proof: To show $\mathcal{O} \subseteq \sigma(\mathcal{C})$. Clear, since any $A \in \mathcal{O}$ can be represented as a countable union of sets from \mathcal{C}.

Borel σ-field generated by interavls

- Lemma 1.9: The set system

$$
\mathcal{C}_{1}=\{[-\infty, b]: b \in \mathbb{Q}\}
$$

generates $\mathcal{B}(\mathbb{R})$.

- Proof: Generate $(a, b]$ from $[-\infty, b] \backslash[-\infty, a]$, then $(a, b)=\bigcup_{i=1}^{\infty}\left(a, b-\frac{1}{n}\right)$. These sets clearly generate $\mathcal{B}(\mathbb{R})$.

