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Prelude

Stochastic processes play a central role in modern stochastics. They are used in various ap-
plication fields, including financial mathematics, as well as in biology and physics. Stochastic
processes are always used when a variable - for example a stock price, the frequency of an
allele in a population or the position of a small particle – changes randomly over time.

The aim here is to provide important tools for dealing with stochastic processes. We will
deal with important examples, such as the Poisson process or Brownian motion. The latter
also plays a decisive role in the construction of stochastic integrals.

The following books have guided me as references for the purpose of this manuscript.

• Durrett, Rick. Probability: Theory and Examples, Cambridge Series in Statistical and
Probabilistic Mathematics, 2019

• Kallenberg, Olaf. Foundations of Modern Probability Theory. Springer, third edition,
2021

• Klenke, Achim. Probability theory. A comprehensive course. Springer, 2014

This manuscript is based on the courses in Measure Theory and Probability Theory, which
cover Sections 1–3, and 4–12, respectively.

The present english version of this manuscript was written based on the German version
with the help of DeepL.
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13 Introduction

Stochastic processes are nothing more than families of random variables. It is important to
realize that this family is indexed by with time. In the course of time, more and more random
variables are realized.

In the following, let (Ω,F ,P) be a probability space, (E, r) a complete and separable
metric space with with Borel’s σ-algebra B(E) and I an ordered subset of R, which we also
call index set. We will always consider the two cases I ⊆ Z and I ⊆ R. Note already here
that an uncountable index set, such as I = R, raises new questions, as probability measures
are only known to be able to deal with countably number of events.

13.1 Definition and existence

First of all, we take care of the elementary question of what a stochastic process is and how
it can be defined in an unambiguous way.

Definition 13.1 (Stochastic process). 1. Let X = (Xt)t∈I such that Xt : Ω → E is
F/B(E)-measurable. Then, X is called an E-valued (stochastic) process. For ω ∈ Ω,
the mapping given by X(ω) : t 7→ Xt(ω) is called a path of X.

2. If in 1., the probability space Ω = EI and Xt = πt is the projection, then X is called
canonical process.

3. Let 0 < p <∞. A real-valued process X = (Xt)t∈I is called p-fold integrable if E[|Xt|p] <
∞ for all t ∈ I. It is called Lp-bounded, if supt∈I E[|Xt|p] <∞.

In the Sections 13.2 and 13.3, we will become familiar with two examples of stochastic pro-
cesses. In particular, the Poisson process (see Section 13.2) is the first process with an
uncountable index set I = [0,∞).

Example 13.2 (Sums of independent random variables and Markov chains). From the lecture
Elementary Probability Theory, some stochastic processes are already known, even if they
were not called stochastic processes.

1. Let (Xt)t∈I be independent. Then X = (Xt)t∈I is a (very simple) stochastic process.

2. Let X1, X2, ... be real-valued, independent, identically distributed random variables. Then,
S = (St)t=0,1,2,... with S0 = 0 and

St =
t∑

i=1

Xi

for t = 1, 2, ... is a real-valued, stochastic process with index set I = {0, 1, 2, ...}. In
particular, if P(Xi = ±1) = 1/2, then S is called a one-dimensional, simple random
walk; see Figure 1.

3. Let κ(., .) be a stochastic kernel (see Definition 5.9) from (E,B(E)) to (E,B(E)). Fur-
ther, let X0 be an E-valued random variable and given Xt, Xt+1 has the distribution
κ(Xt, .), t = 0, 1, 2, ... Then (Xt)t=0,1,... is called an E-valued Markov chain.
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Figure 1: A path of a one-dimensional random walk.

Remark 13.3 (Repetition: Existence of stochastic Processes).

1. Recall from Section 5: the product σ-algebra on the space EI is defined as the smallest
σ-algebra with respect to which all projections πt, t ∈ I are measurable. In particular,
for an E-valued stochastic process X = (Xt)t∈I , the mapping ω 7→ X(ω) is F/B(E)I-
measurable. Furthermore, a projective family on F is a family of distributions (PJ)J⊆f I

with PH = (πJH)∗PJ for H ⊆ J , where πJH is the projection of EJ onto EH .

2. Often, the finite-dimensional distributions of a stochastic process X = (Xt)t∈I , i.e.
the joint distribution of (Xt1 , ..., Xtn) for any t1, ..., tn ∈ I, are given. For example, in
Sections 13.2 and 13.3, the Poisson process and Brownian motion are given by specifying
the joint distribution of (Xt1 , Xt2 −Xt1 , ..., Xtn −Xtn−1). This also uniquely defines the
finite-dimensional distributions. In order to ensure that there is a stochastic process
for these finite-dimensional distributions, we need Kolmogorov’s extension theorem; see
Theorem 5.24. It should be noted that finite dimensional distributions of stochastic
processes are always projective; see also Example 5.22.2.

Definition 13.4 (Equality of stochastic processes). Let X = (Xt)t∈I and Y = (Yt)t∈I be two
E-valued stochastic processes.

1. If X d
= Y, then Y is a version of X (and vice versa).

2. If X and Y are defined on the same probability space and P(Xt = Yt) = 1 for all t ∈ I,
then X is called a modification of Y (and vice versa).

3. If X and Y are defined on the same probability space and P(Xt = Yt for all t ∈ I) = 1,
then X and Y are called indistinguishable.

The paths t 7→ Xt(ω) of a stochastic process can have have certain properties. For example,
they can be continuous functions I → E. In addition to processes with continuous paths, we
will need processes with right-continuous paths and left-limits.

Definition 13.5 (Right-continuous functions, left limits). A function f : I → E is called
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right-continuous in t ∈ I with left-sided limit value1 if

f(t) = lim
s↓t

f(s) and lim
s↑t

f(s) exists.

It is called right-continuous with left limit values if this property holds for all t ∈ I. The set
of right-continuous functions with left limits is denoted by DE(I).

Proposition 13.6 (Versions, modifications, indistinguishable processes). Let X = (Xt)t∈I
and Y = (Yt)t∈I be stochastic processes with values in E.

1. The process Y is a version of X (and vice versa) if both processes have the same finite-

dimensional distributions, i.e. (Xt1 , ..., Xtn)
d
= (Yt1 , ..., Ytn) for any choice of n ∈ N and

t1, ..., tn ∈ I.

2. If X and Y are indistinguishable, then X is a modification of Y (or vice versa). If X is
a modification of Y, then X is a version of Y.

3. If I is at most countable and X is a modification of Y (or vice versa), then X and Y
are indistinguishable.

4. If I = [0,∞) and X and Y have almost surely right-continuous paths and X is a modi-
fication of Y, then X and Y are indistinguishable.

Proof. 1. ’⇒’: clear. ’⇐’: Let (Ω,F ,P) and (Ω′,F ′,P′) the probability spaces on which
probability spaces on which X and Y are defined. We consider the ∩-stable generator

C := {π−1
J (A) : A ∈ B(E)|J |; J ⊆f I} ⊆ B(E)I

of B(E)I . Further, for J ⊆f I, A ∈ B(E)|J |,

P((Xt)t∈J ∈ A) = P′
I((Yt)t∈J ∈ A),

i.e. X∗P and Y∗P
′ coincide on C. According to Theorem 2.11, this means that X∗P = Y∗P

′.
So Y is a version of X .
2. Let t ∈ I. If X and Y are indistinguishable, then P(Xt ̸= Yt) ≤ P(Xs ̸= Ys for a s ∈ I) =
0. If X and Y are modifications and t1, ..., tn ∈ I, then

P(Xt1 = Yt1 , ..., Xtn = Ytn) = 1

since finite unions of null-sets are null-sets. In particular, X and Y have the same finite-
dimensional distributions. According to 1. Y is therefore is a version of X .
3. The statement is clear because of the σ-subadditivity of probability measures,

P(Xt ̸= Yt for a t ∈ I) ≤
∑
t∈I

P(Xt ̸= Yt) = 0.

4. Let R be a set with P(R) = 1 such that X and Y have right-continuous paths on R and
Nt := {Xt ̸= Yt}. Further, let I ′ = I ∩Q. Then, P(

⋃
t∈I′ Nt) = 0 and

P
(⋃

t∈I
Nt

)
≤ P

(
R ∩

⋃
t∈I

⋃
r≥t,r∈I′

Nr

)
= P

(
R ∩

⋃
r∈I′

Nr

)
= 0.

1Such functions are also called rcll (right-continuous with left limits) or càdlàg (continue à droite, limite à
gauche)
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Remark 13.7 (Versions with different path properties). Let X = (Xt)t∈I be an E-valued
stochastic process and I = [0,∞). Each path t 7→ Xt(ω) is therefore a mapping I → E.
A distinction is made between stochastic processes according to their path properties. For
example, if t 7→ Xt(ω) is a continuous function for almost all ω, we say that X has (almost
certainly) continuous paths. It is important to realize that the property of the process to have
continuous paths cannot be read from its distribution:

Let Y = (Yt)t∈I with Yt = 0, and T ∼ exp(1) and X = (Xt)t∈I given by

Xt =

{
1, t = T,

0, otherwise.

Then P(Xt = Yt) = P(T ̸= t) = 1 for each t ∈ I. So X is a modification of Y. In particular,
according to the last proposition, the distributions of X and Y coincide. However, only Y has
continuous paths, but every path of X is discontinuous (at T ). In particular, X and Y are
not indistinguishable.

Theorem 13.8 (Continuous modifications; Kolmogorov, Chentsov). Let X = (Xt)t∈I be an
E-valued stochastic process with I = R or I = [0,∞). For every τ > 0 there are numbers
α, β, C > 0 with

E[r(Xs, Xt)
α] ≤ C|t− s|1+β

for all 0 ≤ s, t ≤ τ . Then there is a modification X̃ = (X̃t)t∈I of X with continuous paths.
The paths are even almost surely local Hölder-continuous of any order γ ∈ (0, β/α).2

Proof. It is sufficient to show the statement for I = [0, 1]. The general case follows by dividing
I into countably many intervals of length 1. We consider the set of time points

Dn := {0, 1, ..., 2n} · 2−n

for n = 0, 1, ..., D =
⋃∞

n=0Dn and the random variable

ξn := max{r(Xs, Xt) : s, t ∈ Dn, |t− s| = 2−n}.

Let 0 < γ < β/α. Then for some C > 0,

E
[ ∞∑
n=0

(2γnξn)
α
]
=

∞∑
n=0

2αγnE[ξαn ] ≤
∞∑
n=0

2αγn
∑

s,t∈Dn,|t−s|=2−n

E[r(Xs, Xt)
α]

≤ C

∞∑
n=0

2αγn2n2−n(1+β) = C

∞∑
n=0

2(αγ−β)n <∞.

(13.1)

Therefore, there is a random variable C ′ with ξn ≤ C ′2−γn for all n = 0, 1, ... Now let
m ∈ {0, 1, ...} and r ∈ [2−m−1, 2−m] ∩D. Then,

sup
{
r(Xs, Xt) : s, t ∈ D,|s− t| ≤ r} = sup

n≥m

{
r(Xs, Xt) : s, t ∈ Dn, |s− t| ≤ r}

≤ 2
∑
n≥m

ξn ≤ 2C ′
∑
n≥m

2−γn ≤ C ′′2−γ(m−1) ≤ C ′′rγ .
(13.2)

2As a reminder: a function f : I → E is locally Hölder-continuous of order γ, if for every τ > 0 there is a
C with r(f(s), f(t)) ≤ C|t− s|γ for all 0 ≤ s, t ≤ τ .

7



for a random variable C ′′. It follows that almost every path on D is Hölder-continuous
to the parameter γ. This means that X can be extended Hölder-continuously to I. We
call this continuous extension Y = (Yt)t∈I . To show that Y is a modification of X , we
consider a t ∈ I and a sequence t1, t2, ... ∈ D with tn → t with n → ∞. Because of the
condition, P(r(Xtn , Xt) > ε) ≤ E[r(Xtn , Xt)

α]/εα
n→∞−−−→ 0 for each ε > 0, i.e. Xtn

n→∞−−−→p Xt.

Furthermore, due to the continuity of Y, we find Ytn
n→∞−−−→fs Yt. In particular, P(Xt = Yt) =

1. This completes the proof.

13.2 Example 1: The Poisson process

For the first time, we consider a concrete stochastic process with process with index set
I = [0,∞). A path of the Poisson process is shown in Figure 2.

Remark 13.9 (Modeling by a Poisson process). We want to model clicks of a Geiger
counter, calls to a call-center, mutation events along ancestral lines, or something else which
has events randomly occurring in time. We want to analyze such counting processes with
the help of a stochastic process X = (Xt)t∈I with I = [0,∞). Let Xt be the number of
clicks/calls/mutations up to time t. For such a process it makes sense to make a few assump-
tions:

1. Independent increments: If 0 = t0 < t1 < ... < tn, then (Xti −Xti−1 : i = 1, ..., n) is an
independent family.

2. Identically distributed increments: If 0 < t1 < t2, then Xt2 −Xt1
d
= Xt2−t1 −X0.

3. No double-points: It is lim supε→0
1
εP(Xε −X0 > 1) = 0.

Definition 13.10 (Poisson process). A real-valued stochastic process X = (Xt)t∈[0,∞) with
X0 = 0 is called a Poisson process with intensity λ if the following applies:

1. For 0 = t0 < ... < tn, the family (Xti −Xti−1 : i = 1, ..., n) is independent.

2. For 0 ≤ t1 < t2 is Xt2 −Xt1 ∼ Poi(λ(t2 − t1)).

Proposition 13.11 (Existence of Poisson processes). Let λ ≥ 0. Then there is exactly one
distribution PI on (B(R))I such that the canonical process with respect to PI is a Poisson
process with intensity λ.

Proof. As for uniqueness: The finite-dimensional distributions of PI as given by 1. and 2.
from Definition 13.10 are uniquely defined. Therefore the uniqueness follows from Proposition
13.6.1.

For existence, we define the Poisson process as a projective limit. For J = {t1, ..., tn} ⊆f I
with 0 = t0 < t1 < ... < tn we set for x0 = 0

Sn : (x1 − x0, ..., xn − xn−1) 7→ (x1, ..., xn).

Further,

PJ := Sn
∗

n⊗
i=1

Poi(λ(ti − ti−1)). (13.3)
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In other words: If Yti−ti−1 for i = 1, ..., n are independently Poisson distributed with parameter
λ(ti − ti−1), then S

n(Y(t1−t0), ..., Ytn−tn−1)) ∼ PJ .

We now show that the family (PJ : J ⊆f I) is projective: let J = {t1, ..., tn} as above and
H = J \ {ti} for one i. Then,

Poi(λ(ti+1 − ti)) ∗ Poi(λ(ti − ti−1)) = Poi(λ(ti+1 − ti−1))

and therefore

(πJH)∗PJ = (πJH ◦ Sn)∗

n⊗
j=1

Poi(λ(tj − tj−1)) = PH .

According to Theorem 5.24, there is the projective limit PI . Let us consider the canonical
process X = (Xt)t∈I with respect to PI . It has the finite-dimensional distributions (PJ : J ⊆f

I). In particular, because of (13.3) increments are independent and Poisson distributed. Thus
X fulfills the conditions 1. and 2. from Definition 13.10.

Proposition 13.12 (Characterization of Poisson processes). A non-decreasing stochastic
process X = (Xt)t∈I with X0 = 0 and values in Z+ is a Poisson process with intensity λ iff
λ = E[X1 −X0] <∞ and 1.-3. from Remark 13.9 are fulfilled.

Proof. ’⇒’: 1. and 2. from remark 13.9 are clearly fulfilled. For 3. we calculate directly

1
εP(Xε > 1) =

1− e−λε(1 + λε)

ε
≤ 1− (1− λε)(1 + λε)

ε

ε→0−−−→ 0.

’⇐’: 1. from Definition 13.10 is fulfilled. It remains to show that Xt ∼ Poi(λt). Let for
n ∈ N, k = 1, ..., n,

Zn
k := (Xtk/n −Xt(k−1)/n) ∧ 1, Xn

t =
n∑

k=1

Zn
k .

