Stochastic Processes 6. Martingales in discrete time

Peter Pfaffelhuber

November 2, 2024

◀ㅁ▶◀@▶◀들▶◀들▶

 Ω

Repetition

- ▶ Probability space $(Ω, F, P)$; set of times $I = {0, 1, 2, ...}$
- A family $\mathcal{X} = (X_t)_{t \in I}$ is called a a stochastic process.
- ▶ A family $(\mathcal{F}_t)_{t \in I}$ of σ -algebras with $\mathcal{F}_t \subseteq \mathcal{F}, t \in I$, is called an *filtration* if $\mathcal{F}_s \subseteq \mathcal{F}_t$ for all $s \leq t$.
- ▶ $(X_t)_{t \in I}$ is said to be an $(\mathcal{F}_t)_{t \in I}$ adapted if X_t is measurable with respect to $\mathcal{F}_t.$
- ▶ $(\sigma(X_s : s \le t))_{t \in I}$ is called the generated filtration.
- ▶ For $s \leq t$ and any $X \in \mathcal{L}^1(\mathbf{P})$,

$$
\mathbf{E}[\mathbf{E}[X|\mathcal{F}_t]|\mathcal{F}_s] = \mathbf{E}[X|\mathcal{F}_s].
$$

KELK KØLK VELKEN EL 1990

A simple martingale

Example 14.1: Let
$$
X \in \mathcal{L}^1(\mathbb{P})
$$
.

Then $\mathcal{X} = (X_t)_{t \in I}$ with

$$
X_t = \mathbf{E}[X|\mathcal{F}_t]
$$

is a stochastic process. For $s \leq t$,

 $\mathsf{E}[X_t | \mathcal{F}_s] = \mathsf{E}[\mathsf{E}[X | \mathcal{F}_t] | \mathcal{F}_s] = \mathsf{E}[X | \mathcal{F}_s] = X_s.$

KO K K Ø K K E K K E K V K K K K K K K K K

Super-, Sub-Martingale

▶ Definition 14.2: Let $\mathcal{X} = (X_t)_{t \in I}$ be integrable. Then X is called

> a martingale if $\mathsf{E}[X_t | \mathcal{F}_s] = X_s$ for $s, t \in I$, $s < t$, sub-martingale, if $\textbf{E}[X_t|\mathcal{F}_\text{s}]\geq X_\text{s}$ for $s,t\in I,$ $s< t,$ super martingaleif $\mathbf{E}[X_t | \mathcal{F}_s] \leq X_s$ for $s,t \in I, s < t.$

 \blacktriangleright Equivalent, for discrete I,

a martingale, if $\mathbf{E}[X_t | \mathcal{F}_{t-1}] = X_{t-1}$ for $t > 0$, Sub-Martingale, if $\textbf{E}[X_t | {\cal F}_{t-1}] \geq X_{t-1}$ for $t > 0,$ Super-Martingale, if $\mathbf{E}[X_t | \mathcal{F}_{t-1}] \leq X_{t-1}$ for $t > 0$.

Example 14.4.1

 \blacktriangleright Let X_1, X_2, \ldots be independent, integrable with $\textsf{\textbf{E}}[X_i] = 0, i = 1, 2, ...$ and $\mathcal{F}_t := \sigma(X_1, ..., X_t),$ as well as $\mathcal{S}_t := \sum$ t $i=1$ X_i .

Then $(S_t)_{t\in I}$ is a martingale, because

$$
\mathbf{E}[S_t|\mathcal{F}_{t-1}] = \mathbf{E}[S_{t-1} + X_t|\mathcal{F}_{t-1}] = S_{t-1} + \mathbf{E}[X_t|\mathcal{F}_{t-1}]
$$

= S_{t-1} + \mathbf{E}[X_t] = S_{t-1},

If $\mathsf{E}[X_i] \geq 0, i = 1, 2, ...$, then $(\mathcal{S}_t)_{t \geq 0}$ is a submartingale.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Example 14.4.2

 \blacktriangleright $X_1, X_2, ...$ independent, integrable with $\mathbf{E}[X_i] = 1, i = 1, 2, ...$ and $\mathcal{F}_t:=\sigma(X_1,...,X_t)$, as well as $\mathcal{S}_t := \prod$ t $i=1$ X_i .

