

Peter Pfaffelhuber

October 25, 2024

Progressive measurability

▶ Definition 13.31: \mathcal{X} is *progressively measurable*, if, for all $t \in I$,

$$egin{cases} I\cap [0,t] imes \Omega & o E \ (s,\omega) &\mapsto X_s(\omega) \end{cases}$$

is $I \cap \mathcal{B}([0,t]) \otimes \mathcal{F}_s/\mathcal{B}(E)$ -measurable.

- Lemma 13.32: If I is countable or \mathcal{X} has right-continuous paths, \mathcal{X} is progressively measurable.
- Proposition 13.33: Let $\mathcal{X}=(X_t)_{t\in I}$ be progressively measurable, and T a stopping time. Then $X_T:\omega\mapsto X_{T(\omega)}(\omega)$ is measurable with respect to $\{T<\infty\}\cap\mathcal{F}_T$.

Progressive measurability

- Lemma 13.32: If I is countable or \mathcal{X} has right-continuous paths, \mathcal{X} is progressively measurable.
- ▶ Let $t \in I$. We consider the mapping

$$Y: egin{cases} I\cap [0,t] imes \Omega & o E \ (s,\omega) & \mapsto X_s(\omega). \end{cases}$$

I countable: $Y^{-1}(B) = \bigcup_{s \in I, s \le t} \{s\} \times X_s^{-1}(B)$ measurable.

 \mathcal{X} has right-continuous paths: $X^n_s:=X_{(2^{-n}\lceil 2^ns\rceil)\wedge t}, n=1,2,...$

and the corresponding Y_n . Then, $Y_n \xrightarrow{n \to \infty}_{as} Y$ and

$$Y_n^{-1}(B) = \bigcup_{\substack{k:(k+1)2^{-n} \le t}} [k2^{-n}, (k+1)2^{-n}) \times X_{(k+1)2^{-n}}^{-1}(B)$$

measurable.

Progressive measurability

- Proposition 13.33: Let $\mathcal{X}=(X_t)_{t\in I}$ be progressively measurable, and T a stopping time. Then $X_T:\omega\mapsto X_{T(\omega)}(\omega)$ is measurable with respect to $\{T<\infty\}\cap\mathcal{F}_T$.
- ▶ Proof: To show: $\{X_T \in B, T \leq t\} \in \mathcal{F}_t$ for $B \in \mathcal{B}(E), t \in I$. Wlog $T \leq t$.

Write $X_T = Y_t \circ \psi$, where $\psi(\omega) := (T(\omega), \omega)$ is measurable with respect to $\mathcal{F}_t/(I \cap \mathcal{B}([0,t]) \otimes \mathcal{F}_t)$ and $Y_t(s,\omega) = X_s(\omega)$ according to condition $I \cap \mathcal{B}([0,t]) \otimes \mathcal{F}_t/\mathcal{B}(E)$ -measurable.