This means that Zn
k indicates whether in the interval (t(k− 1)/n; tk/n] at least one jump has

taken place. Then, since Xn
t is monotonic in n,

P( lim
n→∞

Xn
t ̸= Xt) = lim

n→∞
P(Xn

t ̸= Xt)

= lim
n→∞

P(Xtk/n −Xt(k−1)/n > 1 for a k)

≤ lim
n→∞

n∑
k=1

P(Xtk/n −Xt(k−1)/n > 1)

= lim
n→∞

nP(Xt/n > 1)
n→∞−−−→ 0

from 3. Further, Xn
t is binomially distributed with n and probability of success pn :=

P(Xt/n > 0). Because of the linearity of the mapping t 7→ E[Xt] and, since X
n
t ↑ Xt, it

follows from the theorem on monotone convergence,

λt = E[Xt] = lim
n→∞

E[Xn
t ] = lim

n→∞
npn.
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By a Poisson approximation (see Example 10.1),

P(Xt = k) = lim
n→∞

P(Xn
t = k)−P(Xn

t = k;Xt ̸= Xn
t ) +P(Xt = k;Xt ̸= Xn

t )

= lim
n→∞

P(Xn
t = k) = Poi(λt)(k),

i.e. Xt ∼ Poi(λt) and the assertion follows.

Proposition 13.13 (Construction by exponential distributions). Let S1, S2, ... be indepen-
dent, exponentially distributed with parameter λ. Further, let X = (Xt)t∈I be given by

Xt := max{i : S1 + ...+ Si < t}

with max ∅ = 0. Then X is a Poisson process with intensity λ.

Proof. We must show that for 0 = t0 < ... < tn, k1, ..., kn ∈ N

P(Xt1 −Xt0 = k1, ..., Xtn −Xtn−1 = kn) =
n∏

j=1

Poi(λ(tj − tj−1))(kj).

This will only be calculated for the case n = 2, the general case follows analogously. In the
following calculation, let 0 ≤ s < t and U1, U2, ... uniformly distributed random variables on
[0, t]. We calculate

P(Xs −X0 = k,Xt −Xs = ℓ)

=

∫ s

0

∫ s

s1

· · ·
∫ s

sk−1

∫ t

s

∫ t

sk+1

· · ·
∫ t

sk+ℓ−1

∫ ∞

t
λk+ℓ+1e−λs1e−λ(s2−s1) · · ·

· · · e−λ(sk+ℓ+1−sk+ℓ)dsk+ℓ+1...ds1

= λk+ℓ

∫ s

0

∫ s

s1

· · ·
∫ s

sk−1

∫ t

s

∫ t

sk+1

· · ·
∫ t

sk+ℓ−1

(∫ ∞

t
λe−λsk+ℓ+1dsk+ℓ+1

)
dsk+ℓ · · · ds1

= e−λtλk+ℓtk+ℓP[U1 < ... < Uk < s < Uk+1 < ... < Uk+ℓ]

= e−λtλℓtℓ
(
k + ℓ

k

)(s
t

)k( t− s

t

)ℓ 1

(k + ℓ)!

= e−λs (λs)
k

k!
· e−λ(t−s) (λ(t− s))ℓ

ℓ!
,

and the assertion follows.

Example 13.14 (Left- and right-continuous Poisson process). Let, similar to Proposition
13.13, the stochastic process process Y = (Yt)t∈I given by

Yt := max{i : S1 + ...+ Si ≤ t}.

Paths of the processes X from proposition 13.13 and Y can be seen in Figure 2. The two
processes differ in that X is right-continuous and Y is left-continuous. However, both processes
are Poisson processes with intensity λ, as you can easily see. This is because P(Xt = Yt) = 1
applies for all t ∈ [0,∞) and thus Y is a version of X according to Proposition 13.6. As
you can see from this example, two processes with the same distribution can have completely
different paths.
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Figure 2: The right-continuous Poisson process X and the left-continuous Poisson process Y.

13.3 Example 2: Brownian motion

Brownian motion is named after the botanist Robert Brown who observed in a microscope
how pollen appears to move under thermal fluctuations seem to move erratically. We will give
a mathematical definition for this process, that will be particularly important in stochastic
analysis. Moreover, the normal distribution will play an important role in this process. A
path of a one-dimensional Brownian motion can be found in Figure 3.

This section only serves to introduce Brownian motion. We will learn more about prop-
erties of Brownian motion later.

X
t

t

−
1.

0
−

0.
5

0.
0

0.
5
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0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3: A path of a Brownian motion.

Definition 13.15 (Brownian motion and Gaussian processes). Let X = (Xt)t∈I be a stochas-
tic process with values in R.

1. The process X is called Gaussian if c1Xt1 + · · ·+ cnXtn for each choice of c1, ..., cn ∈ R
and t1, ..., tn ∈ I is normally distributed. For a Gaussian process, t 7→ E[Xt] denotes its
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expectation and (s, t) 7→ COV(Xs, Xt) its covariance structure.

2. If I = [0,∞), then X is called a Brownian motion with start in x, if the process has
continuous paths and if for each choice of 0 = t0 < t1 < · · · < tn it holds that Xt0 = x
and Xti −Xti−1 are independently distributed according to N(0, ti − ti−1), i = 1, ..., n.
If x = 0, then X is also called standardized or also Wiener process.

3. Let X 1 = (X1
t )t∈[0,∞), ...,X d = (Xd

t )t∈[0,∞) Brownian motion. Then the Rd-valued

process X = (Xt)t∈[0,∞) with Xt = (X1
t , ..., X

d
t ) is called ad-dimensional Brownian

motion.

Remark 13.16 (Continuity of Brownian motion). According to Theorem 5.24 it is clear
that there is a process whose increments are normally distributed as specified in Defini-
tion 13.15.2. The specified distributions (Xt1 , ..., Xtn)n∈N,t1,...,tn∈I are in fact a projective
family. For example, if Xti −Xti−1 ∼ N(0, ti − ti−1) and Xti−1 −Xti−2 ∼ N(0, ti−1 − ti−2),
then Xti − Xti−2 = Xti − Xti−1 + Xti−1 − Xti−2 ∼ N(0, ti − ti−2) because of example 5.20.
However, it is less clear whether there is there is also a process with such increments that has
continuous paths has. To check this, we use the criterion from Theorem 13.8.

Proposition 13.17 (Existence of Brownian motion). Let X = (Xt)t∈[0,∞) be a real-valued
stochastic process such that for any choice of 0 = t0 < t1 < ... < tn it holds that Xt0 = x and
Xti −Xti−1 are independent and are distributed according to N(0, ti− ti−1), i = 1, ..., n. Then
there exists a modification Y of X with continuous paths. In other words, Y is a Brownian
motion. The process Y is even locally Hölder continuous for every parameter γ < 1/2. Fur-
thermore, the covariance structure of Brownian motion Y is given by COV(Xs, Xt) = s ∧ t.

Proof. Wlog let x = 0. The existence and uniqueness of a process with independent normally
distributed increments follows as in the proof of Proposition 13.11. Since Xs ∼ N(0, s),

Xs
d
= s1/2X1, as can be seen, for example, from Example 6.13.3. For a > 2,

E[|Xt −Xs|a] = E[|Xt−s|a] = E[((t− s)1/2|X1|)a] = (t− s)a/2E[|X1|a].

According to Theorem 13.8, there is therefore a modification of X with continuous paths.
According to the above calculation, these are Hölder-continuous for each parameter γ ∈
(0, ((a/2)− 1)/a) = (0, (a− 2)/(2a)). Since a was arbitrary, the Hölder continuity follows for
each γ ∈ (0, 1/2).

To determine the covariance structure of X , we calculate for 0 ≤ s ≤ t

COV(Xs, Xt) = COV(Xs, Xs) +COV(Xs, Xt −Xs) = V[Xs] = s.

An analogous calculation for t < s provides the result COV(Xs, Xt) = s ∧ t.

Lemma 13.18 (Characterization of Gaussian processes).
Let X = (Xt)t∈[0,∞) and Y = (Yt)t∈[0,∞) be Gaussian processes with E[Xt] = E[Yt] and
COV(Xs, Xt) = COV(Ys, Yt). Then Y is a version of X (and vice versa).

Proof. Let n ∈ N and c1, ..., cn ∈ R be arbitrary. Then, for each choice of t1, ..., tn ∈ I
both ZX := c1Xt1 + · · · + cnXtn as well as ZY := c1Yt1 + · · · cnYtn are normally distributed.
Furthermore, according to the assumption,

E[ZX ] = c1E[Xt1 ] + · · ·+ cnE[Xtn ] = c1E[Yt1 ] + · · ·+ cnE[Ytn ] = E[ZY ]

12



and

V(ZX) =
n∑

i,j=1

cicjCOV(Xti , Xtj ) =
n∑

i,j=1

cicjCOV(Yti , Ytj ) = V(ZY ).

This means that ZX
d
= ZY . Since c1, ..., cn were arbitrary, it follows from Proposition 10.17

that (Xt1 , ..., Xtn)
d
= (Yt1 , ..., Ytn). With Proposition 13.6.1 the statement follows.

Theorem 13.19 (Brownian scaling). Let X = (Xt)t∈[0,∞) be a Brownian motion. Then, the
processes (Xc2t/c)t∈[0,∞) are for each c > 0 and (tX1/t)t∈[0,∞) also Brownian motions.

Proof. It is clear that both (Xc2t/c)t∈[0,∞) and (tX1/t)t∈[0,∞) are Gaussian processes. Fur-
thermore,

E[Xc2t/c] = 0,

E[tX1/t] = 0,

and for s, t ≥ 0

COV[Xc2s/c,Xc2t/c] =
1

c2
(c2s ∧ c2t) = s ∧ t,

COV[sX1/s, tX1/t] = st
(1
s
∧ 1

t

)
= s ∧ t.

Now the assertion follows with Lemma 13.18.

13.4 Filtrations and stopping times

In a stochastic process, more and more of the underlying random variables of the underlying
random variables are realized as time goes by. This means that more and more information
about the path of the process becomes process becomes visible. Now information is synony-
mous with the measurability with respect to a σ-algebra, as can be seen from the lecture
Probability Theory. Since the information grows over over time, a stochastic process involves
an increasing family of σ-algebras, which we will call a filtration in the in the following.

Definition 13.20 (Filtrations, stopping times). Let X = (Xt)t∈I be an E-valued stochastic
process defined on a probability space (Ω,F ,P).

1. A family (Ft)t∈I of σ-algebras with Ft ⊆ F , t ∈ I, is called filtration if Fs ⊆ Ft for all
s ≤ t.

2. The filtration F = (Ft)t∈I with Ft = σ(Xs : s ≤ t) is called the filtration generated by
X .

3. The stochastic process (Xt)t∈I is called adapted to the filtration (Ft)t∈I if Xt is a
Ft/B(E)-measurable random variable for all t ∈ I.

Now let F = (Ft)t∈I be a filtration.

13



5. A random time is a random variable with values in Ī (the completion of I). A random
time T is called ((Ft)t∈I -)stopping time if {T ≤ t} ∈ Ft for all t ∈ I. If I = [0,∞),
then a random time T is called ((Ft)t∈I -)option time if {T < t} ∈ Ft for all t ∈ I. (In
the case I = {0, 1, 2, ...} we do not need this term.)

6. Each stopping time T defines the σ-algebra

FT := {A ∈ A : A ∩ {T ≤ t} ∈ Ft, t ∈ I}

of the T -past.

7. For a random time T , XT is defined by ω 7→ XT (ω)(ω). Further, X T := (XT∧t)t∈I is
the process stopped at T .

Remark 13.21 (Interpretation of the definition of stopping times). Let X = (Xt)t∈I be a
stochastic process and (Ft)t∈I the canonical filtration. One can view Ft as the information
that is available at time t through knowledge of (Xs)0≤s≤t. If T is a stopping time, then
{T ≤ t} ∈ Ft. So the occurrence of the event {T ≤ t} can be predicted by knowledge of
(Xs)s≤t. In other words by knowing the stochastic process up to time t it can be decided
whether the stopping time T has occurred by now at the latest. If T is an option time, then
by knowing the stochastic process up to time t, it can be decided whether the stopping time T
has already occurred in the past of t.

Example 13.22 (Hitting times in the Poisson process). Let X = (Xt)t∈[0,∞) and Y =
(Yt)t∈[0,∞) the right and left continuous Poisson process from example 13.14, respectively,

and (FX
t )t∈[0,∞) and (FY

t )t∈0,∞) the corresponding filtrations. Further, let

T1 := inf{t ≥ 0 : Xt = 1} = inf{t ≥ 0 : Yt = 1}

be the hitting time of 1. (The last equality holds because the processes X and Y jump from 0
to 1 at the same time). Then:

• T1 is both (FX
t )t∈[0,∞)-stopping time, as well as a (FX

t )t∈[0,∞) option time.

Indeed: If T1 = t is the jump time from 0 to 1, then Xt = 1, i.e. {T1 ≤ t} = {Xt ≥ 1} ∈
σ((Xs)s≤t) = FX

t and {T1 < t} = {Xt− ≥ 1} ∈ σ((Xs)s<t) ⊆ FX
t .

• T1 is indeed an (FY
t )t∈[0,∞) option time, but not a (FY

t )t∈[0,∞) stopping time.

Indeed: If T1 = t is the jump time from 0 to 1, then Yt = 0, but Yt+ = 1, i.e. {T1 ≤
t} = {Xt+ ≥ 1} ∈ σ((Ys)s≤t+h) for every h > 0, but not {T1 ≤ t} ∈ FY

t . However, still
{T1 < t} = {Yt ≥ 1} ∈ σ((Ys)s≤t) ⊆ FY

t .

Lemma 13.23 (Simple properties of stopping times). Let (Ft)t∈I be a filtration.

1. Each time T = s ∈ I is a stopping time

2. For stopping times S, T , the times S ∧ T and S ∨ T are also stopping times.

3. For stopping times S, T ≥ 0, S + T is a stopping time.

4. Each stopping time T is FT measurable.
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5. For stopping times S, T with S ≤ T is FS ⊆ FT .

Proof. 1. for t ∈ I is {s ≤ t} ∈ {∅,Ω} ⊆ Ft, i.e. T = s is a stopping time.
2. for t ∈ I is {S∧T ≤ t} = {S ≤ t}∪{T ≤ t} ∈ Ft and {S∨T ≤ t} = {S ≤ t}∩{T ≤ t} ∈ Ft.
3. Let t ∈ I. There are S ∧ t and T ∧ t stopping times, i.e. for s ≤ t is {S ∧ t ≤ s} ∈ Fs ⊆ Ft.
For s > t, {S∧t ≤ s} = Ω ∈ Ft, i.e. S∧t is Ft-measurable. Analogously, it follows that T ∧t is
Ft-measurable. Furthermore, 1{S>t}, 1{T>t} Ft-measurable. If we set S′ = S∧t+1{S>t}, T

′ =
T ∧ t+ 1{T>t}, then S

′ + T ′ is Ft-measurable and {S + T ≤ t} = {S′ + T ′ ≤ t} ∈ Ft.
4. Since T is a stopping time, {T ≤ t} ∈ Ft. According to the definition of FT this means
{T ≤ t} ∈ FT . Since H := {(−∞; t] : t ∈ R} is a generator of B(R), so the assertion follows.
5. Let A ∈ FS and t ∈ I. Since B := A ∩ {S ≤ t} ∈ Ft,

A ∩ {T ≤ t} = B ∩ {T ≤ t} ∈ Ft,

i.e. A ∈ FT .

Definition 13.24 (Continuous and complete filtration). 1. Let (Ft)t∈[0,∞) be a filtration.

We define (F+
t )t∈[0,∞) by F+

t :=
⋂

s>tFs. Further, (Ft)t∈[0,∞) is continuous if F+
t = Ft.