Then, $(\mathcal{S}_t)_{t\in I}$ is integrable, and a martingale, since

$$
\mathbf{E}[S_t|\mathcal{F}_{t-1}] = \mathbf{E}[S_{t-1}X_t|\mathcal{F}_{t-1}] = S_{t-1} \cdot \mathbf{E}[X_t|\mathcal{F}_{t-1}]
$$

$$
= S_{t-1} \cdot \mathbf{E}[X_t] = S_{t-1},
$$

If $\mathsf{E}[X_i] \geq 1$, $i=1,2,...$, then $(S_t)_{t \in I}$ is a submartingale.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Example 14.4.3

 \blacktriangleright $I = \{-1, -2, ...\}$ and $X_1, X_2, ...$ iid, integrierbar, sowie

$$
S_t := \frac{1}{|t|} \sum_{i=1}^{|t|} X_i, \qquad t \in I
$$

and ${\mathcal F}_t:=\sigma(...,{\mathcal S}_{t-1},{\mathcal S}_t).$ Then for $t\in I$

$$
\mathbf{E}[S_t|\mathcal{F}_{t-1}] = \mathbf{E}\Big[\frac{1}{|t|}\sum_{i=1}^{|t|} X_i \Big| S_{t-1}, S_{t-2}, \dots\Big] = \frac{1}{|t|} \sum_{i=1}^{|t|} \mathbf{E}\Big[X_i \Big| \sum_{i=1}^{|t|+1} X_i\Big]
$$

$$
= \mathbf{E}\Big[X_1 \Big| \sum_{i=1}^{|t|+1} X_i\Big] = \frac{1}{|t-1|} \sum_{i=1}^{|t-1|} X_i = S_{t-1}.
$$

In particular,

$$
\mathbf{E}[X_1|\mathcal{F}_t] = \mathbf{E}\Big[X_1\Big|\sum_{i=1}^{|t|} X_i\Big] = \frac{1}{|t|} \sum_{i=1}^{|t|} X_i = S_t.
$$

Example 14.5: Branching Process

$$
I = \{0, 1, 2, ...\}, X_i^{(t)} \text{) iid with values in } \{0, 1, 2, ...\},
$$

$$
\mu = \mathbf{E}[X_i^{(t)}]. \text{ Set } Z_0 = k \text{ and}
$$

$$
Z_{t+1} = \sum_{i=1}^{Z_t} X_i^{(t)}.
$$

 $\mathcal{Z} = (Z_t)_{t \in I}$ is a martingale $\iff \mu = 1.$ Indeed:

$$
\mathbf{E}[Z_{t+1}-Z_t|\mathcal{F}_t]=\mathbf{E}\Big[\sum_{i=1}^{Z_t}X_i^{(t)}-Z_t|\mathcal{F}_t\Big]=(\mu-1)Z_t.
$$

 $\mathcal{Z} = (Z_t)_{t \in I}$ submartingale (supermartingale) $\iff \mu \geq 1$ $(\mu\leq 1).$ Furthermore, $(Z_t/\mu^t)_{t=0,1,2,...}$ is a martingale because

$$
\mathbf{E}[Z_{t+1}-\mu Z_t|\mathcal{F}_t]=\mu Z_t-\mu Z_t=0.
$$

Example 14.6: Martingales derived from Markov chains

▶ Let *E* at most countable and $P = (p_{ij})_{i,j \in E}$ a stochastic

matrix, $f : E \to \mathbb{R}$ bounded. Define a Markov chain via

$$
\mathbf{P}(X_t = y | X_{t-1} = x) = p_{xy}.
$$

$$
\mathbf{E}[f(X_{s+1}) - f(X_s) | \mathcal{F}_s] = \sum_{x \in E} p_{X_s, y} (f(y) - f(X_s)).
$$

Set

$$
M_t = f(X_t) - \sum_{s=1}^{t-1} \mathbf{E}[f(X_{s+1}) - f(X_s)|X_s].
$$

Then

$$
\mathbf{E}[M_t - M_{t-1}|\mathcal{F}_{t-1}] = \mathbf{E}[f(X_t) - f(X_{t-1})|\mathcal{F}_{t-1}] - \mathbf{E}[f(X_t) - f(X_{t-1})|X_{t-1}] = 0.
$$

Functions of martingales

▶ Proposition 14.7: $\mathcal{X} = (X_t)_{t \in I}$ stochastic process, $\varphi : \mathbb{R} \to \mathbb{R}$ convex, such that $\varphi(X) = (\varphi(X_t))_{t \in I}$ integrable. If

1. $\mathcal X$ is a martingale or

2. X is a submartingale and φ is non-decreasing,

then $\varphi(\mathcal{X}) = (\varphi(\mathcal{X}_t))_{t \in I}$ is a submartingale.

Proof: For 1., by Jensen's inequality,

$$
\varphi(X_{s})=\varphi(\mathbf{E}[X_{t}|\mathcal{F}_{s}])\leq \mathbf{E}[\varphi(X_{t})|\mathcal{F}_{s}].
$$

For 2.,

$$
\varphi(X_{s})\leq \varphi(\mathbf{E}[X_{t}|\mathcal{F}_{s}])\leq \mathbf{E}[\varphi(X_{t})|\mathcal{F}_{s}].
$$

KELK KØLK VELKEN EL 1990