Stochastic Processes 1. Definition

Peter Pfaffelhuber

October 18, 2024

イロト イ団ト イミト イミト

 290

Stochastic process

- (Ω, \mathcal{F}, P) probability space; I some index set, E some set.
	- Definition 13.1.: $X = (X_t)_{t \in I}$ such that $X_t : \Omega \to E$ is $F/B(E)$ -measurable is called an E-valued (stochastic) process. For $\omega \in \Omega$ fixed, $X(\omega) : t \mapsto X_t(\omega)$ is called a path

of X.

- If $\Omega = E^1$ and $X_t = \pi_t$, X is called *canonical process*.
- ► Let $0 < p < \infty$ and $E = \mathbb{R}$. X is p-times integrable if $E[|X_t|^p] < \infty$ for all $t \in I$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

It is L^p-bounded, if $\sup_{t \in I} E[|X_t|^p] < \infty$.

Examples

- ► Let $(X_t)_{t \in I}$ be independent. Then $\mathcal{X} = (X_t)_{t \in I}$ is a (very simple) stochastic process (sp).
- In Let X_1, X_2, \ldots real-valued, independent, identically distributed random variables. Then, $S = (S_t)_{t=0,1,2,...}$ with $S_0 = 0$ and $S_t = \sum$ t $i=1$ X_i If $P(X_i = \pm 1) = 1/2$, then S is a simple random walk.
- Exert $\kappa(.,.)$ be a stochastic kernel (see Definition 5.9) from $(E,\mathcal{B}(E))$ to $(E,\mathcal{B}(E))$ and X_0 a random variable. Given X_t , X_{t+1} is $\kappa(X_t,.)$ -distributed, $t=0,1,2,...$ Then $(X_t)_{t=0,1,...}$ is called an E-valued Markov chain.

Existence of stochastic processes

- **From Section 5: a projective family on F is a family of** distributions $(P_J)_{J \subseteq_f I}$ with $P_H = (\pi_H^J)_* P_J$ for $H \subseteq J$, where π_H^J is the projection of E^J onto E^H .
- If $\mathcal{X} = (X_t)_{t \in I}$ is given, $(X_{t_1}, ..., X_{t_n})$ is called a finite-dimensional distribution of X . The fdd-family is projective; see also Example 5.22.2.
- \blacktriangleright For given fdd-distributions, the Kolmogorov's extension theorem guarantees existence of (the distribution of the) sp (if E is Polish).

KID KA KERKER E VOOR

Equality of spes

- Definition 13.4: $\mathcal{X} = (X_t)_{t \in I}$ and $\mathcal{Y} = (Y_t)_{t \in I}$ two spes. 1. If $X \stackrel{d}{=} Y$, then Y is a version of X . 2. If $P(X_t = Y_t) = 1$ for all $t \in I$, then X is a modification of Y. 3. If $P(X_t = Y_t$ for all $t \in I) = 1$, then X and Y are called indistinguishable.
- \triangleright Definition 13.5: $f: I \to E$ is rcll (or càdlàg) if, for all $t \in I$,

$$
f(t) = \lim_{s \downarrow t} f(s)
$$
 and
$$
\lim_{s \uparrow t} f(s)
$$
 exists.

KID KA KERKER E VOOR

The set of right-continuous functions with left limits is denoted by $\mathcal{D}_F(I)$.

Interplay of equality of spes

Proposition 13.6: Let X and Y spes.

- 1. $\mathcal{X} \stackrel{d}{=} \mathcal{Y}$ iff $(X_{t_1},...,X_{t_n}) \stackrel{d}{=} (Y_{t_1},...,Y_{t_n})$ for any choice of $n \in \mathbb{N}$ and $t_1, ..., t_n \in I$.
- 2. X, Y indistinguishable \Rightarrow X modification of Y X modification of $\mathcal{Y} \Rightarrow \mathcal{X}$ version of \mathcal{Y} .
- 3. I at most countable, X modification of $\mathcal{Y} \Rightarrow \mathcal{X}$, \mathcal{Y} indistinguishable.
- 4. Let $I = [0, \infty)$, X, Y have right-continuous paths, X modification of $\mathcal{Y} \Rightarrow \mathcal{X}$, \mathcal{Y} indistinguishable.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Interplay of equality of spes

▶ 1. Consider the ∩-stable generator

$$
\mathcal{C} := \{ \pi_J^{-1}(A) : A \in \mathcal{B}(E)^{|J|}; J \subseteq_f I \} \subseteq \mathcal{B}(E)^{I}
$$

of $\mathcal{B}(E)^l$. Since \mathcal{X}_* P and \mathcal{Y}_* P agree on \mathcal{C}_* they are the same; see Theorem 2.11.

I 2. Let $t \in I$. So, $P(X_t \neq Y_t)$ < $P(X_s \neq Y_s$ for a $s \in I) = 0$. If X and Y are modifications and $t_1, ..., t_n \in I$, then ${\sf P}(X_{t_1}=Y_{t_1},...,X_{t_n}=Y_{t_n})=1$ since finite unions of null-sets are null-sets. The rest follows by 1.

$$
\blacktriangleright
$$
 3. The statement is clear because

$$
\mathsf{P}(X_t \neq Y_t \text{ for a } t \in I) \leq \sum_{t \in I} \mathsf{P}(X_t \neq Y_t) = 0.
$$

universität freiburg

KELK KØLK VELKEN EL 1990

Interplay of equality of spes

▶ 4. Let R be a set with $P(R) = 1$ such that X and Y have right-continuous paths on R and $\mathcal{N}_t := \{X_t \neq Y_t\}.$ Further, let $I' = I \cap \mathbb{Q}$. Then, $P(\bigcup_{t \in I'} N_t) = 0$ and $P($ | \mid t∈I \mathcal{N}_t $\Big) \leq P(R \cap \bigcup$ t∈I $\vert \ \ \vert$ $r \geq t, r \in I'$ N_r = P $(R \cap \cup)$ r∈I 0 N_r) = 0.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Versions and path properties

Exect $\mathcal X$ be a modification of $\mathcal Y$ and $\mathcal Y$ has continuous paths. Then, $\mathcal X$ does not need to have continuous paths. Indeed: Let $\mathcal{Y} = 0$, as well as $T \sim \exp(1)$ and $\mathcal{X} = (X_t)_{t \in I}$ given by

$$
X_t = \begin{cases} 1, & t = T, \\ 0, & \text{otherwise.} \end{cases}
$$

Then $P(X_t = Y_t) = P(T \neq t) = 1$ for each $t \in I$. Note that every path of X is discontinuous (at T).

KELK KØLK VELKEN EL 1990

▶ Theorem 13.8: Let $I = [0, \infty)$ and X be a sp (with values in (E, r)). For every $\tau > 0$ there are numbers $\alpha, \beta, C > 0$ with

$$
\mathsf{E}[r(X_s,X_t)^{\alpha}] \leq C|t-s|^{1+\beta}, \qquad 0 \leq s, t \leq \tau.
$$

Then there is a modification $\widetilde{\mathcal{X}}$ of \mathcal{X} with continuous paths. The paths are even almost surely local Hölder-continuous of any order $\gamma \in (0, \beta/\alpha)$.

$$
\blacktriangleright \text{ Proof: } \mathsf{Wlog} \, I = [0,1]. \text{ Set}
$$

$$
D_n:=\{0,1,...,2^n\}\cdot 2^{-n},\qquad n=0,1,...
$$

and $D=\bigcup_{n=0}^\infty D_n$ and

$$
\xi_n := \max\{r(X_s, X_t) : s, t \in D_n, |t - s| = 2^{-n}\}.
$$

KID KA KERKER E VOOR

▶ Theorem 13.8: Let $I = [0, \infty)$ and X be an sp (with values in (E, r)). For every $\tau > 0$ there are numbers $\alpha, \beta, C > 0$ with

$$
\mathsf{E}[r(X_s,X_t)^{\alpha}] \leq C|t-s|^{1+\beta}, \qquad 0 \leq s, t \leq \tau.
$$

Then there is a modification $\widetilde{\mathcal{X}}$ of \mathcal{X} with continuous paths.