2. Let N = {A : there exists a N ⊇ A with N ∈ F and P(N) = 0}. Then, the filtration
(Ft)t∈I is called complete if N ⊆ Ft for each t ∈ I.

Lemma 13.25 (Usual completion of a filtration). Let (Ω,F ,P) be a probability space, (Ft)t∈[0,∞)

a filtration and N as in Definition 13.24. Then there is a smallest continuous and complete
filtration (Gt)t∈[0,∞) with Ft ⊆ Gt, t ∈ [0,∞). This is given by

Gt = σ(F+
t ,N ).

Furthermore, σ(F+
t ,N ) = σ(Ft,N )+.

Proof. First we show the last equation. It is clear that

σ(F+
t ,N ) ⊆ σ(σ(Ft,N )+,N ) = σ(Ft,N )+.

Conversely, let A ∈ σ(Ft,N )+. Then, A ∈ σ(Ft+h,N ) for all h > 0. So there is an Ah ∈ Ft+h

with P((A \Ah) ∪ (Ah \A)) = 0. Now choose h1, h2, ... with hn ↓ 0 and

A′ = {Ahn infinitely often}.

Then, obviously, A′ ∈ F+
t and P((A \ A′) ∪ (A′ \ A)) = 0, i.e. A ∈ σ(F+

t ,N ). From this
follows σ(Ft,N )+ ⊆ σ(F+

t ,N ).
To prove the minimality of (Gt)t∈[0,∞) let (Ht)t∈[0,∞) be another right-continuous complete

extension of (Ft)t∈[0,∞). Then,

Gt = σ(F+
t ,N ) ⊆ σ(Ht,N ) = Ht

for all t ∈ [0,∞).

Lemma 13.26 (Option and stopping times). Let (Ft)t∈[0,∞) be a filtration. A random time

T is an (Ft)t∈[0,∞) option time iff T is a (F+
t )t∈[0,∞)-stopping time. In this case,

F+
T = {A ∈ F : A ∩ {T < t} ∈ Ft, t > 0}.

In particular, if (Ft)t∈[0,∞) is continuous, then every random time is a (Ft)t∈[0,∞)-stopping
time if it is a (Ft)t∈[0,∞) option time.
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Proof. First,

{T ≤ t} =
⋂

Q∋s>t

{T < s}, {T < t} =
⋃

Q∋s<t

{T ≤ s}.

If T is a (F+
t )t∈[0,∞)-stopping time and A ∩ {T ≤ t} ∈ F+

t . Then,

A ∩ {T < t} =
⋃

Q∋s<t

(A ∩ {T ≤ s}) ∈ Ft.

If, on the other hand, A ∩ {T < t} ∈ Ft, then

A ∩ {T ≤ t} =
⋂
h>0

⋂
t<s<t+h

(A ∩ {T < s}) ∈
⋂
h>0

Ft+h = F+
t .

If you set A = Ω in the last two equations, the first assertion follows. For general A the
second also follows.

Lemma 13.27 (Suprema and infima of stopping times). Let T1, T2, ... be random times and
(Ft)t∈I a filtration. Then the following applies:

1. If T1, T2, ... are stopping times, then T := supn Tn is also a stopping time.

2. If I = {0, 1, 2, ...} and T1, T2, ... are stopping times, then T := infn Tn is also a stopping
time.

3. If I = [0,∞) and T1, T2, ... are option times, then T := infn Tn is also an option time.
In addition, F+

T =
⋂

nF
+
Tn
.

Proof. 1. We have {T ≤ t} =
⋂

n{Tn ≤ t} ∈ Ft and the assertion follows.
2. It holds {T ≤ t} =

⋃
n{Tn ≤ t} ∈ Ft, from which the assertion follows.

3. Here, {T < t} =
⋃

n{Tn < t} ∈ Ft. Since T ≤ Tn, F+
T ⊆

⋂
nF

+
Tn

according to

Lemma 13.23.5. If, on the other hand, A ∈
⋂

nF
+
Tn
, then

A ∩ {T < t} = A ∩
⋃
n

{Tn < t} =
⋃
n

(A ∩ {Tn < t}) ∈ Ft.

Thus A ∈ F+
T .

Proposition 13.28 (Approximation by countable stopping times). If I = [0,∞), each option
time T can be replaced by a sequence of stopping times T1, T2, ..., such that Tn only assumes
values in a discrete (in particular countable) quantity and Tn ↓ T .

Proof. We define Tn = 2−n[2nT + 1]. Then T1, T2, ... is a sequence decreasing towards T ,
where Tn only contains the values {1, 2, ...} · 2−n, n = 1, 2, ... Further, {Tn ≤ k2−n} = {T <
k2−n} ∈ Fk2−n , so Tn is a stopping time, n = 1, 2, ...

Definition 13.29 (Hitting time). Let B ∈ B(E). Then the hitting time of B is given by

TB := inf{t : Xt ∈ B}.

To find out whether the hitting time TB is a stopping (or option) time, the following result
is important.
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Proposition 13.30 (Hitting times as option and stopping times). Let X = (Xt)t∈I be an
E-valued process that is adapted with respect to a filtration (Ft)t∈I . Then, for B ∈ B(E):

1. If I = {0, 1, 2, ...}, then the time TB is a stopping time.

2. If I = [0,∞), B is open and X has right-continuous paths, then TB is an option time.

3. If I = [0,∞), B is closed and X has continuous paths, then TB is a stopping time.

Proof. 1. Here,

{TB ≤ t} =
⋃
s≤t

{Xs ∈ B} ∈ Ft.

For 2. we write
{TB < t} =

⋃
Q∋s<t

{Xs ∈ B} ∈ Ft.

For 3. with Bn := {x ∈ E : r(x,B) < 1/n}

{TB ≤ t} =
⋂
n

{TBn ≤ t} =
⋂
n

({TBn < t} ∪ {Xt ∈ Bn}) ∈ Ft.

This shows all assertions.

13.5 Progressive measurability

By definition, for a stochastic process X = (Xt)t∈I , each of the variables Xt is measurable,
t ∈ I. However, it is (still) unclear when exactly for a random time T the quantity XT :
ω 7→ XT (ω)(ω) is measurable and therefore a random variable. For this we need a stronger
measurability concept for the process X .

Definition 13.31 (Progressive measurability). Let (Ft)t∈I be a filtration and X = (Xt)t∈I a
stochastic process adapted to it. Then X is called progressively measurable with respect to
(Ft)t∈I , if for all t ∈ I the mapping{

I ∩ [0, t]× Ω → E

(s, ω) 7→ Xs(ω)

is measurable with respect to I ∩ B([0, t])⊗Ft/B(E).

Lemma 13.32 (Right-continuous paths and progressive measurability). Let X = (Xt)t∈I
be a stochastic process adapted to the filtration (Ft)t∈I . If either I is countable, or X has
right-continuous paths, then X is progressively measurable with respect to (Ft)t∈I .

Proof. Let t ∈ I. We consider the mapping

Y :

{
I ∩ [0, t]× Ω → E

(s, ω) 7→ Xs(ω).

First, let I be countable and B ∈ B(E). Then,

Y −1(B) =
⋃

s∈I,s≤t

{s} ×X−1
s (B) ∈ B(I ∩ [0, t])⊗Ft.
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Next, let I be uncountable and let X have right-continuous paths. Consider the processes
X n = (Xn

s )t∈I∩[0,t], n = 1, 2, ... with Xn
s := X(2−n⌈2ns⌉)∧t and the corresponding mappings Yn.

Due to the right continuity of the paths, Yn
n→∞−−−→as Y . Furthermore

Y −1
n (B) =

⋃
k:(k+1)2−n≤t

[k2−n, (k + 1)2−n)×X−1
(k+1)2−n(B) ∪ [2−n⌊2nt⌋, t]×X−1

t (B)

∈ B([0, t])⊗Ft.

Proposition 13.33 (Measurability of XT ). Let X = (Xt)t∈I be adapted to the filtration
(Ft)t∈I , progressively measurable, and T a (Ft)t∈I stopping time. Then

XT :

{
{T <∞} → E

ω 7→ XT (ω)(ω)

is measurable with respect to {T <∞} ∩ FT /B(E).

Proof. We have to show that {XT ∈ B, T ≤ t} ∈ Ft for B ∈ B(E) holds, t ∈ I. By definition
of FT , it then holds that {XT ∈ B} ∈ FT , from which the assertion follows. However,
since {XT ∈ B, T ≤ t} = {XT∧t ∈ B, T ≤ t}, it suffices to show that XT∧t is measurable
with respect to Ft, t ∈ I. We can therefore wlog assume that T ≤ t applies. We write
XT = Yt ◦ψ, where ψ(ω) := (T (ω), ω) is measurable with respect to Ft/(I∩B([0, t])⊗Ft) and
Yt(s, ω) = Xs(ω) according to condition I ∩ B([0, t]) ⊗ Ft/B(E)-measurable. The assertion
now follows with Lemma 3.6.2.

14 Martingales

We now begin to deal with a particular class of stochastic processes, martingales. They are
often referred to as fair games. Simply put, a martingale is a real-valued stochastic process
whose increments vanish on average.

14.1 Introduction

Throughout the section, let (Ω,F ,P) be a probability space, (E, r) a complete and separable
metric space and I ⊆ R an ordered index set (usually I = {0, 1, 2, ...} or I = R+). In addition,
let a filtration (Ft)t∈I be given. Adaptedness of a stochastic process is always with respect
to (Ft)t∈I .

Example 14.1 (A simple martingale). For a F-measurable random variable X one can define
a stochastic process, namely X = (Xt)t∈I with

Xt := E[X|Ft]. (∗)

Of course, because of Theorem 11.2.7,

E[Xt|Fs] = E[E[X|Ft]|Fs] = E[X|Fs] = Xs.

Stochastic processes X with this property will be called martingales. In Section 14.4, we will
then (among other things) deal with when a martingale (Xt)t∈I is associated with a random
variable X so that (∗) applies.
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Definition 14.2 ((Sub-, Super-)martingale). Let X = (Xt)t∈I be an adapted, real-valued
stochastic process with E[|Xt|] <∞, t ∈ I. Then X is called

martingale, if E[Xt|Fs] = Xs for s, t ∈ I, s < t,

sub-martingale, if E[Xt|Fs] ≥ Xs for s, t ∈ I, s < t,

super-martingale, if E[Xt|Fs] ≤ Xs for s, t ∈ I, s < t.

More precisely, we say that X is a (Ft)t∈I-(sub, super)-martingale.

Remark 14.3 (Martingale property with discrete index set). If I is discrete, for example I =
{0, 1, 2, ...}, then a real-valued stochastic process X = (Xt)t∈I is a martingale iff E[|Xt|] <∞,
t ∈ I and E[Xt|Ft−1] = Xt−1 for all t = 1, 2, .... Then, for s, t ∈ I, s ≤ t,

E[Xt|Fs] = E[· · ·E[E[Xt|Ft−1]|Ft−2] · · · Fs] = Xs

according to theorem 11.2.7 The same holds to sub- and super martingales.

Example 14.4 (Sums and products of integrable random variables).

1. Let X1, X2, ... be a sequence of independent, integrable random variables with E[Xi] =
0, i = 1, 2, ... and Ft := σ(X1, ..., Xt). Further, let S0 := 0 and for t = 1, 2, ...

St :=

t∑
i=1

Xi.

Then,

E[St|Ft−1] = E[St−1 +Xt|Ft−1] = St−1 +E[Xt|Ft−1] = St−1 +E[Xt] = St−1,

i.e. (St)t=0,1,2,... is a martingale.

If E[Xi] ≥ 0 for all i = 1, 2, ..., then (St)t≥0 is a sub-martingale.

2. Let I = {−1,−2, ...} and X1, X2, ... be integrable, independent, identically distributed
random variables. Further, we set for t ∈ I

St :=
1

|t|

|t|∑
i=1

Xi

and Ft := σ(..., St−1, St). Then for t ∈ I,

E[St|Ft−1] = E
[ 1

|t|

|t|∑
i=1

Xi

∣∣∣St−1, St−2, ...
]

=
1

|t|

|t|∑
i=1

E
[
Xi

∣∣∣ |t|+1∑
i=1

Xi

]

= E
[
X1

∣∣∣ |t|+1∑
i=1

Xi

]

=
1

|t− 1|

|t−1|∑
i=1

Xi

= St−1
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according to Example 11.9. Specifically,

E[X1|Ft] = E
[
X1

∣∣∣ |t|∑
i=1

Xi

]

=
1

|t|

|t|∑
i=1

Xi

= St.

3. Let I = {0, 1, 2, ...} and X1, X2, ... be a sequence of independent, integrable random
variables with E[Xi] = 1, i = 1, 2, ... and Ft := σ(X1, ..., Xt). Further, S0 := 1 and for
t = 1, 2, ...

St :=

t∏
i=1

Xi.

Then, S1, S2, ... are integrable and

E[St|Ft−1] = E[St−1Xt|Ft−1] = St−1 ·E[Xt|Ft−1] = St−1 ·E[Xt] = St−1,

i.e. (St)t∈I is a martingale.

If E[Xi] ≥ 1 for all i = 1, 2, ..., then (St)t∈I is a sub-martingale.

Example 14.5 (Branching processes in discrete time). We consider a simple model for a

randomly evolving population. evolving population. Let X
(t)
i ) be independent, {0, 1, 2, ...}-

valued random variable and µ = E[X
(t)
i ]. Here, X

(t)
i stands for the number of offspring of the

ith individual of generation t with i, t = 0, 1, ..., t = 1, 2, .... Starting with Z0 = k we set

Zt+1 =

Zt∑
i=1

X
(t)
i ,

so Z = (Zt)t=0,1,2,... is the stochastic process of the total process of the total number of indi-

viduals. The distribution of X
(t)
i is also called the offspring distribution.

The process Z a (non-negative) martingale (with respect to the filtration generated by Z),

iff E[X
(t)
i ] = 1, i.e. each individual has on average has one offspring. Then, for t = 1, 2, ...

E[Zt+1 − Zt|Ft] = E
[ Zt∑

i=1

X
(t)
i − Zt|Ft

]
= (µ− 1)Zt.

If µ > 1, Z is a sub-martingale, and if µ < 1, Z is a super-martingale. Also, we call3.

Z a critical branching process if µ = 1,

Z a super-critical branching process if µ > 1,

Z a sub-critical branching process if µ < 1.

3It may seem irritating that a supercritical branching process is a sub-martingale and a subcritical branching
process is a super martingale
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In general, (Zt/µ
t)t=0,1,2,... is a (non-negative) martingale, because just like in the last calcu-

lation,

E[Zt+1 − µZt|Ft] = µZt − µZt = 0.

It is also worth noting that E[Zt+1|Ft] = µZt, from which one can recursively conclude that

E[Zt] = µt.

Example 14.6 (Martingales derived from Markov chains). With (discrete-time) Markov
chains, we have already described a fairly simple dependency structure between random vari-
ables. Let I = {0, 1, 2, ...}, E at most countable and P = (pxy)x,y∈E a stochastic matrix,
i.e.

pxy ≥ 0,
∑
z∈E

pxz = 1

for all x, y ∈ E. We find for f : E → R bounded and all s = 0, 1, 2, ...,

E[f(Xs+1)− f(Xs)|Fs] = E[f(Xs+1)− f(Xs)|Xs] =
∑
x∈E

pXs,y(f(y)− f(Xs)).

Therefore, setting M = (Mt)t=0,1,2,... with

Mt = f(Xt)−
t−1∑
s=1

E[f(Xs+1)− f(Xs)|Xs],

we have

E[Mt −Mt−1|Ft−1] = E[f(Xt)− f(Xt−1)|Ft−1]−E[f(Xt)− f(Xt−1)|Xt−1] = 0.

In other words, M is a martingale.

We conclude this section with a simple statement on how to obtain further sub-martingales
from known (sub)-martingales.

