Stochastic Processes 2. The Poisson process

Peter Pfaffelhuber

October 19, 2024

The Poisson process

- Remark 3.9: We want to model a count process with the following propertiers:
 - 1. Independent increments: If $0 = t_0 < t_1 < ... < t_n$, then

 $(X_{t_i} - X_{t_{i-1}} : i = 1, ..., n)$ is an independent family.

- 2. Identically distributed increments: If $0 < t_1 < t_2$, then $X_{t_2} - X_{t_1} \stackrel{d}{=} X_{t_2-t_1} - X_0.$
- 3. No double-points: $\limsup_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbf{P}(X_{\varepsilon} X_0 > 1) = 0.$
- Definition 13.10: X = (X_t)_{t∈[0,∞)} is a Poisson (point) process with intensity λ (PPP(λ)) iff:
 - 1. For $0 = t_0 < ... < t_n$, the family $(X_{t_i} X_{t_{i-1}} : i = 1, ..., n)$ is independent.
 - 2. For $0 \le t_1 < t_2$ is $X_{t_2} X_{t_1} \sim \text{Poi}(\lambda(t_2 t_1))$.

The Poisson process

- Proposition 13.11: Let $\lambda \ge 0$. There is exactly one PPP (λ) .
- Proof: Uniqueness follows from uniqueness of fdds.
- Existence using a Projective Limit: Let

$$J = \{t_1 < ... < t_n\} \subseteq_f I,$$

$$S^n(x_1 - x_0, ..., x_n - x_{n-1}) := (x_1, ..., x_n), \text{ and}$$

$$\mathbf{P}_J := S^n_* \bigotimes_{i=1}^n \operatorname{Poi}(\lambda(t_i - t_{i-1})).$$

Then, $(\mathbf{P}_J : J \subseteq_f I)$ is projective since

$$\mathsf{Poi}(\lambda(t_{i+1}-t_i)) * \mathsf{Poi}(\lambda(t_i-t_{i-1})) = \mathsf{Poi}(\lambda(t_{i+1}-t_{i-1})).$$

Existence now follows with Throrem 5.24.

Characterization of Poisson processes

Proposition 13.12: X = (X_t)_{t∈l} non-decreasing with X₀ = 0, values in Z₊ is PPP(λ) iff λ = E[X₁ − X₀] < ∞ and 1.-3. from Remark 13.9 hold.</p>

▶ Proof: '⇒': 1. and 2.
$$\checkmark$$
. For 3.

$$\frac{1}{\varepsilon} \mathbf{P}(X_{\varepsilon} > 1) = \frac{1 - e^{-\lambda \varepsilon} (1 + \lambda \varepsilon)}{\varepsilon} \le \frac{1 - (1 - \lambda \varepsilon) (1 + \lambda \varepsilon)}{\varepsilon} \xrightarrow{\varepsilon \to 0} 0.$$

Characterization of Poisson processes

Proposition 13.12: X = (X_t)_{t∈l} non-decreasing with X₀ = 0, values in Z₊ is PPP(λ) iff λ = E[X₁ − X₀] < ∞ and 1.-3. from Remark 13.9 hold.</p>

To show: $X_t \sim \text{Poi}(\lambda t)$. Let for $n \in \mathbb{N}, k = 1, ..., n$,

$$Z_k^n := (X_{tk/n} - X_{t(k-1)/n}) \wedge 1, \qquad X_t^n = \sum_{k=1}^n Z_k^n \sim B(n, \mathbf{P}(X_{t/n} > 0))$$

$$\mathbf{P}(\lim_{n \to \infty} X_t^n \neq X_t) = \lim_{n \to \infty} \mathbf{P}(X_t^n \neq X_t)$$

$$\leq \lim_{n \to \infty} \sum_{k=1}^n \mathbf{P}(X_{tk/n} - X_{t(k-1)/n} > 1)$$

$$= \lim_{n \to \infty} n\mathbf{P}(X_{t/n} > 1) \xrightarrow{n \to \infty} 0$$
eiburg

Characterization of Poisson processes

- Proposition 13.12: X = (X_t)_{t∈I} non-decreasing with X₀ = 0, values in Z₊ is PPP(λ) iff λ = E[X₁ − X₀] < ∞ and 1.-3. from Remark 13.9 hold.</p>
- ▶ Proof: '⇐': from 3. Since $X_t^n \uparrow X_t$, by monotone

convergence,

$$\lambda t = \mathbf{E}[X_t] = \lim_{n \to \infty} \mathbf{E}[X_t^n] = \lim_{n \to \infty} np_n.$$

By a Poisson approximation,

$$\mathbf{P}(X_t = k) = \lim_{n \to \infty} \mathbf{P}(X_t^n = k) = \operatorname{Poi}(\lambda t)(k),$$

i.e. $X_t \sim \text{Poi}(\lambda t)$ and the assertion follows.

Construction by exponential distributions

Proposition 13.13: S₁, S₂, ... ~ exp(λ) be iid, X = (X_t)_{t∈I} given by

$$X_t := \max\{i : S_1 + ... + S_i < t\}$$

with $\max \emptyset = 0$. Then \mathcal{X} is a $PPP(\lambda)$.

▶ Proof, special case. We write, with $U_1, ..., U_k \sim U([0, 1])$ iid

$$\mathbf{P}(X_t)$$

$$= \int_0^t \int_{t_1}^t \cdots \int_{t_{k-1}}^t \lambda^k e^{-\lambda t_1} e^{-\lambda(t_2 - t_1)} \cdots e^{-\lambda(t_k - t_{k-1})} e^{-\lambda(t - t_k)} dt_k \dots dt_1$$

$$= e^{-\lambda t} \lambda^k \frac{t^k}{t^k} \int_0^t \int_{t_1}^t \cdots \int_{t_{k-1}}^t dt_k \cdots dt_1$$

$$= e^{-\lambda t} \lambda^k t^k \mathbf{P}[U_1 < \dots < U_k] = e^{-\lambda t} \lambda^k t^k \frac{1}{k!} = \operatorname{Poi}(\lambda t)(k).$$

The right- and left-continuous PPP

In the setting above, set

$$X_t := \max\{i : S_1 + \dots + S_i < t\},\$$
$$Y_t := \max\{i : S_1 + \dots + S_i \le t\}.$$

Then, \mathcal{X} and \mathcal{Y} are modifications.

universität freiburg

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで