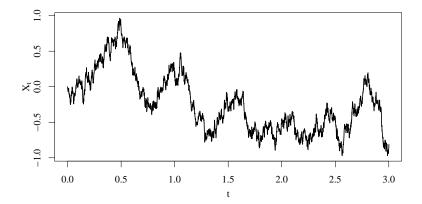
Stochastic Processes 3. Brownian Motion

Peter Pfaffelhuber

October 19, 2024

A path of a Brownian motion



universität freiburg

▲ロト ▲圖ト ▲ 国ト ▲ 国ト 一 国 … のへで

Brownian Motion and Gaussian Processes

Definition 13.15:

- ▶ \mathcal{X} is called *Gaussian* if $c_1X_{t_1} + \cdots + c_nX_{t_n}$ is normal for all $c_1, ..., c_n \in \mathbb{R}$ and $t_1, ..., t_n \in I$.
- t → E[X_t] denotes its expectation and (s, t) → COV(X_s, X_t) its covariance structure.
- If X has continuous paths and (X_{ti} − X_{ti-1})_{i=1,...,n} is independent with X_{ti} − X_{ti-1} ~ N(0, t_i − t_{i-1}) for all t₀ ≤ ··· ≤ t_n, X is a Brownian motion (BM).
- ➤ X¹, X^d be independent BMs. Then, (Xⁱ)_{i=1,...,d} is a d-dimensional Brownian motion.

Existence of Brownian Motion

Proposition 13.17: Let \mathcal{X} be such that for

$$0 = t_0 < t_1 < ... < t_n$$
 it holds that

 $X_{t_i} - X_{t_{i-1}} \sim N(0, t_i - t_{i-1})$ are independent. Then, there exists a modification \mathcal{Y} of \mathcal{X} with continuous paths. It holds

$$\mathbf{COV}(X_s, X_t) = s \wedge t.$$

• Proof: Existence, uniqueness as in Proposition 13.11. Since $X_s \sim N(0, s)$, $X_s \stackrel{d}{=} s^{1/2}X_1$. For a > 2,

 $\mathsf{E}[|X_t - X_s|^a] = \mathsf{E}[|X_{t-s}|^a] = \mathsf{E}[((t-s)^{1/2}|X_1|)^a] = (t-s)^{a/2}\mathsf{E}[|X_1|^a].$

With Theorem 13.8, \mathcal{Y} exists. With $s \leq t$,

 $\mathbf{COV}(X_s, X_t) = \mathbf{COV}(X_s, X_s) + \mathbf{COV}(X_s, X_t - X_s) = \mathbf{V}[X_s] = s.$

universität freiburg

Characterization of Gaussian Processes

- ▶ Lemma 13.18: Let X = (X_t)_{t∈[0,∞)} and Y = (Y_t)_{t∈[0,∞)} be Gaussian processes with the same expectation and covarience structure. Then, they are versions from each other.
- Proof: Since a normal distribution is uniquely determined by its expectation and covariance, the result follows from Proposition 13.6.1

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Brownian Scaling

- ► Theorem 13.19: Let X = (X_t)_{t∈[0,∞)} be a BM. Then, the processes (X_{c²t}/c)_{t∈[0,∞)} are for each c > 0 and (tX_{1/t})_{t∈[0,∞)} also BM.
- ▶ Proof: By linearity, (X_{c²t}/c)_{t∈[0,∞)} and (tX_{1/t})_{t∈[0,∞)} are Gaussian processes. Furthermore,

$$\mathbf{E}[X_{c^2t}/c] = 0, \qquad \mathbf{E}[tX_{1/t}] = 0,$$

and for $s, t \ge 0$

$$\mathbf{COV}[X_{c^2s}/c, X_{c^2t}/c] = \frac{1}{c^2}(c^2s \wedge c^2t) = s \wedge t,$$
$$\mathbf{COV}[sX_{1/s}, tX_{1/t}] = st\left(\frac{1}{s} \wedge \frac{1}{t}\right) = s \wedge t.$$

Now the assertion follows with the last lemma.

universität freiburg