Proposition 14.7 (Convex functions of martingales are sub-martingales). Let X = (Xt)t∈I
be a stochastic process and φ : R → R convex. If φ(X) = (φ(Xt))t∈I is integrable and one of
the two conditions

1. X is a martingale

2. X is a sub-martingale and varphi is non-decreasing

is satisfied, then φ(X ) = (φ(Xt))t∈I is a sub-martingale.

Proof. If X is a martingale, then φ(Xs) = φ(E[Xt|Fs]). If X is a sub-martingale and φ is
non-decreasing, φ(Xs) ≤ φ(E[Xt|Fs]). In both cases, for s ≤ t because of Jensen’s inequality
for conditional expectations, Proposition 11.4,

φ(Xs) ≤ φ(E[Xt|Fs]) ≤ E[φ(Xt)|Fs],

i.e. φ(X ) is a sub-martingale.
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14.2 The stochastic integral as a martingale

In this section, let always I = {0, 1, 2, ...} (whereby all results can be transferred to a discrete
index set I = {t0, t1, ...} with t0 < t1 < ...). All concepts introduced here have an analogue for
processes in continuous time. However, the statements are much more complex to formulate
and prove in that case. Some of these analogous statements are first formulated in the lecture
Stochastic analysis.

Definition 14.8 (Previsible process). A stochastic process X is called (Ft)t∈I-previsible if
X0 = 0 and Xt is Ft−1-measurable, t = 1, 2, ...

Proposition 14.9 (Doob decomposition). Let I = {0, 1, 2, ...}. Each adapted process X =
(Xt)t∈I has an almost surely unique decomposition X = M + A, where M is a martingale
and A is previsible. In particular, X is a sub-martingale iff A almost surely non-decreasing.

Proof. Define the previsible process A = (At)t∈I by

At =
t∑

s=1

E[Xs −Xs−1|Fs−1]. (14.1)

Then M = X −A is a martingale, because

E[Mt −Mt−1|Ft−1] = E[Xt −Xt−1|Ft−1]− (At −At−1) = 0.

Now we come to the uniqueness of the representation. If X = M + A for a martingale M
and a previsible process A, then At −At−1 = E[Xt −Xt−1|Ft−1] for all t = 1, 2, ..., i.e. (14.1)
is almost surely true.

Definition 14.10 (Quadratic variation, increasing process). Let I = {0, 1, 2, ...} and X =
(Xt)t∈I be a square integrable martingale. The almost surely uniquely determined, previsible
process (⟨X ⟩t)t∈I , for which (X2

t − ⟨X⟩t)t∈I is a is a martingale, is the quadratic variation
process (or also the increasing process) of X .

Proposition 14.11 (Increasing process and variance). Let I = {0, 1, 2, ...}, X = (Xt)t∈I be
a martingale with quadratic variation process ⟨X ⟩ = (⟨X ⟩t)t∈I . Then

⟨X ⟩t =
t∑

s=1

E[X2
s −X2

s−1|Fs−1] =
t∑

s=1

E[(Xs −Xs−1)
2|Fs−1]

and
E[⟨X⟩t] = V[Xt −X0].

Proof. As in the proof of Proposition 14.9, the process ⟨X ⟩ using (14.1) can be written. This
immediately results in the first equals sign. The second follows, since E[XsXs−1|Fs−1] =
X2

s−1. Further is

E[⟨X ⟩t] =
t∑

s=1

E[X2
s −X2

s−1] = E[X2
t −X2

0 ] = E[(Xt −X0)
2] = V[Xt −X0].
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Example 14.12 (Increasing processes). 1. Let S = (St)∈I with St =
∑t

s=1Xs as in ex-
ample 14.4.1 with square integrable random variables X1, X2, .... Then, with Proposi-
tion 14.11

⟨S⟩t =
t∑

s=1

E[X2
s ].

In particular, the quadratic variation process of S is deterministic.

2. Let S = (St)∈I with St =
∏t

s=1Xs as in Example 14.4.3 with square integrable random
variables X1, X2, .... Then

⟨S⟩t =
t∑

s=1

E[(Ss − Ss−1)
2|Fs−1] =

t∑
s=1

S2
s−1E[(Xs − 1)2|Fs−1] =

t∑
s=1

S2
s−1V[Xs].

In particular, in this example the process ⟨S⟩ is truly stochastic.

3. Let I = [0,∞) and (Xt)t∈I be a Brownian motion. Even in continuous time, the in-
creasing process (⟨X ⟩t)t∈I is defined such that (X2

t −⟨X⟩t)t∈I is a martingale. According
to Example 14.47, ⟨X ⟩t = t is a candidate for the increasing process of the Brownian
motion. However, in continuous time it is more difficult to say what the equivalent of
a previsible process should be.

Definition 14.13 (Discrete stochastic integral). Let I = {0, 1, 2, ...} and H = (Ht)t∈I ,X =
(Xt)t∈I be a stochastic processes with values in R. If X is adapted and H is previsible, then
we define the stochastic integral H · X = ((H · X )t)t∈I by

(H · X )t =
t∑

s=1

Hs(Xs −Xs−1)

for all t ∈ I. If X is a martingale, then we call H · X a martingale transform of X .

Proposition 14.14 (Stability of stochastic integrals). Let I = {0, 1, 2, ...} and X = (Xt)t∈I
be an adapted, real-valued process with E[|X0|] <∞.

1. X is a martingale if and only if for each previsible process H = (Ht)t∈I , the stochastic
integral H · X is a martingale.

2. X is a sub-martingale (super-martingale) if and only if for every previsible, non-negative
process H = (Ht)t∈I the stochastic integral H·X is a sub-martingale (super-martingale).

Proof. 1. ’⇒’: We immediately write

E[(H · X )t+1 − (H · X )t|Ft] = E[Ht+1(Xt+1 −Xt)|Ft]

= Ht+1E[Xt+1 −Xt|Ft]

= 0.

’⇐’: Let t ∈ I and Hs := 1{s=t}. Then H = (Hs)s∈I is deterministic, in particular previsible.
Since (H · X )t−1 = 0, it follows that

0 = E[(H · X )t|Ft−1] = E[Xt −Xt−1|Ft−1] = E[Xt|Ft−1]−Xt−1

From this, the assertion follows.
2. follows analogously.

23



Example 14.15 (Quadratic variation for stochastic integrals). Let I = {0, 1, 2, ...}, X =
(Xt)t∈I a martingale and H = (Ht)t∈I previsible. Then, because of Proposition 14.11,

⟨H · X ⟩t =
t∑

s=1

E[((H · X )s − (H · X )s−1)
2|Fs−1] =

t∑
s=1

E[H2
s (Xs −Xs−1)

2|Fs−1]

=
t∑

s=1

H2
s ·E[(Xs −Xs−1)

2|Fs−1].

In particular,

V[(H · X )t] =
t∑

s=1

E[H2
s · (Xs −Xs−1)

2].

Example 14.16 (Payout for games). Martingale transforms can also be interpreted as payoffs
of games. Given a random variable evolves according to the adapted process X = (Xt)t=0,1,2,....
If you bet before time t with a stake Ht (based on the experience gained from X0, ..., Xt−1)
on the change in the random variable Xt − Xt−1, then (H · X )t is the profit realized up to
time time t. Given the underlying process X is a martingale, Proposition 14.14 shows that
the profit realized H ·X for each strategy H is a martingale. In particular, the expected profit
is 0.

As an example, consider the Petersburg paradox: a fair coin is tossed infinitely often. In
each round, a player places a stake of any amount. If heads comes up, he loses it, if tails
comes up, the stake is doubled and paid out again. The paradox consists of the following
strategy: starting with a stake of 1 on the first coin toss, the player doubles his stake with
every failure. If the first success comes on the t-th toss, his previous stake is

∑t
i=1 2

i−1 = 2t−1.
Since the last bet was 2t−1, the player gets 2t back, so he has certainly made a profit of 1 even
though the game was fair.

To analyze this game using martingales, let X1, X2, ... be an independent, identically dis-
tributed sequence with P(X1 = −1) = P(X1 = 1) = 1

2 , and S0 = 0, St =
∑t

i=1Xi. Then
S = (St)t=0,1,2,... is a martingale. Further, let Ht be the stake in the tth game. Therefore,

(H · S)t =
t∑

i=1

Hi(Si − Si−1) =
t∑

i=1

HiXi

is the profit after the tth game. Since with S, H · S is also a martingale, we find

lim
t→∞

E[(H · S)t] = E[(H · S)1] = E[X1] = 0,

i.e. the mean profit after a long time is 0, independent of the strategy H. Above we have the
bet

Ht := 2t−11{St−1=−(t−1)} (14.2)

and show that for the gain (H · S)t
t→∞−−−→fs 1 holds.

How do we now evaluate the strategy (14.2)? Let T be the random time of the win, i.e. T
is geometrically distributed with parameter 1

2 . In particular, T is almost surely finite. Then

E
[ ∞∑
t=1

Ht

]
=

∞∑
k=1

1

2k
(2k − 1) = ∞,

i.e. for the above strategy you may need a lot of capital.
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14.3 Stopped martingales

Let X = (Xt)t∈I be a stochastic process. A stopped stochastic process is given by X T :=
(XT∧t)t∈I , where T is an I-valued random variable. The process X T therefore stops when
T is reached. Special random variables T are called stopping times, whose occurrence at
time t can be decided by means of the σ-algebra Ft. (Consider, for example, a player who
plays a fair game and stops at a random time, e.g. when he has won or lost enough. In
this section we will learn about the Optional Stopping Theorem, which states that stopped
(at a stopping time) martingales are martingales again; see Theorem 14.19. The Optional
Sampling Theorem specifies conditions for which the martingale property applies not only to
fixed, but also at random stopping times; see Theorem 14.22.

Definition 14.17 (Stopping time). 1. A random time is a random variable with values
in Ī (the end of I). A random time T is called ((Ft)t∈I -)stopping time if {T ≤ t} ∈ Ft

for all t ∈ I.

2. Each stopping time T defines the σ-algebra

FT := {A ∈ A : A ∩ {T ≤ t} ∈ Ft, t ∈ I}

of the T -past.

3. Let B ∈ B(E). Then the hitting time of B is defined as

TB := inf{t : Xt ∈ B}.

4. For a random time T , XT is defined by ω 7→ XT (ω)(ω). Further, X T := (XT∧t)t∈I is
the process stopped at T .

Remark 14.18 (Interpretation and hitting times). 1. Let X = (Xt)t∈I be a stochastic
process and (Ft)t∈I the canonical filtration. Ft can be understood as the information
that is available at time t through knowledge of (Xs)0≤s≤t. If T is a stopping time, then
{T ≤ t} ∈ Ft. Therefore, the occurrence of the event {T ≤ t} can be decided by knowing
(Xs)s≤t. In other words, by knowing the stochastic process up to time t, it is possible to
decide whether the stopping time T has already occurred.

2. If I is at most countable and B ∈ B(E), then TB is a stopping time. Indeed, we write

{TB ≤ t} =
⋃
s≤t

{Xs ∈ B}︸ ︷︷ ︸
∈Fs⊆Ft

∈ Ft.

Proposition 14.19 (Optional Stopping). Let I = {0, 1, 2, ...} and X = (Xt)t∈I be a (sub-,
super-) martingale and T a stopping time. Then X T = (XT∧t)t∈I is a (sub-, super-) martin-
gale.

Proof. We show the assertion only for the case that X is a sub-martingale. The other state-
ments follows analogously. For a sub-martingale X and {T > t− 1} ∈ Ft,

E[XT∧t −XT∧(t−1)|Ft−1] = E[(Xt −Xt−1)1{T>t−1}|Ft−1]

= 1{T>t−1}E[Xt −Xt−1|Ft−1] ≥ 0,

i.e. X T is a sub-martingale.
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Lemma 14.20 (Conditions on FT ). Let I = {0, 1, 2, ...}, X = (Xt)t∈I be a martingale and
T a stopping time bounded by t. Then XT = E[Xt|FT ].

Proof. According to the definition of the conditional expectation and since XT is FT mea-
surable (see Proposition 13.33), we must show that E[Xt;A] = E[XT ;A] for A ∈ FT . It is
{T = s} ∩A ∈ Fs for s ∈ I, i.e.

E[XT ;A] =
t∑

s=1

E[Xs; {T = s} ∩A]

=
t∑

s=1

E[E[Xt|Fs]; {T = s} ∩A]

=

t∑
s=1

E[Xt; {T = s} ∩A]

= E[Xt;A].

Lemma 14.21 (Uniform integrability and stopping times).
Let I = {0, 1, 2, ...}. A martingale X = (Xt)t∈I is uniformly integrable if the family {XT :
T almost surely finite stopping time} is uniformly integrable.

Proof. ’⇐’: clear.

’⇒’: According to Lemma 7.9 there is a convex function f : R+ → R+ with f(x)
x

x→∞−−−→ ∞
and supt∈I E[f(|Xt|)] =: L < ∞. If T is almost surely a finite stopping time, then according
to Lemma 14.20 (applied to the almost surely finite stopping time T ∧ t) E[Xt|FT∧t] = XT∧t.
Since {T ≤ t} ∈ FT∧t, we find with Jensen’s inequality

E[f(|XT |), {T ≤ t}] = E[f(|XT∧t|), {T ≤ t}]
= E[f(|E[Xt|FT∧t]|), {T ≤ t}]
≤ E[E[f(|Xt|)|FT∧t], {T ≤ t}]
= E[f(|Xt|), {T ≤ t}] ≤ L.

Thus E[f(|XT |)] ≤ L, i.e. the assertion follows with lemma 7.9.

In example 14.16, H · S was a martingale, T a stopping time and E[(H · S)t] = 0 ̸= 1 =
(H · S)T . If T had been bounded, this inequality would not have been possible, as we now
show.

Theorem 14.22 (Optional Sampling Theorem). Let I = {0, 1, 2, ...}, S ≤ T almost certainly
finite stopping times and X = (Xt)t∈I a sub-martingale. If either T is bounded or X is
uniformly integrable, then XT is is integrable and XS ≤ E[XT |FS ].

Proof. We first carry out the proof in the case of a bounded stopping time T . Let T ≤ t be
for a t ∈ I. We use the Doob decomposition X = M+A of X into the martingale M and the
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monotonically non-decreasing process A. Then with Lemma 14.20 and FS ⊆ FT according
to theorem 11.2.7

XS =MS +AS = E[Mt +AS |FS ]

≤ E[Mt +AT |FS ]

= E[E[Mt|FT ] +AT |FS ]

= E[MT +AT |FS ]

= E[XT |FS ].

Now let T be unbounded and X be uniformly integrable. Let X = M + A be the Doob
decomposition of X into the martingale M and the non-falling previsible process A ≥ 0 with
A0 = 0. Since

E[|At|] = E[At] = E[Xt −X0] ≤ E[|X0|] + sup
s∈I

E[|Xs|]

we find At ↑ A∞ for an A∞ ≥ 0 with E[A∞] <∞. With Lemma 7.9 one can conclude that M
is also uniformly integrable. We now apply the Optional Sampling Theorem to the bounded
stopping times S ∧ t, T ∧ t and M. For A ∈ FS is {S ≤ t} ∩A ∈ FS∧t, therefore

E[MT∧t, {S ≤ t} ∩A] = E[E[MT∧t|FS∧t], {S ≤ t} ∩A] = E[MS∧t, {S ≤ t} ∩A].

Since according to Lemma 14.21 the set {MS∧t,MT∧t : t ∈ I} is uniformly integrable, then
by Theorem 7.11

E[MT , A] = lim
t→∞

E[MT∧t, {S ≤ t} ∩A] = lim
t→∞

E[MS∧t, {S ≤ t} ∩A] = E[MS , A],

i.e. E[MT |FS ] =MS . Furthermore,

E[XT |FS ] = E[MT |FS ] +AS +E[AT −AS |FS ] ≥MS +AS = XS .

The Optional Sampling Theorem offers a simple way of characterizing martingales.