 \blacktriangleright Proof: Let 0 < γ < β/α. Then for some $C > 0$,

$$
E\left[\sum_{n=0}^{\infty} (2^{\gamma n} \xi_n)^{\alpha}\right] = \sum_{n=0}^{\infty} 2^{\alpha \gamma n} E[\xi_n^{\alpha}]
$$

\n
$$
\leq \sum_{n=0}^{\infty} 2^{\alpha \gamma n} \sum_{s,t \in D_n, |t-s|=2^{-n}} E[r(X_s, X_t)^{\alpha}]
$$

\n
$$
\leq C \sum_{n=0}^{\infty} 2^{\alpha \gamma n} 2^{n} 2^{-n(1+\beta)} = C \sum_{n=0}^{\infty} 2^{(\alpha \gamma - \beta)n} < \infty.
$$

▶ Theorem 13.8: Let $I = [0, \infty)$ and X be an sp (with values in (E, r)). For every $\tau > 0$ there are numbers $\alpha, \beta, C > 0$ with

$$
\mathsf{E}[r(X_s,X_t)^{\alpha}] \leq C|t-s|^{1+\beta}, \qquad 0 \leq s, t \leq \tau.
$$

Then there is a modification $\widetilde{\mathcal{X}}$ of \mathcal{X} with continuous paths. Proof: So, there C' with $\xi_n \leq C' 2^{-\gamma n}$ for all $n = 0, 1, ...$ Now let $m\in\{0,1,...\}$ and $r\in[2^{-m-1},2^{-m}]\cap D.$ So, for some $C'',$ $\sup\bigl\{r(X_{\mathbf{s}},X_{t}): \mathbf{s}, t\in D, |\mathbf{s}-t|\leq r\bigr\}$ $=\sup\big\{r(X_{\mathbf{s}},X_{t}): \mathbf{s}, t\in D_{n}, |\mathbf{s}-t|\leq r\big\}$ n≥m $\leq 2\sum \xi_n \leq 2C'\sum 2^{-\gamma n} \leq C'' 2^{-\gamma(m-1)} \leq C'' r^\gamma.$ n≥m n≥m

▶ Theorem 13.8: Let $I = [0, \infty)$ and X be an sp (with values in (E, r)). For every $\tau > 0$ there are numbers $\alpha, \beta, C > 0$ with

$$
\mathsf{E}[r(X_s,X_t)^{\alpha}] \leq C|t-s|^{1+\beta}, \qquad 0 \leq s, t \leq \tau.
$$

Then there is a modification $\widetilde{\mathcal{X}}$ of \mathcal{X} with continuous paths. **Proof:** So, every path on D is Hölder-continuous to the parameter γ . This means that X can be extended Hölder-continuously to *I*. We call his continuous extension $\mathcal{Y}=(\mathcal{Y}_t)_{t\in I}.$ Now, let $t\in I$ $t_n\rightarrow t$ in $D.$ Since $P(r(X_{t_n}, X_t) > \varepsilon) \leq E[r(X_{t_n}, X_t)^{\alpha}]/\varepsilon^{\alpha} \xrightarrow{n \to \infty} 0$, $X_{t_n} \xrightarrow{n \to \infty} X_t$. By continuity of \mathcal{Y} , we find $Y_{t_n} \xrightarrow{n \to \infty} {}_{fs} Y_t$. In particular, $P(X_t = Y_t) = 1$.
universität freiburg KID KA KERKER KID KO