Stochastic Processes 4. Filtrations and Stopping times

Peter Pfaffelhuber

October 25, 2024

Definition

$$\mathcal{X} = (X_t)_{t \in I}$$
 sp defined on $(\Omega, \mathcal{F}, \mathbf{P})$.

Definition 13.20 (Filtration):
(*F_t*)_{t∈I} with *F_t* ⊆ *F*, *t* ∈ *I*, all σ-algebras is called *filtration* if *F_s* ⊆ *F_t* for all *s* ≤ *t*.
If *F_t* = σ(*X_s* : *s* ≤ *t*), we say the filtration is generated by *X*. *X* is *adapted* to (*F_t*)_{t∈I} if *X_t* is a *F_t*-measurable, *t* ∈ *I*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

 $\mathcal{X} = (X_t)_{t \in I}$ sp defined on $(\Omega, \mathcal{F}, \mathbf{P})$, $(\mathcal{F}_t)_{t \in I}$ a filtration.

Definition 13.20 (Stopping time):

A rv T with values in \overline{I} (the completion of I) is called random time. It is a stopping time if $\{T \leq t\} \in \mathcal{F}_t, t \in I$. It is an optional time if $\{T < t\} \in \mathcal{F}_t, t \in I$.

For a stopping time T, define

$$\mathcal{F}_{\mathcal{T}} := \{A \in \mathcal{A} : A \cap \{T \leq t\} \in \mathcal{F}_t, t \in I\}$$

For a random time T, define $X_T : \omega \mapsto X_{T(\omega)}(\omega)$ and $\mathcal{X}^T := (X_{T \wedge t})_{t \in I}$, the process stopped at T.

Hitting times in the PPP

► Example 13.22: X = (X_t)_{t∈[0,∞)} and Y = (Y_t)_{t∈[0,∞)} the right and left continuous PPP, and (F^X_t)_{t∈[0,∞)} and (F^Y_t)_{t∈0,∞)} the corresponding filtrations. Let

$$T_1 := \inf\{t \ge 0 : X_t = 1\} = \inf\{t \ge 0 : Y_t = 1\}.$$

Then: T_1 is both $(\mathcal{F}_t^{\mathcal{X}})_{t \in [0,\infty)}$ -stopping time, as well as a $(\mathcal{F}_t^{\mathcal{X}})_{t \in [0,\infty)}$ option time.

• Proof: If $T_1 = t$ is the jump time from 0 to 1, then $X_t = 1$, i.e. $\{T_1 \le t\} = \{X_t \ge 1\} \in \sigma((X_s)_{s \le t}) = \mathcal{F}_t^{\mathcal{X}}$ and $\{T_1 < t\} = \{X_{t-} \ge 1\} \in \sigma((X_s)_{s < t}) \subseteq \mathcal{F}_t^{\mathcal{X}}$.

Propoerties of Stopping Times

From now on: Let $(\mathcal{F}_t)_{t \in I}$ be a filtration.

- Lemma 13.23:
 - 1. $T = s \in I$ is a stopping time, $s \in I$.
 - 2. S, T stopping times \Rightarrow S \land T and S \lor T, S + T are stopping times;
 - 3. T stopping time \Rightarrow T is \mathcal{F}_T measurable.
 - 4. S, T stopping times with $S \leq T \Rightarrow \mathcal{F}_S \subseteq \mathcal{F}_T$.
- ▶ Proof: Let $t \in I$. 1. Clear since $\{s \leq t\} \in \{\emptyset, \Omega\} \subseteq \mathcal{F}_t$.

2.
$$\{S \land T \leq t\} = \{S \leq t\} \cup \{T \leq t\} \in \mathcal{F}_t$$

 $\{S \lor T \leq t\} = \{S \leq t\} \cap \{T \leq t\} \in \mathcal{F}_t.$

S' + T' is \mathcal{F}_t -measurable for $S' = S \wedge t + 1_{\{S > t\}}$,

 $T' = T \land t + 1_{\{T > t\}} \text{ and } \{S + T \le t\} = \{S' + T' \le t\} \in \mathcal{F}_t.$ universität freiburg

Propoerties of Stopping Times

From now on: Let $(\mathcal{F}_t)_{t \in I}$ be a filtration.

- Lemma 13.23:
 - 1. $T = s \in I$ is a stopping time, $s \in I$.
 - 2. S, T stopping times \Rightarrow S \land T and S \lor T, S + T are stopping times;
 - 3. T stopping time \Rightarrow T is \mathcal{F}_T measurable.
 - 4. *S*, *T* stopping times with $S \leq T \Rightarrow \mathcal{F}_S \subseteq \mathcal{F}_T$.
- ▶ Proof: 4. *T* stopping time

$$\Rightarrow \{T \le t\} \in \mathcal{F}_t \Rightarrow \{T \le t\} \in \mathcal{F}_T$$

5. $A \in \mathcal{F}_S$ and $t > s$. Since $B := A \cap \{S \le t\} \in \mathcal{F}_t$,
 $A \cap \{T \le t\} = B \cap \{T \le t\} \in \mathcal{F}_t \Rightarrow A \in \mathcal{F}_T$

Complete and continuous filtrations

Definition 13.24: Define \$\mathcal{F}_t^+\$:= \$\begin{smallmatrix} S_{s>t}\$\mathcal{F}_s\$. We call \$(\mathcal{F}_t)_{t \in [0,\infty)}\$ continuous if \$\mathcal{F}_t^+\$ = \$\mathcal{F}_t\$.
Let \$\mathcal{N}\$ = \$\{A: \exists N \geq A\$ with \$N \in \mathcal{F}\$ and \$\mathbf{P}(N) = 0\$\}\$. Then, the filtration \$(\mathcal{F}_t)_{t \in I}\$ is complete if \$\mathcal{N}\$ ⊆ \$\mathcal{F}_t\$ for each \$t \in I\$.
Lemma 13.25: The filtration \$(\mathcal{G}_t)_{t \in [0,\infty)}\$ with

$$\mathcal{G}_t = \sigma(\mathcal{F}_t^+, \mathcal{N}).$$

is the smallest continuous and complete filtration.

Furthermore, $\mathcal{G}_t = \sigma(\mathcal{F}_t, \mathcal{N})^+$.

Option and stopping times

Lemma 13.26: A random time T is an option time iff it is a (𝓕⁺_t)_{t∈[0,∞)}-stopping time. In this case,

 $\mathcal{F}_T^+ = \{A \in \mathcal{F} : A \cap \{T < t\} \in \mathcal{F}_t, t > 0\}.$

In particular, if $(\mathcal{F}_t)_{t \in [0,\infty)}$ is continuous, every stopping (option) time is an option (stopping) time.

▶ Proof: First, If *T* is a $(\mathcal{F}_t^+)_{t \in [0,\infty)}$ -stopping time and $A \cap \{T \leq t\} \in \mathcal{F}_t^+$, Then,

$$A \cap \{T < t\} = \bigcup_{\mathbb{Q} \ni s < t} (A \cap \{T \le s\}) \in \mathcal{F}_t.$$

Set $A = \Omega$ for the first assertion, and general A for the second.

Suprema and infima of stopping times

- Lemma 13.27: T_1, T_2, \dots random times. Then:
 - 1. $T_1, T_2, ...$ stopping times $\Rightarrow T := \sup_n T_n$ is a stopping time.
 - 2. $I = \{0, 1, 2, ...\}, T_1, T_2, ...$ stopping times $\Rightarrow T := \inf_n T_n$ is a stopping time.
 - 3. $I = [0, \infty), T_1, T_2, ...$ option times $\Rightarrow T := \inf_n T_n$ is an option time. In addition, $\mathcal{F}_T^+ = \bigcap_n \mathcal{F}_{T_n}^+$.
 - 4. Proof: 1. $\{\sup T_n \leq t\} = \bigcap_n \{T_n \leq t\} \in \mathcal{F}_t$

2. {inf
$$T_n \leq t$$
} = $\bigcup_n \{T_n \leq t\} \in \mathcal{F}_t$.
3. {inf $T_n < t$ } = $\bigcup_n \{T_n < t\} \in \mathcal{F}_t$.
Since $T \leq T_n$, $\mathcal{F}_T^+ \subseteq \bigcap_n \mathcal{F}_{T_n}^+$. If $A \in \bigcap_n \mathcal{F}_{T_n}^+$, then
 $A \cap \{T < t\} = A \cap \bigcup_n \{T_n < t\} = \bigcup_n (A \cap \{T_n < t\}) \in \mathcal{F}_t$.

Thus
$$A \in \mathcal{F}_T^+$$
, so $\bigcap_n \mathcal{F}_{T_n}^+ \subseteq \mathcal{F}_T^+$.

Hitting times as option and stopping times

▶ Definition 13.29: The *hitting time of* $B \in \mathcal{B}(E)$ is given by

$$T_B := \inf\{t : X_t \in B\}.$$

- ▶ Proposition 13.30: $X = (X_t)_{t \in I}$ adapted:
 - 1. If $I = \{0, 1, 2, ...\} \Rightarrow$, T_B is a stopping time.
 - 2. If $I = [0, \infty)$, B open, \mathcal{X} has right-continuous paths $\Rightarrow T_B$ is option time.
 - If I = [0,∞), B is closed, X has continuous paths ⇒ T_B is stopping time.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hitting times as option and stopping times

▶ Proposition 13.30:
$$X = (X_t)_{t \in I}$$
 adapted:

1. If
$$I = \{0, 1, 2, ...\} \Rightarrow$$
, T_B is a stopping time.

2. If $I = [0, \infty)$, B open, \mathcal{X} has right-continuous paths $\Rightarrow T_B$ is option time.

This shows all assertions.