Lemma 14.23 (Characterization of martingales). Let I = {0, 1, 2, ...}, and X = (Xt)t∈I be
an adapted stochastic process. Then X is a martingale iff E[XS ] = E[XT ] forstopping times
S, T that only take two values.

Proof. ’⇒’: Clear according to the Optional Sampling Theorem.
’⇐’: Let s ≤ t, A ∈ Fs and T = s1A + t1Ac . Then T is a stopping time and

0 = E[Xt −XT ] = E[Xt]−E[Xs, A]−E[Xt, A
c] = E[Xt −Xs, A].

Since A was arbitrary, it follows that E[Xt|Fs] = Xs, so X is a martingale.

Example 14.24 (Wald’s identities, ruin problem). 1. Let X1, X2, ... ∈ L1 be independent
with µ := E[X1] = E[X2] = ..., and St :=

∑t
s=1Xs. Furthermore, let T be an almost

certainly limited stopping time. Then the first Wald identity is

E[ST ] = E[T ]µ.
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Indeed: the process M = (Mt)t=0,1,2,... with M0 = 0, Mt = St − tµ for t = 1, 2, ... is a
martingale, and according to the Optional Sampling Theorem

0 = E[MT ] = E[ST ]−E[T ]µ.

Furthermore, if X1, X2, ... ∈ L2 with σ2 = V[X1] = V[X2] = ... and T is independent
of X1, X2, ..., then the second Wald identity is

V[ST ] = E[T ]σ2 +V[T ]µ2.

Indeed: (M2
t − ⟨M⟩t)t=0,1,2,... is a martingale, and ⟨M⟩t = tσ2 according to Exam-

ple 14.12, thus

0 = E[M2
T − ⟨M⟩T ] = E[M2

T ]−E[T ]σ2.

Furthermore, due to the independence of T and X1, X2, ...,

COV[ST , T ] = E[E[X1 + · · ·+XT |T ]T ]− µE[T ]2 = µV[T ],

as well as

E[M2
T ] = V[ST − Tµ] = V[ST ] + µ2V[T ]− 2µCOV[ST , T ] = V[ST ]− µ2V[T ].

In both Wald identities, the condition that T is bounded can be weakened.

2. Let k ∈ N and X1, X2, ... be independent and identically distributed random variables
with P(X1 = 1) = 1−P(X1 = −1) = p := 1− q. For N ∈ N with 0 < k < N let S0 = k
and St = S0 +

∑t
i=1Xi. Further, let T := inf{t : St ∈ {0, N}} and pk := P(ST = 0).

This means that you play a game, starting with k (money) units, until you are either
ruined or have N units. In each step you win with probability p one unit and loses with
probability q = 1 − p one unit. Then the probability of being ruined (having 0 units) is
given by pk.

In the case p = 1
2 , (St)t=0,1,2,... is a martingale, and thus according to the Optional

Sampling Theorem

k = E[ST ] = N(1−P(ST = 0)),

thus

P(ST = 0) =
N − k

N
.

A similar calculation allows the determination of pk for the case p ̸= 1
2 .

We now calculate further using the optional sampling theorem for p ̸= 1
2

pk := P(ST = 0) =

( q
p

)k − ( q
p

)N
1−

( q
p

)N . (14.3)

Indeed: the following applies

E
[(q
p

)X1
]
=
q

p
p+

p

q
q = 1
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and thus Y = (Yt)t=0,1,2,..., is defined by Yt :=
(
q
p

)St

according to Example 14.4.3 a

martingale. Since T is almost surely finite, YT∧t is a martingale due to Proposition

14.19, which is bounded by 1 and
(
q
p

)N
. Because of Theorem 14.22,

(q
p

)k
= E[Y0] = E[YT ] = pk + (1− pk)

(q
p

)N
,

from which (14.3) follows.

3. Let’s consider a fair coin toss. How long does it take until the pattern ZKZK occurs for
the first time? (K and Z stand for heads and tails).

To calculate this, let’s consider the following game: before the first coin toss, a player
bets one euro on Z. If she loses, she stops, if she wins, she bets two euros on K before the
next toss. If she loses in the second throw, she stops; if she wins, she bets four euros on
euros on Z. If she loses on the third throw, she stops, if she wins, she bets eight euros
on K. So if she wins on the fourth throw, she has won a total of 15 euros. In all other
cases, she loses one euro.

Let us now assume that before each coin toss a new player plays according to the above
strategy. The game ends when the first player first time a player wins 15 euros.

Let Xt be the total winnings of all players up to time t and T is the time at which the
game is stopped because for the first time the pattern ZKZK has occurred. Certainly,

|Xt| ≤ 15 · t, P[T > 4t] ≤ 15

16

t

.

This means that (Xt∧T : t = 1, 2, ...) has a cominating integrable random variable,
so according to Example 7.8.2 it is uniformly integrable. This allows us to apply the
optional stopping theorem, i.e. (XT∧t)t=1,2,... is a martingale.

It is certain that

XT = 15− 1 + 3− 1− (T − 4)

since the first T − 4 players, as well as players T − 3 and T − 1 had to accept a loss of
one euro. Player T − 2 currently has at time T a profit of three euros and player T − 4
has won 15 euros. So,

0 = E[XT ] = E[15− 1 + 3− 1− (T − 4)] = −E[T ]− 20,

therefore E[T ] = 20. It is interesting to note that it can be expected that, for example,
the pattern ZZKK can already occur after 16 coin tosses using a similar calculation.

14.4 Martingale convergence results

Again, (Ω,F ,P) is a probability space, I countable (here it is also allowed that I is dense in
[0,∞)) and (Ft)t∈I is a filtration. We are familiar with convergence theorems, such as the
strong law of of large numbers. Martingales converge under relatively weak conditions.

We start in Proposition 14.26 with Doob’s inequalities. These make statements about the
distribution of sups≤tXs if X = (Xt)t∈I is a (sub, super)-martingale.
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Lemma 14.25 (maximum inequality). If I is at most countable and X = (Xt)t∈I is a sub-
martingale, then for λ > 0

λP[sup
s≤t

Xs ≥ λ] ≤ E[Xt, sup
s≤t

Xs ≥ λ] ≤ E[|Xt|, sup
s≤t

Xs ≥ λ].

Proof. The second inequality is trivial. For the first one, we note that due to monotonic
convergence (by choosing finer and finer index sets in index sets in [0, t]) it is sufficient to
consider the discrete case, e.g. I = {0, 1, 2, ...}, to be considered. We recall the definition of
TB from Definition 14.17, which is given after Remark 14.18.2 is a stopping time and set

T = t ∧ T[λ;∞).

According to the Optional Sampling Theorem 14.22 is

E[Xt] ≥ E[XT ] = E[XT ; sup
s≤t

Xs ≥ λ] +E[XT ; sup
s≤t

Xs < λ]

≥ λP[sup
s≤t

Xs ≥ λ] +E[Xt; sup
s≤t

Xs < λ].

Subtracting the last term gives the inequality.

Proposition 14.26 (Doob’s Lp inequality). Let I be at most countable and X = (Xt)t∈I be
a martingale or a positive sub-martingale.

1. For p ≥ 1 and λ > 0 is

λpP[sup
s≤t

|Xs| ≥ λ] ≤ E[|Xt|p].

2. For p > 1 is

E[|Xt|p] ≤ E[sup
s≤t

|Xs|p] ≤
( p

p− 1

)p
E[|Xt|p].

Proof. Again, it suffices – due to monotonic convergence – to consider the case I = {0, 1, 2, ...}
to consider.

1 According to proposition 14.7, (|Xt|p)t∈I is a sub-martingale and the assertion follows from
Lemma 14.25.

2 The first inequality is clear. For the second inequality, note that according to Lemma 14.25
it holds that

λP{sup
s≤t

|Xs| ≥ λ} ≤ E[|Xs|; sup
s≤t

|Xs| ≥ λ].
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Figure 4:
An illustration of the stopping times S1, T1, S2, T2, ... from definition 14.27

Therefore, for K > 0

E[sup
s≤t

(|Xs| ∧K)p] = E
[ ∫ sups≤t |Xs|∧K

0
pλp−1dλ

]
= E

[ ∫ K

0
pλp−11{λ<sups≤t |Xs|}dλ

]
=

∫ K

0
pλp−1P(sup

s≤t
|Xs| ≥ λ)dλ

≤
∫ K

0
pλp−2E[|Xt|, sup

s≤t
|Xs| ≥ λ]dλ

= pE
[
|Xt|

∫ sups≤t |Xs|∧K

0
λp−2dλ

]
=

p

p− 1
E[|Xt|(sup

s≤t
|Xs| ∧K)p−1]

≤ p

p− 1
E[sup

s≤t
(|Xs| ∧K)p](p−1)/p ·E[|Xt|p]1/p,

where we used the Hölder inequality in the last step. If you exponentiate both sides by p and
then divide by E[sups≤t(|Xs| ∧K)p]p−1, the it follows

E[sup
s≤t

(|Xs|)p] = lim
K→∞

E[sup
s≤t

(|Xs| ∧K)p] ≤
( p

p− 1

)p
E[|Xt|p].

For the martingale convergence theorems, the upcrissong lemma 14.28 is central. Figure 4
illustrates the definition of an upcrossing.
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Definition 14.27. Let I be at most countable and X = (Xt)t∈I a real-valued stochastic
process. For a < b an upcrossing is a piece of path (Xr)s≤r≤s′ with Xs ≤ a and Xs′ ≥ b. To
count the number of such upcrossings, we carry out stopping times 0 =: T0 < S1 < T1 < S2 <
T2 < ...

Sk := inf{t ≥ Tk−1 : Xt ≤ a},
Tk := inf{t ≥ Sk : Xt ≥ b}

with inf ∅ = ∞. The k-th intersection between a and b is here between Sk and Tk. Further is

U t
a,b := sup{k : Tk ≤ t}

is the number of crossings between a and b up to time t.

Lemma 14.28 (Upcrossing lemma). Let I be at most countable and X = (Xt)t∈I a sub-
martingale. Then

E[U t
a,b] ≤

E[(Xt − a)+]

b− a
.

Proof. Again, we can assume – due to monotonic convergence – that I = {0, 1, 2, ...}. Since
according to proposition 14.7 with X ((Xt−a)+)t∈I is also a sub-martingale and the upcross-
ings between a and b of X are the same as the upcrossings of ((Xt − a)+)t∈I between 0 and
b− a, we can wlog assume that X ≥ 0 and a = 0. We define the process H = (Ht)t∈I by

Ht :=
∑
k≥1

1{Sk<t≤Tk},

i.e. Ht = 1 exactly when t lies in an upcrossing. Since

{Ht = 1} =
⋃
k≥1

{Sk ≤ t− 1} ∩ {Tk > t− 1},

H is previsible.
Given Tk <∞ is obviously XTk

−XSk
≥ b. Further, in this case

(H · X )Tk
=

k∑
i=1

Ti∑
s=Si+1

(Xs −Xs−1) =
k∑

i=1

(XTi −XSi) ≥ kb.

For t ∈ {Tk, ..., Sk+1} is (H · X )t = (H · X )Tk
and for t ∈ {Sk + 1, ..., Tk} is (H · X )t ≥

(H · X )Sk
= (H · X )Tk−1

. Therefore, (H · X )t ≥ bU t
0,b. From Proposition 14.14 it follows

that ((1−H) · X ) is a sub-martingale, in particular E[((1−H) · X )t] ≥ 0. With Xt −X0 =
(1 · X )t = (H · X )t + ((1−H) · X )t applies

E[Xt] ≥ E[Xt −X0] ≥ E[(H · X )t] ≥ bE[U t
0,b].

Theorem 14.29 (martingale convergence theorem for sub-martingales). Let I ⊆ [0,∞) be
countable, sup I = u ∈ (0,∞], Fu = σ(

⋃
t∈I Ft) and X = (Xt)t∈I a sub-martingale with

supt∈I E[X+
t ] < ∞. Then there is a null set N such that X converges outside of N along

every ascending or descending sequence in I.
In particular, if I = {0, 1, 2, ...}, X is a sub-martingale with supt∈I E[X+

t ] <∞, then there

exists a F∞-measurable, integrable random variable X∞ and Xt
t→∞−−−→fs X∞.
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Proof. Because of Lemma 14.28, P(U t
a,b <∞) = 1 for all a, b, t. Therefore

N :=
⋃
a<b
a,b∈Q

{sup
t∈I

U t
a,b = ∞}

is a null set. Assuming that there is an ascending or descending sequence t1, t2, ... ∈ I exists
such that P(lim infn→∞Xtn < lim supn→∞Xtn) > 0. For a, b ∈ Q let

B(a, b) := {lim inf
n→∞

Xtn < a < b < lim sup
n→∞

Xtn}.

Since {lim infn→∞Xtn < lim supn→∞Xtn} =
⋃

a,b∈QB(a, b), there exist a, b ∈ Q withP(B(a, b)) >

0. However, supt U
t
a,b = ∞ applies to B(a, b) in contradiction to the fact that N is a null set.

Thus follows the almost sure convergence along every ascending or descending sequence.
Now let I = {0, 1, 2, ...}. Since all Xt are F∞-measurable, X∞ is also F∞-measurable. It

remains to show that X∞ is integrable. According to Fatou’s Lemma,

E[X+
∞] ≤ sup

t∈I
E[X+

t ] <∞.

Moreover, since X is a sub-martingale, again using Fatou’s lemma,

E[X−
∞] ≤ lim inf

t→∞
E[X−

t ] = lim inf
t→∞

(
E[X+

t ]−E[Xt]
)
≤ sup

t∈I
E[X+

t ]−E[X0] <∞.

Corollary 14.30 (martingale convergence theorem for positive super martingales). Let I ⊆
[0,∞) be at most countable, sup I = u ∈ (0,∞], Fu = σ(

⋃
t∈I Ft) and X = (Xt)t∈I a non-

negative super martingale. Then there exists a Fu-measurable, integrable random variable Xu

with E[Xu] ≤ E[X0] and Xt
t→u−−→fs Xu.

Proof. Theorem 14.29, applied to the sub-martingale −X provides the almost sure limit.
With the Lemma of Fatou also

E[Xu] ≤ lim inf
t→u

E[Xt] ≤ E[X0].

Example 14.31 (Convergence of branching processes). Let us consider a critical or sub-
critical branching process Z = (Zt)t=0,1,2,... from Example 14.5 (where the offspring dis-

tribution is not degenerate, i.e. X
(t)
i = 1 is not almost certain). These are non-negative

super-martingales, so they must converge according to Corollary 14.30 almost surely against
a random variable Z∞. In this case, P(Z∞ > 0) = 0 must apply, otherwise the almost sure
convergence is violated. (A population with a positive number of individuals has a positive
probability of changing its size in one generation.) Therefore,

Zt
t→∞−−−→ Z∞ := 0

is almost certain.
In the case of the critical branching process, it is important to realize that (Zt)t=0,1,2,...,∞

is not a martingale, because E[Z∞|Ft] = E[0|Ft] ̸= Zt applies with positive probability.

If Z is supercritical, then (Zt/µ
t)t=0,1,2,... is a non-negative martingale that also converges

almost surely according to the above corollary.
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Theorem 14.32 (Convergence theorem for uniformly integrable martingales). Let I be count-
able with sup I = u ∈ (0,∞], Fu = σ(

⋃
t∈I Ft) and X = (Xt)t∈I a (super, sub)-martingale.

Then the following statements are equivalent:

1. X is uniformly integrable.

2. There exists a Fu-measurable random variable Xu such that (Xt)t∈I∪u is a (super,
sub)martingale.

3. There exists a Fu-measurable random variable Xu with Xt
t→u−−→fs,L1 Xu.

Proof. 2.→ 1st follows directly from lemma 11.5.
1. ⇒ 3. By Lemma 7.9, supt∈I E[|Xt|] < ∞. The almost certain convergence follows from
theorem 14.29 and the L1-convergence thus from theorem 7.11.
3. ⇒ 2.: As for the proof that (Xt)t∈I∪{u} is a (super, sub)-martingale, we only give the
argument for sub-martingales, i.e. E[E[Xu|Fs];A] ≥ E[Xs;A] for A ∈ Fs and s ∈ I. Because

of the L1 convergence according to Theorem 11.2.3, E[|E[Xt|Fs]−E[Xu|Fs]|]
t→u−−→ 0 and thus

for A ∈ Fs, so
E[E[Xu|Fs];A] = lim

t→∞
E[E[Xt|Fs];A] ≥ E[Xs;A],

i.e. E[Xu|Fs] ≥ Xs almost surely.

