Stochastic Processes 6. Martingales in discrete time

Peter Pfaffelhuber

November 2, 2024

↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶

Repetition

- Probability space $(\Omega, \mathcal{F}, \mathbf{P})$; set of times $I = \{0, 1, 2, ...\}$
- A family $\mathcal{X} = (X_t)_{t \in I}$ is called a a stochastic process.
- A family (F_t)_{t∈I} of σ-algebras with F_t ⊆ F, t ∈ I, is called an filtration if F_s ⊆ F_t for all s ≤ t.
- (X_t)_{t∈I} is said to be an (F_t)_{t∈I} adapted if X_t is measurable with respect to F_t.
- $(\sigma(X_s : s \le t))_{t \in I}$ is called the generated filtration.
- For $s \leq t$ and any $X \in \mathcal{L}^1(\mathbf{P})$,

$$\mathbf{E}[\mathbf{E}[X|\mathcal{F}_t]|\mathcal{F}_s] = \mathbf{E}[X|\mathcal{F}_s].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A simple martingale

• Example 14.1: Let
$$X \in \mathcal{L}^1(\mathbb{P})$$
.

Then $\mathcal{X} = (X_t)_{t \in I}$ with

$$X_t = \mathbf{E}[X|\mathcal{F}_t]$$

is a stochastic process. For $s \leq t$,

$$\mathbf{E}[X_t|\mathcal{F}_s] = \mathbf{E}[\mathbf{E}[X|\mathcal{F}_t]|\mathcal{F}_s] = \mathbf{E}[X|\mathcal{F}_s] = X_s.$$

Super-, Sub-Martingale

▶ Definition 14.2: Let X = (X_t)_{t∈I} be integrable. Then X is called

a martingale if $\mathbf{E}[X_t | \mathcal{F}_s] = X_s$ for $s, t \in I, s < t$, sub-martingale, if $\mathbf{E}[X_t | \mathcal{F}_s] \ge X_s$ for $s, t \in I, s < t$, super martingale if $\mathbf{E}[X_t | \mathcal{F}_s] \le X_s$ for $s, t \in I, s < t$.

Equivalent, for discrete I,

a martingale, if $\mathbf{E}[X_t|\mathcal{F}_{t-1}] = X_{t-1}$ for t > 0, Sub-Martingale, if $\mathbf{E}[X_t|\mathcal{F}_{t-1}] \ge X_{t-1}$ for t > 0, Super-Martingale, if $\mathbf{E}[X_t|\mathcal{F}_{t-1}] \le X_{t-1}$ for t > 0.

Example 14.4.1

► Let $X_1, X_2, ...$ be independent, integrable with $\mathbf{E}[X_i] = 0, i = 1, 2, ...$ and $\mathcal{F}_t := \sigma(X_1, ..., X_t)$, as well as $S_t := \sum_{i=1}^t X_i$.

Then $(S_t)_{t \in I}$ is a martingale, because

$$\mathbf{E}[S_t | \mathcal{F}_{t-1}] = \mathbf{E}[S_{t-1} + X_t | \mathcal{F}_{t-1}] = S_{t-1} + \mathbf{E}[X_t | \mathcal{F}_{t-1}]$$

= $S_{t-1} + \mathbf{E}[X_t] = S_{t-1},$

If $\mathbf{E}[X_i] \ge 0, i = 1, 2, ...,$ then $(S_t)_{t \ge 0}$ is a submartingale.

Example 14.4.2

► $X_1, X_2, ...$ independent, integrable with $\mathbf{E}[X_i] = 1, i = 1, 2, ...$ and $\mathcal{F}_t := \sigma(X_1, ..., X_t)$, as well as $S_t := \prod_{i=1}^t X_i$.

Then, $(S_t)_{t \in I}$ is integrable, and a martingale, since

$$\mathbf{E}[S_t|\mathcal{F}_{t-1}] = \mathbf{E}[S_{t-1}X_t|\mathcal{F}_{t-1}] = S_{t-1} \cdot \mathbf{E}[X_t|\mathcal{F}_{t-1}]$$
$$= S_{t-1} \cdot \mathbf{E}[X_t] = S_{t-1},$$

If $\mathbf{E}[X_i] \ge 1$, i = 1, 2, ..., then $(S_t)_{t \in I}$ is a submartingale.