Theorem 14.33 (Martingale convergence theorem for Lp-bounded martingales). Let I be
countable with sup I = u ∈ [0,∞), Fu = σ(

⋃
t∈I Ft), p > 1 and X = (Xt)t∈I an Lp-

constrained martingale. Then there is a Fu-measurable random variable Xu with E[|Xu|p] <
∞, Xt

t↑u−−→fs,Lp Xu. Furthermore, (|Xt|p)t∈I is uniformly integrable.

Proof. Because of Lemma 7.9, X is uniformly integrable. According to Theorem 14.32 there

is thus the limit Xu with Xt
t↑u−−→fs,L1 Xu. According to Doob’s inequality from Proposition

14.26, for t ∈ I

E[sup
t∈I

|Xt|p] = lim
t↑u

E[sup
s≤t

|Xs|p] ≤ lim
t↑u

( p

p− 1

)p
E[|Xt|p] <∞.

Thus (|Xt|p)t∈I is uniformly integrable according to Example 7.8.3 According to Fatou’s
Lemma and Lemma 7.9, E[|Xu|p] ≤ supt∈I E[|Xt|p] < ∞ and Theorem 7.11 provides the
convergence in Lp.

Example 14.34 (branching process). Let Z be a branching process as in Example 14.5 and
Example 14.31 with Z0 = k. The quadratic variation of Y = (Yt)t=0,1,2,..., given Yt = Zt/µ

t

is according to Proposition 14.11 is given as

⟨Y⟩t =
t∑

s=1

1

µ2s
E
[( Zs−1∑

i=1

X
(s−1)
i − µZs−1

)2
|Fs−1

]

=
t∑

s=1

1

µ2s
V
[ Zs−1∑

i=1

X
(s−1)
i |Zs−1

]
=

t∑
s=1

1

µ2s
Zs−1 ·V[X

(1)
1 ].
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In particular, the offspring distribution has a second moment, therefore V[X
(1)
1 ] =: σ2 < ∞,

so

V[Yt] =
t∑

s=1

1

µ2s
E[Zs] · σ2 = kσ2

t∑
s=1

1

µs
.

If µ ≤ 1, then Y is not L2-constrained, but for µ > 1 supt=0,1,2,...V[Yt] < ∞. This means
that there is a F∞-measurable, square-integrable random variable Y∞, so that (Yt)t=0,1,2,...,∞
is a martingale.

Example 14.35 (product of random variables). Let I = {1, 2, ...}, X1, X2, ... be non-negative,
independent, integrable random variable with E[Xt] = 1, t ∈ I and St :=

∏t
s=1Xs according

to Example 14.4.2 a martingale. According to the corollary 14.30 there is thus a S∞, so that

St
t→∞−−−→fs S∞. Define

at := E[
√
Xt].

We now show:

{St : t ∈ I} uniformly integrable ⇐⇒
∞∏
t=1

at > 0.

In particular, then also St
t→∞−−−→L1 S∞. In the proof we set for t = 1, 2, ..

Wt :=
t∏

s=1

√
Xs

as
.

This means that (Wt)t=1,2,... is a martingale. Here, too, it follows that there is a W∞ with

Wt
t→∞−−−→fs W∞.

’⇐’: Because of Jensen’s inequality a2t = (E[
√
Xt])

2 ≤ E[Xt] = 1, thus at ≤ 1. The following
applies

sup
t∈I

E[W 2
t ] = sup

t∈I
E
[ t∏
s=1

Xs

a2s

]
= sup

t∈I

t∏
s=1

E[Xs]

a2s
≤ 1(∏∞

s=1 as

)2 <∞.

Thus (Wt)t∈I is an L2-constrained martingale, according to Theorem 14.33, {W 2
t : t ∈ I} is

uniformly integrable. From this also the uniform integrability of {St : t ∈ I} follows.
’⇒’: Let us assume that

∏∞
s=1 as = 0. Since Wt has an almost certain finite limit, St =∏t

s=1Xs
t→∞−−−→fs 0 must hold. If {St : t ∈ I} were uniformly integrable, 0 = E[S∞] =

limt→∞E[St] = 1, i.e. a contradiction.

Theorem 14.36 (Convergence of conditional expected values).

1. Let I ⊆ [0,∞) be countable with sup I = u ∈ (0,∞], (Ft)t∈I a filtration and Fu =
σ(
⋃

t∈I Ft). Then the following applies for X ∈ L1 that

E[X|Ft]
t↑u−−→fs,L1 E[X|Fu].

2. Let I ⊆ (−∞,∞) be countable with inf I = u ∈ [−∞,∞), (Ft)t∈I a filtration and
Fu =

⋂
t∈I Ft. Then the following applies for X ∈ L1 that

E[X|Ft]
t↓u−−→fs,L1 E[X|Fu].
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Proof. We only show 1. since the proof of 2. proceeds analogously. With E[|E[X|Ft]|] ≤
E[|X|] < ∞ converges according to Theorem 14.29 the martingale (E[X|Ft])t∈I converges
almost surely. The L1-convergence follows with Theorem 14.32 and Lemma 11.5. The limit
value Xu can be chosen Fu-measurable can be chosen. We will now show that Xu = E[X|Fu],
from which the assertion follows.

It is clear that E[E[X|Ft], A] = E[X,A] applies to all A ∈ Fs and s ≤ t. With t ↑ u is
therefore E[Xu, A] = E[X,A] for all A ∈ Fs and with s ↑ u also E[Xu, A] = E[X,A] for all
A ∈ Fu. Since Xu according to Fu-measurable, this means that Xu = E[X|Fu].

We now come to backward martingales, which are martingales with an index set downward
unlimited index set I ⊆ (−∞, 0]. These converge under very weak conditions.

Theorem 14.37 (Martingale convergence theorem for backward martingales). Let I ⊆ (∞, 0]
be discrete, inf I = u ∈ (−∞, 0], Fu =

⋂
t∈I Ft and X = (Xt)t∈I a sub-martingale. Then are

equivalent

1. There is a Fu-measurable, integrable random variable Xu with Xt
t↓u−−→fs, L1 Xu

2. inft∈I E[Xt] > −∞.

Then (Xt)t∈I∪{u} is also a sub-martingale. In particular, every backward martingale converges
almost surely and in L1.

Proof. Wlog, let I = {...,−2,−1, 0} and u = −∞.
’1.⇒ 2.’: From the convergence in the mean follows

inf
t∈I

E[Xt] = lim
t→−∞

E[Xt] = E[X−∞] > −∞.

’2. ⇒ 1.’: The almost sure convergence follows as in the proof of Theorem 14.29, where the
condition supt∈I E[X+

t ] <∞ because of I ⊆ (−∞, 0] must be replaced by inft∈I E[X−
t ] <∞.

We further define for t = ...,−2,−1, 0

Yt := E[Xt −Xt−1|Ft−1] ≥ 0.

Then,

E
[ −∞∑
t=0

Yt

]
= E[X0]− inf

t∈I
E[Xt] <∞.

Thus,
∑−∞

t=0 Yt <∞ is almost certain, and we define

At =
∑
s≤t

Ys, Mt = Xt −At

Now (At)t∈I is uniformly integrable because E[A0] < ∞, and (Mt)t∈I is integrable because
it is uniformly integrable by Lemma 11.5. Thus, X is uniformly integrable, and the L1-
convergence follows. The proof that (Xt)t∈I∪{−∞} is a sub-martingale proceeds analogous to
the proof in 14.32.
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Example 14.38 (The strong law of large numbers). Let X1, X2, ... ∈ L1 be independently
identically distributed. For t ∈ {...,−2,−1} we set as in the Example 14.4.2,

St :=
1

|t|

|t|∑
s=1

Xs

and Ft = σ(..., St−1, St) = σ(St, Xt+1, Xt+2, ...). Then (St)t∈I is a backward martingale with
St = E[X1|Ft]. According to Theorem 14.37, St converges almost surely and in L1 against
a random variable S−∞. This is measurable with respect to F−∞, but also with respect to
T (X1, X2, ...), the terminal σ-algebra of the family {X1, X2, ...}. Since this σ-algebra is trivial
according to Kolmogoroff’s 0-1-law, S−∞ is almost certainly constant. Since (St)t∈I∪{−∞} is
a martingale, it follows that

1

|t|

|t|∑
s=1

Xs = St
t→−∞−−−−→fs,L1 S−∞ = E[S−∞] = E[S−1] = E[X1].

However, the almost sure convergence is exactly the statement of the law of large numbers.

We now come to an application of the martingale convergence theorems, an improvement of
the Borel-Cantelli lemma, Theorem 8.8. For this we need a lemma.

Lemma 14.39 (Convergence and increasing process). Let M = (Mt)t=0,1,2,... be an L2-
integrable martingale, where |Mt −Mt−1| ≤ K for some K and all t = 1, 2, ... holds. Then
there is a nullset N such that

{⟨M⟩∞ <∞} ⊆ { lim
t→∞

Mt exists} ∪N,

{⟨M⟩∞ = ∞} ⊆ { lim
t→∞

Mt/⟨M⟩t = 0} ∪N.

Proof. We start with the first statement. First, for each k = 1, 2, 3, ... the random time

Tk := inf{t : ⟨M⟩t > k}

is a stopping time. From this already follows

{⟨M⟩∞ <∞} =

∞⋃
k=1

{Tk = ∞}. (14.4)

Furthermore, the stopped process (⟨M⟩t∧Tk
)t=0,1,2,... is previsible, because for A ∈ B(R),

{⟨M⟩t∧Tk
∈ A} =

(
{Tk > t− 1} ∩ {⟨M⟩t ∈ B}

)
∪

t−1⋃
s=0

{Tk = s, ⟨M⟩s ∈ A} ∈ Ft−1.

Let us now consider the martingale (MTk)2 − ⟨M⟩Tk = (M2 − ⟨M⟩)Tk for k = 1, 2, ... It is
⟨MTk⟩ = ⟨M⟩Tk and ⟨M⟩Tk is bounded by k +K2. Thus MTk is bounded in L2 and thus
converges almost surely. However, on the set {Tk = ∞}, the process MTk converges if and
only if M converges. Together with (14.4) the statement follows.
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For the second statement, we consider the martingale X := (1 + ⟨M⟩)−1 · M. Since (1 +
⟨M⟩)−1 is bounded and M is an L2-integrable martingale, X is an L2-integrable martingale.
Furthermore, according to Example 14.15,

⟨X ⟩t =
( 1

(1 + ⟨M⟩)2
· ⟨M⟩

)
t
=

t∑
s=1

1

(1 + ⟨M⟩s)2
(⟨M⟩s − ⟨M⟩s−1)

≤
t∑

s=1

1

(1 + ⟨M⟩s)(1 + ⟨M⟩s−1)
(⟨M⟩s − ⟨M⟩s−1) =

t∑
s=1

1

1 + ⟨M⟩s−1
− 1

1 + ⟨M⟩s

= 1− 1

1 + ⟨M⟩t
.

This means that the martingale X converges after 1. i.e. in particular

∞∑
s=1

Ms −Ms−1

1 + ⟨M⟩s
<∞.

Now the Kronecker lemma 8.24 provides that∑t
s=1Ms −Ms−1

⟨M⟩t
t→∞−−−→ 0

on {⟨M⟩∞ = ∞}.

Theorem 14.40 (Extension of the Borel-Cantelli lemma). Let At ∈ Ft, t = 0, 1, 2, ... and

Xs := P(As|Fs−1).

1. On
∑∞

t=1Xt <∞ only a finite number of the At occur, i.e.{ ∞∑
t=1

Xt <∞
}
⊆

{ ∞∑
t=1

1At <∞
}
.

2. On
∑∞

t=1Xt = ∞ applies
∑∞

t=1 1At/
∑∞

t=1Xt = 1, thus

{ ∞∑
t=1

Xt = ∞
}
⊆

{ ∞∑
t=1

1At/
∞∑
t=1

Xt = 1
}
⊆

{ ∞∑
t=1

1At = ∞
}
.

Remark 14.41 (Extension). The Borel-Cantelli Lemma from theorem 8.8 can now be easily
be derived. Namely, if

E
[ ∞∑
t=1

Xt

]
=

∞∑
t=1

P(At) <∞,

then
∑∞

t=1Xt < ∞ almost certainly applies. The statement now gives that at most a finite
number of the An occur. If further A1, A2, ... are independent, then we set Ft = σ(A1, ..., At)
and thus Xs = E[1As |Fs−1] = P(As). Now,

∑∞
t=1P(At) = ∞, infinitely many of the An’s

occur.
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Proof. We consider the martingale M with

Mt =

t∑
s=1

1As −Xs.

Then,

⟨M⟩t =
t∑

s=1

E[12As
X2

s |Fs−1] =
t∑

s=1

Xs(1−Xs) ≤
t∑

s=1

Xs.

If now
∑∞

t=1Xt < ∞, then M converges according to Lemma 14.39.1. therefore also∑∞
t=1 1At <∞.

If now
∑∞

t=1Xt = ∞ and ⟨M⟩∞ <∞, then M converges and the assertion is clear.

If now
∑∞

t=1Xt = ∞ and ⟨M⟩∞ = ∞, then Mt/⟨M⟩t
t→∞−−−→ 0 according to Lemma 14.39.2

From this, ∣∣∣∑t
s=1 1As∑t
s=1Xs

− 1
∣∣∣ = ∣∣∣ Mt∑t

s=1Xs

∣∣∣ ≤ ∣∣∣ Mt

⟨M⟩t

∣∣∣ t→∞−−−→ 0.

14.5 The Central Limit Theorem for martingales

The Central Limit Theorem from Section 10.2 states the convergence of a sum of independent
random variables – suitably transformed – to a normally distributed random variable. Now
we treat the case of a sequence of martingales M1 = (M1

t )t=0,1,2,...,M2 = (M2
t )t=0,1,2,..., ...,

each started in 0, which are given by Xn
t := Mn

t − Mn
t−1, t = 1, 2, ... as a sum through

Mn
t = Xn

1 + · · · +Xn
t now applies. Now note that the family Xn

1 , X
n
2 , ... do not have to be

independent. Nevertheless, we can – under suitable conditions – still prove convergence in
distribution against a normally distributed random variable.

Theorem 14.42 (Central limit theorem for martingales). Let In = {0, 1, 2, ..., tn} and Mn =
(Mn

t )t∈In a martingale with Mn
0 = 0 with respect to a filtration Fn = (Fn

t )t∈In, n = 1, 2, ...
For Xn

t :=Mn
t −Mn−1

t (with t = 1, ..., tn) the following applies

E[ max
1≤s≤tn

|Xn
s |]

n→∞−−−→ 0, (14.5)

tn∑
s=1

(Xn
s )

2 n→∞−−−→p σ
2 > 0. (14.6)

Then Mn
tn

n→∞−−−→ X with X ∼ N(0, σ2).

We need two lemmas in the proof of the theorem.

Lemma 14.43 (Convergence of products of random variables). Let U1, U2, ..., T1, T2, ... be
random variables that satisfy the following conditions:

1. Un
n→∞−−−→p u,

2. (Tn)n=1,2,... and (TnUn)n=1,2,... are uniformly integrable,

3. E[Tn]
n→∞−−−→ 1.
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Then E[TnUn]
n→∞−−−→ u.

Proof. Because of 3. it suffices to show that E[Tn(Un − u)]
n→∞−−−→ 0. To do this, we simply

show Tn(Un − u)
n→∞−−−→p 0, which implies the L1-convergence due to 2. In particular, then

E[Tn(Un − u)]
n→∞−−−→ 0. Let ε > 0 and K be large enough so that supnP(|Tn| >> K) ≤ ε.

(Such a K exists because of the uniform integrability of T1, T2, ...) Now we write (note that
for x, y ≥ 0 and δ, ε > 0 it always holds that xy > δε→ x > δ or y > ε)

lim sup
n→∞

P(|Tn(Un − u)| > ε) ≤ lim sup
n→∞

P(|Un − u| > ε/K) +P(|Tn| > K) ≤ ε.

The assertion follows from this.

Lemma 14.44 (Estimation of the exponential function). 1. There is a C > 0 and a func-
tion r with |r(x)| ≤ C|x3| such that

exp(ix) = (1 + ix) exp(−x2/2 + r(x))

for all x ∈ R is valid.

2. |1 + ix| ≤ ex
2/2 applies to all x ∈ R.

Proof. 1. It is sufficient to show the assertion for small |x|, since it is trivial for large |x|.
With the help of lemma 10.12, we write∣∣∣ exp(ix)− (1 + ix) exp(−x2/2)

∣∣∣
=

∣∣∣ exp(ix)− 1− ix+ x2/2− (1 + ix)(exp(−x2/2)− 1 + x2/2) + ix3/3
∣∣∣

≤
∣∣∣ exp(ix)− 1− ix+ x2/2

∣∣∣+ |1 + ix| ·
∣∣∣ exp(−x2/2)− 1 + x2/2

∣∣∣+ ∣∣x3/3∣∣
≤ |x3|

6 + |1 + ix| ·
(
|x2|
2 ∧ |x4|

8

)
+ |x3|

3 ≤ |x3|

for all x. From this follows the assertion for small |x|, and thus 1. is proven. For 2. it is
sufficient to use |1 + ix|2 = 1 + x2 ≤ ex

2
and take the root.

Proof of Theorem 14.42. First we define

Zn
s := Xn

s 1∑s−1
r=1(X

n
r )

2≤2σ2

and Nn
t :=

∑t
s=1 Z

n
s . Then (Nn

t )t=1,2,... is a (Fn
t )t∈In martingale, because

E[Nn
t −Nn

t−1|Fn
t−1] = E[Zn

t |Fn
t−1] = 1∑s−1

r=1(X
n
r )

2≤2σ2 ·E[Xn
t |Fn

t−1] = 0,

since Mn
t = Xn

1 + · · ·+Xn
t . Now,

P( max
t=1,...,tn

|Mn
t −Nn

t | > 0) = P(Mn
t ̸= Nn

t for one t ∈ In)

= P(Xn
t ̸= Zn

t for a t ∈ In)

= P
( tn∑

s=1

(Xn
s )

2 > 2σ2
)

n→∞−−−→ 0,

(14.7)
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where the convergence follows from (14.6). Now the following applies Mn
tn −Nn

tn
n→∞−−−→p 0, so

it suffices according to Slutzky’s theorem, Corollary 9.9, Nn
tn

n→∞
====⇒ X ∼ N(0, σ2) to show.

For this we will for any λ ∈ R

E[eiλN
n
tn ]

n→∞−−−→ e−iλ2σ2/2

show. With the function r from Lemma 14.44 now applies

E[eiλN
n
tn ] =

tn∏
s=1

(1 + iλZn
s ) · exp

(
− λ2

2

tn∑
s=1

(Zn
s )

2 +

tn∑
s=1

r(λZn
s )
)
.

We now set

Tn :=

tn∏
s=1

(1 + iλZn
s ), Un := exp

(
− λ2

2

tn∑
s=1

(Zn
s )

2 +

tn∑
s=1

r(λZn
s )
)

and show that for these random variables the conditions of Lemma 14.43 apply to these
random variables (with u = e−λ2σ2/2). For 1. first because of (14.7)

lim
n→∞

tn∑
s=1

(Zn
s )

2 = lim
n→∞

tn∑
s=1

(Xn
s )

2 = σ2.

Further, with C from Lemma 14.44∣∣∣ tn∑
s=1

r(λZn
s )
∣∣∣ ≤ C · |λ3| ·

tn∑
s=1

|Zn
s |3 ≤ C · |λ3| ·

tn∑
s=1

|Xn
s |3

≤ C · |λ3| · max
1≤s≤tn

|Xn
s | ·

tn∑
s=1

|Xn
s |2

n→∞−−−→ 0,

where the convergence follows from (14.5) and (14.6).
For 2. |TnUn| = |eiλNn

tn | = 1, from which the uniform integrability of (TnUn)n∈In already
follows. For the uniform integrability of (Tn)n∈In we define

Jn := inf
{
s ≤ tn :

s∑
r=1

(Xn
r )

2 > 2σ2
}
∧ tn

and write

|Tn| =
Jn−1∏
s=1

|1 + iλZn
s | · |1 + iλZn

Jn | ≤ exp
(
λ2

2

Jn−1∑
s=1

(Xn
s )

2
)
(1 + λ|Xn

Jn |)

≤ exp(λ2σ2) · (1 + |λ| · max
1≤s≤tn

|Xn
s |).

Since max1≤s≤tn |Xn
s |

n→∞−−−→L1 0, in particular the family (max1≤s≤tn |Xn
s |)n=1,2,... is uniformly

integrable, from which the uniform integrability of (Tn)n=1,2,... follows.
We now come to 3. by showing E[Tn] = 1. Since E[Zn

s |Fn
s−1] = 0 for all s = 1, ..., tn,

E[Tn] = E
[ tn∏
s=1

(1 + iλZn
s )
]

= E
[
(1 + iλZn

1 ) ·E[(1 + iλZn
2 ) · · ·E[1 + λZn

tn |F
n
tn−1] · · · |Fn

1 ]
]
= 1.

Now the assertion follows directly with Lemma 14.44.
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Example 14.45. 1. Let X1, X2, ... be independent, identically distributed, real-valued ran-
dom variable with E[X1] = 0 and finite variance V[X1] = σ2. It is then known that
Mn = (Mn

t )t=0,1,2,... with

Mn
t = 1√

n

t∑
s=1

Xt

is a martingale and
Mn

n
n→∞
====⇒ X ∼ N(0, σ2).

This can also be realized by means of Theorem 14.42: first we establish that
∫∞
0 tP(|X1| >

t)dt < ∞ because of the finite second moment. This means that P(|X1| > t) = o(1/t2)

for t → ∞, can therefore be written as P(|X1| > t) = a(t)/t2 with a(t)
t→∞−−−→ 0. From

this,

E[ max
1≤s≤n

|Xs|/
√
n] =

∫ ∞

0
P( max

1≤s≤n
|Xs| > t

√
n)dt =

∫ ∞

0
1− (1−P(|X1| > t

√
n))ndt

=

∫ ∞

0
1−

(
1− a(t

√
n)

t2n

)n
dt

n→∞−−−→ 0

due to dominated convergence. Furthermore, with the law of large numbers,

1

n

n∑
s=1

X2
s

n→∞−−−→fs σ
2.

So, the conditions of theorem 14.42 are fulfilled.

2. We bring another example of a sequence of martingales that lead to sums of dependent
random variables. For this, we recall the stochastic integral from Definition 14.13.
Let Y1, Y2, ... be independent, identically distributed, restricted random variables with
E[Y1] = 0 and V[Y1] = 1 and H = (Ht)t=0,1,2,... and Mn = (Mn

t )t=0,1,2,... given as

Hs =
1

s− 1
(Y 2

1 + · · ·+ Y 2
s−1), Mn

t =
1√
n

t∑
s=1

Ys.

Then,

(H ·Mn)t =
1√
n

t∑
s=1

Ys
1

s− 1

s−1∑
r=1

Y 2
r

is a martingale with

Xn
t := (H ·Mn)t − (H ·Mn)t−1 =

1√
n
Yt

1

t− 1

t−1∑
r=1

Y 2
r .

(Note that (Xn
1 , X

n
2 , ...) is not an independent family). Now, (14.5) applies by the bound-

edness of Y1, Y2, ... We further calculate

n∑
s=1

(Xn
s )

2 =
1

n

n∑
s=1

Y 2
s

( 1

s− 1

s−1∑
r=1

Y 2
r

)2 n→∞−−−→ 1,

from which now (H ·Mn)n
n→∞
====⇒ X ∼ N(0, 1) follows.

42



14.6 Properties of martingales in continuous time

Example 14.46 (Martingales derived from the Poisson process). Let I = [0,∞), X = (Xt)t∈I
be a Poisson process with intensity λ and Ft = σ(Xs : s ≤ t). Then,

(Xt − λt)t∈I and
(
X2

t − λ

∫ t

0
(2Xr + 1)dr

)
t∈I

is a martingale. The following applies for 0 ≤ s ≤ t

E[Xt − λt|Fs] = E[Xs +Xt −Xs − λt|Fs] = Xs + λ(t− s)− λt = Xs − λs,

E
[
X2

t −X2
s − λ

∫ t

s
(2Xr + 1)dr|Fs

]
= E

[
(Xt −Xs)

2 + 2(Xt −Xs)Xs − λ((2Xs + 1)(t− s) + 2

∫ t

s
(Xr −Xs)dr)|Fs]

= λ(t− s) + λ2(t− s)2 + 2λ(t− s)Xs − λ((2Xs + 1)(t− s)− λ2(t− s)2 = 0.

Example 14.47 (Martingales derived from Brownian motion). Let I = [0,∞), X = (Xt)t∈I
be a Brownian motion, Ft = σ(Xs : s ≤ t) and µ ∈ R.

1. The processes

(µXt)t∈I , (µX2
t − µt)t∈I and

(
exp(µXt − µ2t/2)

)
t∈I (14.8)

are martingales. The following applies for 0 ≤ s ≤ t

E[µXt|Fs] = E[µXs + µ(Xt −Xs)|Fs] = µXs,

E
[
µX2

t − µt|Fs] = µE[(Xt −Xs)
2 + 2(Xt −Xs)Xs +X2

s − t|Fs]

= µ(t− s) + µX2
s − µt = µX2

s − µs,

E
[
exp(µXt − µ2t/2)|Fs] = exp(µXs − µ2t/2) ·E[exp(µ(Xt −Xs))]

= exp(µXs − µ2t/2 + µ2(t− s)/2) = exp(µXs − µ2s/2)

according to Example 6.13.3.
Since the process

(
exp(µXt−µ2t/2)

)
t∈I is a non-negative martingale with E[exp(µXt−

µt/2)] = 1, it represents a density. This is since for τ > 0,

Qτ :

{
B(R)[0,τ ] → [0, 1]

A 7→ E[exp(µXτ − µ2τ/2), A]

is another probability measure on B(R)[0,τ ], which leads to a probability measure Q on
B(R)I since

Q|Fτ = Qτ (14.9)

can be continued.

2. For µ ∈ R the process (Xt + µt)t∈[0,∞) is called Brownian motion with drift µ. This is
a martingale if and only if µ = 0. For µ > 0 it is a sub-martingale and for µ < 0 it is
a super-martingale.
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There is a close connection between the Brownian motion with drift and the martingale(
exp(µXt − µ2t/2)

)
t∈I from (14.8).

Proposition 14.48 (Brownian motion with drift and change of measure). Let I = [0,∞)
and X = (Xt)t∈I be a Brownian motion defined on a probability space (Ω,F ,P). Further, let
Y = (Yt)t∈I with Yt = Xt + µt for a µ ∈ R and Q from (14.9). Then,

X∗Q = Y∗P and Y∗Q = X∗P,

i.e. the distribution of Y under the measure Q is that of a Brownian motion with drift µ
under P. In particular, is a martingale under Q.

Proof. First, let f be continuous and bounded, and 0 ≤ s ≤ t. Then,

EQ[f(Xt)|Fs] = EP[f(Xt)e
µXt−µ2t/2|Fs]

=
1√

2π(t− s)
eµXs−µ2t/2

∫
f(Xs + y)eµye−y2/(2(t−s))dy

=
1√

2π(t− s)
eµXs−µ2t/2+µ2(t−s)/2

∫
f(Xs + y)e−(y−µ(t−s))2/(2(t−s))dy

=
1√

2π(t− s)
eµXs−µ2s/2

∫
f(Xs + y + µ(t− s))e−y2/(2(t−s))dy

= EP[f(Xt + µ(t− s))|Fs] · eµXs−µ2s/2.

Now let 0 ≤ t1 ≤ · · · ≤ tn and f1, ..., fn be continuous and bounded. Then,

EQ[f1(Xt1) · · · fn(Xtn)] = EP[f1(Xt1) · · · fn−1(Xtn−1)EP[fn(Xtn)e
µXtn−µ2tn/2|Ftn−1 ]]

= EP[f1(Xt1) · · · fn−2(Xtn−2)·

EP[fn−1(Xtn−1)EP[fn(Xtn + µ(tn − tn−1)|Ftn−1 ]e
µXtn−1−µ2tn−1/2]|Ftn−2 ]]

= · · · = EP[f1(Xt1 + µt1) · · · fn(Xtn + µtn)] = EP[f1(Yt1) · · · fn(Ytn)].

Since f1, ..., fn were arbitrary, the finite-dimensional distributions of X∗Q and Y∗P are iden-
tical. The statement now follows from Proposition 13.6.1.

We will now apply the results of martingales with a countable index set to the case of an
uncountable index set, I = [0,∞). Central to this is Theorem 14.49, in which we will see that
there is a right-continuous modification for very many sub-martingales.

Theorem 14.49 (Regularization of martingales in continuous time). Let I = [0,∞) and
X = (Xt)t∈I be a sub-martingale. Further, Y = (Yt)t∈I∩Q with Yt = Xt for t ∈ I ∩Q. Then,
with (Gt)t∈I from Lemma 13.25, the following holds:

1. There is a null set N such that Y +
t := lims↓t Yt for all t ∈ I outside N exists. The

process Z = (Zt)t∈I with Zt = 1NcY +
t is a (Gt)t∈I sub-martingale.

2. If (Ft)t∈I is right-continuous, then X has a modification with paths in DR([0,∞)) if
t 7→ E[Xt] is right-continuous.
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Proof. Since (|Yt|)t∈I∩Q is a sub-martingale, supt≤τ E[|Yt|] < ∞ for τ < ∞. Thus, according
to Theorem 14.29, for each t ∈ I the limits Yt±, t ∈ I outside a nullset N . This means
that (Zt)t∈I with Zt = 1NcY +

t is right-continuous with left-sided limits. Furthermore, Zt is
measurable with respect to σ(Ft,N )+, t ∈ I.

We now show that (Zt)t∈I is a sub-martingale. Let s < t and sn ↓ s, as well as tn ↓ t
(and sn ≤ t, n = 1, 2, ...). Then obviously Ysm ≤ E[Ytn |Fsm ] for all m,n. This means that
Zs ≤ E[Ytn |Fs+] according to Theorem 14.36. Since supnE[Ytn ] < ∞, the sub-martingale
(Ytn)n=1,2,... is according to Theorem 14.37 uniformly integrable with Ytn

n→∞−−−→fs,L1 Zt, and

thus E[Ytn |Fs+]
n→∞−−−→fs,L1 E[Zt|Fs+]. From this, Zs ≤ E[Zt|Fs+] = E[Zt|Gs].

2. With the same notation, for t ∈ I and tn ↓ t with t1, t2, ... ∈ Q,

E[Xtn ] = E[Ytn ], Xt ≤ E[Ytn |Ft].

Because of tn ↓ t, lims↓tE[Xs] = E[Zt]. Furthermore, due to the right-continuity of (Ft)t∈I
and Theorem 14.37 Xt ≤ E[Zt|Ft] = Zt. If X has a right-continuous modification, then
Zt = Xt is almost certain, and thus lims↓tE[Xs] = E[Xt], therefore t 7→ E[Xt] right-handed.
On the other hand, if t 7→ E[Xt] is right-handed, then E[|Zt − Xt|] = 0, and thus Zt = Xt

almost surely. Thus (Zt)t∈I is a right-continuous modification of X .