Example 14.4.3

▶ $I = \{-1, -2, ...\}$ and $X_1, X_2, ...$ iid, integrierbar, sowie $S_t := \frac{1}{|t|} \sum_{i=1}^{|t|} X_i, \qquad t \in I$ and $\mathcal{F}_t := \sigma(\dots, S_{t-1}, S_t)$. Then for $t \in I$ $\mathbf{E}[S_t|\mathcal{F}_{t-1}] = \mathbf{E}\Big[\frac{1}{|t|} \sum_{i=1}^{|t|} X_i \Big| S_{t-1}, S_{t-2}, \dots\Big] = \frac{1}{|t|} \sum_{i=1}^{|t|} \mathbf{E}\Big[X_i \Big| \sum_{i=1}^{|t|+1} X_i\Big]$ $= \mathbf{E} \Big[X_1 \Big| \sum_{i=1}^{|t|+1} X_i \Big] = \frac{1}{|t-1|} \sum_{i=1}^{|t-1|} X_i = S_{t-1}.$

In particular,

$$\mathbf{E}[X_1|\mathcal{F}_t] = \mathbf{E}\Big[X_1\Big|\sum_{i=1}^{|t|} X_i\Big] = \frac{1}{|t|}\sum_{i=1}^{|t|} X_i = S_t.$$

Example 14.5: Branching Process

►
$$I = \{0, 1, 2, ...\}, X_i^{(t)}$$
 iid with values in $\{0, 1, 2, ...\},$
 $\mu = \mathbf{E}[X_i^{(t)}]$. Set $Z_0 = k$ and

$$Z_{t+1} = \sum_{i=1}^{Z_t} X_i^{(t)}.$$

 $\mathcal{Z} = (Z_t)_{t \in I}$ is a martingale $\iff \mu = 1$. Indeed:

$$\mathbf{E}[Z_{t+1}-Z_t|\mathcal{F}_t]=\mathbf{E}\Big[\sum_{i=1}^{Z_t}X_i^{(t)}-Z_t|\mathcal{F}_t\Big]=(\mu-1)Z_t.$$

 $\mathcal{Z} = (Z_t)_{t \in I}$ submartingale (supermartingale) $\iff \mu \ge 1$ ($\mu \le 1$). Furthermore, $(Z_t/\mu^t)_{t=0,1,2,...}$ is a martingale because

$$\mathbf{E}[Z_{t+1} - \mu Z_t | \mathcal{F}_t] = \mu Z_t - \mu Z_t = 0.$$

Example 14.6: Martingales derived from Markov chains

• Let *E* at most countable and $P = (p_{ij})_{i,j \in E}$ a stochastic

matrix, $f: E \to \mathbb{R}$ bounded. Define a Markov chain via

$$\mathbf{P}(X_t = y | X_{t-1} = x) = p_{xy}.$$
$$\mathbf{E}[f(X_{s+1}) - f(X_s) | \mathcal{F}_s] = \sum_{x \in E} p_{X_s,y}(f(y) - f(X_s)).$$

Set

$$M_t = f(X_t) - \sum_{s=1}^{t-1} \mathbf{E}[f(X_{s+1}) - f(X_s)|X_s].$$

Then

$$\mathbf{E}[M_t - M_{t-1}|\mathcal{F}_{t-1}] = \mathbf{E}[f(X_t) - f(X_{t-1})|\mathcal{F}_{t-1}] \\ - \mathbf{E}[f(X_t) - f(X_{t-1})|X_{t-1}] = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Functions of martingales

Proposition 14.7: X = (X_t)_{t∈I} stochastic process, φ : ℝ → ℝ convex, such that φ(X) = (φ(X_t))_{t∈I} integrable. If

1. \mathcal{X} is a martingale or

2. ${\mathcal X}$ is a submartingale and ${\varphi}$ is non-decreasing,

then $\varphi(\mathcal{X}) = (\varphi(X_t))_{t \in I}$ is a submartingale.

Proof: For 1., by Jensen's inequality,

$$\varphi(X_s) = \varphi(\mathbf{E}[X_t|\mathcal{F}_s]) \leq \mathbf{E}[\varphi(X_t)|\mathcal{F}_s].$$

For 2.,

$$\varphi(X_s) \leq \varphi(\mathbf{E}[X_t|\mathcal{F}_s]) \leq \mathbf{E}[\varphi(X_t)|\mathcal{F}_s].$$