Remark 14.50 (Usual conditions). Let I = [0,∞). In the following, we will always assume
that the filtration (Ft)t≥0 is right-continuous and complete. Furthermore, Theorem 14.49
shows that, under these assumptions, for each sub-martingale X there is a modification with
paths in DR([0,∞)) if t 7→ E[Xt] is right-continuous. We also want to assume this modifica-
tion of each sub-martingale has paths in DR([0,∞)). All this we will summarize and say that
under the usual conditions.

Theorem 14.51 (Martingale convergence theorems for continuous I). Let I ⊆ [0,∞) be
an interval. Under the usual conditions, the statements of Lemma 14.25, Proposition 14.26,
Lemma 14.28, Theorem 14.29, Corollary 14.30, Theorem 14.32, Theorem 14.33, Theorem 14.36
and Theorem 14.37 apply accordingly.

Proof. Note that all statements already apply in the case of countable index set, e.g. I ∩ Q,
have already been shown. All statements follow in the continuous case, because under the
usual conditions, the process X = (Xt)t∈I , as well as all its limit values, can be uniquely
constructed from (Xt)t∈I∩Q and its limits can be constructed.

All martingale convergence theorems are now also shown for the case of continuous index set.
The following are the statements of the Optional Sampling (Theorem 14.22) and Optional
Stopping Theorem (Proposition 14.19) in the continuous case.

Theorem 14.52 (Optional Sampling Theorem in the continuous case). Let I ⊆ [0,∞) be
an interval, S ≤ T almost surely finite stopping times and X = (Xt)t∈I a sub-martingale. If
either T is bounded or X is uniformly integrable, then XT is integrable and XS ≥ E[XT |FS ].
Furthermore, Lemma 14.23 is also valid for I = [0,∞).

Proof. Without restriction, I = [0,∞). Let Sn := 2−n[2nS + 1] and Tn := 2−n[2nT + 1]
such that Sn ↓ S and Tn ↓ T as in Proposition 13.28. With Theorem 14.22 follows XSm ≤
E[XTn |FSm ] for all m ≥ n. With m→ ∞ and Theorem 14.36.2,

XS ≤ E[XTn |FS ]. (14.10)
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If T is almost surely bounded, then ..., XT2 , XT1 is a sub-martingale with infnE[XTn ] > −∞.
Therefore, according to Theorem 14.37 it is a uniformly integrable, almost surely and in
L1 convergent sub-martingale with limit XT . Now follows the statement from (14.10) with
m→ ∞.

If X is uniformly integrable, then it converges according to Theorem 14.32 (or Theo-

rem 14.51) as Xt
t→∞−−−→fs,L1 X∞ with integrable limit X∞. and Xs ≤ E[X∞|Fs] applies.

As above, first XS ≤ E[XTn |FS ], and the sub-martingale ..., XT2 , XT1 converges almost
surely and in L1 against XT . So the statement applies again because of (14.10).

The proof of Lemma 14.23 applies unchanged.

Corollary 14.53 (Optional stopping in the continuous case). Let I ⊆ [0,∞) be an interval
and X = (Xt)t∈I a (sub, super)-martingale and T an almost surely finite stopping time. Then
X T = (XT∧t)t∈I is a (sub, super) martingale.

Proof. The corollary follows with the Optional Sampling Theorem, since T ∧ s ≤ T ∧ t, thus
XT∧s ≤ E[XT∧t|FT∧s] ≤ E[XT∧t|Fs].

15 Markov processes

The simplest stochastic processes X = (Xt)t∈I are those in which X is an independent family.
We now come to the second simplest dependency structure that occurs in stochastic processes.
By a Markov process X we understand a process in which at time t the future (Xu)u>t depends
only on Xt, but not on (Xs)s<t. In other words: (Xs)s>t and (Xs)s<t are given independently
Xt.

Many of the stochastic processes already introduced are Markov processes and will serve
as examples in this section. Throughout this section, let (E, r) be a complete and separable
metric space.

15.1 Definition and examples

In this section, we will introduce the notion of conditional independence from Section 11.4 will
be needed. Finally, Markov processes are those in which the future – given the present – does
not depend on the past. After the introduction of Markov processes and some examples, we
will determine in Theorem 15.5, when Gaussian processes are Markov. A central notion will
be Markov kernels µXs,t, which represent just the transition probabilities between two points in

time s and t. Formally equivalent, we introduce operators TX
s,t, which indicate how expected

values of functions f(Xt) change over time.

Definition 15.1 (Markov process). Let (Ft)t∈I be a filtration and X = (Xt)t∈I an adapted
stochastic process.

1. The process X is called Markov process if Fs is independent of Xt given Xs, s ≤ t.
This means that for A ∈ B(E) (see Proposition 11.18)

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs) (15.1)

or equivalently
E(f(Xt)|Fs) = E(f(Xt)|Xs)

for all measurable and bounded f : E → R.
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2. The Markov kernels (or transition kernels) µXs,t (from E to E) of X are given by

µXs,t(Xs, B) = P(Xt ∈ B|Xs) = P(Xt ∈ B|Fs).

3. Let B(E) be (not only the Borel’s σ-algebra on E, but also) the set of bounded, measur-
able functions f : E → R. Then we define for s ≤ t the transition operator

TX
s,t :

B(E) → B(E)

f 7→ x 7→ E[f(Xt)|Xs = x] =

∫
µXs,t(x, dy)f(y).

4. For Markov kernels µ, ν from E to E we define a Markov kernel from E to E2 by

(µ⊗ ν)(x,A×B) =

∫
µ(x, dy)ν(y, dz)1y∈A,z∈B

and a Markov kernel from E to E by

(µν)(x,A) = (µ⊗ ν)(x,E ×A).

Remark 15.2 (Interpretations). 1. Just as with martingales, the Markov property is for-
mulated with respect to a filtration (Ft)t∈I . In the following, however, we will always
use Ft = σ((Xs)s≤t), t ∈ I.

2. We want the transition kernels (µXs,t)s≤t as regular versions of the conditional expectation
of Xt given Xs. This is possible because E is Polish and according to Theorem 11.23,
then the regular version of the conditional distribution exists.

3. The transition operator TX
s,t is best interpreted as follows: Given a function f and Xs),

then (TX
s,tf)(Xs) is the expectation of f(Xt) at the start in Xs. This naturally depends

on the value Xs so TX
s,tf is a function of Xs.

4. To interpret the Markov kernels µXs,t⊗µXt,u and µXs,tµ
X
t,u for s ≤ t ≤ u note the following:

It is µXs,t⊗µXt,u(x,A×B) is the probability, given Xs = x, that is both Xt ∈ A and Xu ∈ B.

In addition, under µXs,tµ
X
t,u the state at time t is integrated out, i.e. µXs,tµ

X
t,u(x,B) is the

probability, given Xs = x, that Xu ∈ B. (Of course, in the case of a of a Markov
process must be equal to µXs,u(x,B); see also the Chapman-Kolmogorov equations in
Corollary 15.16.)

Example 15.3 (Markov chains). (See also example 5.10.) Markov processes X = (Xt)t∈I
with at most countable state space E are called Markov chains. Furthermore, if I = {0, 1, 2, ...},
then the transition kernel µXt,t+1 is represented by a matrix Pt,t+1 = (pt,t+1(x, y))x,y∈E so that

pt,t+1(x, y) = P(Xt+1 = y|Xt = x)

and

µXt,t+1(x,A) =
∑
y∈A

pt,t+1(x, y).
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Further here is

(µXt,t+1 ⊗ µXt+1,t+2)(x,A×B) =
∑

y∈A,z∈B
pt,t+1(x, y)pt+1,t+2(y, z)

and
(µXt,t+1µ

X
t+1,t+2)(x,A) =

∑
y∈E,z∈A

pt,t+1(x, y)pt+1,t+2(y, z).

For the transition operator (TX
s,t)s≤t can be written f : E → R can be written as a restricted

vector, namely as f = (f(x))x∈E and thus

(TX
t,t+1f)(x) =

∑
y∈E

µXt,t+1(x, dy)f(y) =
∑
y∈E

pt,t+1(x, y)f(y),

so the application of TX
t,t+1 to f corresponds to a multiplication of the matrix pt,t+1 with the

vector f .

Example 15.4 (sums and products of independent random variables etc.).

1. Let X1, X2, ... be real-valued, almost certainly finite and independent. Then S = (St)t=0,1,2,...

with St =
∑t

s=1Xs and also S = (St)t=0,1,2,... with St =
∏t

s=1Xs Markov processes.
The following applies for example for A ∈ B(R)

P(St+1 ∈ A|Ft) =

∫
P(St ∈ A− x,Xt+1 ∈ dx|Ft)

=

∫
1St∈A−xP(Xt+1 ∈ dx) = P(St+1 ∈ A|St).

In this case
µSt,t+1(x,A) = P(Xt+1 ∈ A− x)

and
(TS

t,t+1f)(x) = E[f(x+Xt+1)].

2. Let X = (Xt)t≥0 be a Poisson process with intensity λ. Then (Xt)t≥0 and (Xf(t))t≥0

for each growing function f Markov processes, just like (Xt − λt)t≥0. However, (X2
t −

λ
∫ t
0 (2Xr+1)dr)t≥0 is not a Markov process; see also Example 14.46. (Note for the last

process: assuming X2
t − λ

∫ t
0 (2Xr + 1)dr = x, the process decreases linearly with slope

λ(2Xt + 1). However this slope is not a function of x).

Let’s look at the Poisson process X . Here the Markov kernels for x ∈ {0, 1, 2, ...} are
given as

µXs,t(x,A) =
∑

k∈A∩{x,x+1,...}

e−λ(t−s) (λ(t− s))k−x

(k − x)!
,

and the transition operator for f : {0, 1, 2, ...} → R is bounded

(TX
s,tf)(x) =

∞∑
k=0

e−λ(t−s) (λ(t− s))k

k!
f(x+ k) = E[f(x+ P )],

where P is a Poisson distributed random variable with parameters λ(t− s).
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3. Let X = (Xt)t≥0 be a Brownian motion. Then both (µXt)t≥0 and (µX2
t −µt)t≥0 as well

as (exp(µXt −µ2t/2))t≥0 for µ ∈ R Markov processes (as well as martingales according
to example 14.47). For example

P[X2
u − u ≤ x|Ft] = P[(Xu −Xt)

2 + 2(Xu −Xt)Xt +X2
t ≤ u+ x|Ft]

= P[(Xu −Xt)
2 + 2(Xu −Xt)Xt +X2

t ≤ u+ x|Xt] = P[X2
u − u ≤ x|Xt].

Let us consider the Brownian motion X . Its Markov kernels is given by

µXs,t(x,A) =
1√

2π(t− s)

∫
A
exp

(
− (y − x)2

2(t− s)

)
dy

and the transition operator for f ∈ B(R)

(TX
s,tf)(x) =

1√
2π(t− s)

∫
exp

(
− y2

2(t− s)

)
f(x+ y)dy = E[f(x+

√
t− sZ)],

where Z is a N(0, 1)-distributed random variable.

Theorem 15.5 (Gaussian Markov processes). Let X = (Xt)t≥0 be a Gaussian process. Then,
X is Markov iff

COV(Xs, Xu) ·V(Xt) = COV(Xs, Xt) ·COV(Xt, Xu) (15.2)

for all s ≤ t ≤ u.

Proof. By subtracting the expected values, we can assume wlog that E[Xt] = 0 holds for all
t ≥ 0 is valid. We note that (if V(Xt) > 0) with

X ′
u = Xu − COV(Xt, Xu)

V(Xt)
Xt

holds that COV(X ′
u, Xt) = 0. Therefore, X ′

u and Xt are independent (and the joint distribu-
tion is a normal distribution). In the case V(Xt) = 0 we set X ′

u = Xu from which the same
follows.

First, let X be Markov and s ≤ t ≤ u. Then Xs is independent of Xu given Xt, so Xs is
also independent of X ′

u given Xt. Since Xt and X
′
u are independent, we find

P(Xs ∈ A,X ′
u ∈ B) = E[P(Xs ∈ A|Xt) ·P(X ′

u ∈ B|Xt)]

= E[P(Xs ∈ A|Xt) ·P(X ′
u ∈ B)] = P(Xs ∈ A) ·P(X ′

u ∈ B)

and therefore Xs and X ′
u are independent. This means that

0 = COV(Xs, X
′
u) = COV(Xs, Xu)−

COV(Xt, Xu)

V(Xt)
COV(Xs, Xt)

and (15.2) follows.
Conversely, let X fulfill (15.2). Then (with the same calculation as above), Xs is indepen-

dent of X ′
u for all s ≤ t. This means that X ′

u is independent of Ft = σ((Xs)s≤t) and

P(Xu ∈ A|Ft) =

∫
P
(
X ′

u ∈ dx, COV(Xt,Xu)
V(Xt)

Xt ∈ A− x|Ft

)
=

∫
P
(
X ′

u ∈ dx, COV(Xt,Xu)
V(Xt)

Xt ∈ A− x|Xt

)
= P(Xu ∈ A|Xt).
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Example 15.6 (Examples of Gaussian Markov processes). 1. We have already shown that
a Brownian motion X is a Markov process. To be on the safe side, also note that in
this case for s ≤ t ≤ u

COV(Xs, Xu) ·V(Xt) = s · t = COV(Xs, Xt) ·COV(Xt, Xu).

2. A fractional Brownian motion with Hurst parameter h is a Gaussian process X =
(Xt)t≥0 with E[Xt] = 0, t ≥ 0 and

COV(Xs, Xt) =
1

2
(t2h + s2h − (t− s)2h).

As you can easily calculate, this is only for h = 1
2 a Markov process. Then X is the

Brownian motion.

3. Let X = (Xt)t≥0 be a Brownian motion and Y = (Yt)t∈[0,1] given as Yt = Xt − tX1.
Then Y is called Brown’s bridge; see also Figure 5. It is E[Yt] = 0, t ≥ 0 and s ≤ t

COV(Ys, Yt) = COV(Xs − sX1, Xt − tX1) = s− 2st+ st = s(1− t).

This means that for s ≤ t ≤ u

COV(Ys, Yu) ·V(Yt) = s(1− u)t(1− t) = COV(Ys, Yt) ·COV(Yt, Yu),

so the Brownian bridge is a Markov process.

(A) (B)

X
t

t

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.0 0.2 0.4 0.6 0.8 1.0

Y
t

t

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: (A) The path of a Brownian motion X = (Xt)t∈[0,1]. (B) The corresponding path
of the Brownian bridge Y = (Yt)t∈[0,1] with Yt = Xt − tX1.

The verbal description of Markov processes states that the future of the process is independent
of the past, given the present. However, in Definition (15.1) it is only required that individual
time points in the future are independent of the past, given the present. The fact that this
in fact corresponds to with the verbal description is now shown.
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Lemma 15.7 (Extended Markov property). Let X = (Xt)t∈I be a Markov process. Then
(Xu)u≥t is independent of Ft given Xt

Proof. Let t = t0 < t1 < ... < tn ∈ I and A0, ..., An ∈ E. Then the following applies

P(Xt0 ∈ A0,..., Xtn ∈ An|Ft) = E[1Xt0∈A0 , ..., 1Xtn−1∈An−1 ·E[1Xtn∈An |Ftn−1 ]|Ft]

= E[1Xt0∈A0 , ..., 1Xtn−1∈An−1 ·E[1Xtn∈An |Xtn−1 ]|Ft]

= E[1Xt0∈A0 , ..., 1Xtn−2∈An−2 · E[1Xtn−1∈An−1E[1Xtn∈An |Xtn−1 ]|Ftn−2 ]︸ ︷︷ ︸
=E[1Xtn−1

∈An−1
E[1Xtn∈An |Xtn−1 ,Xtn−2 ]|Xtn−2 ]

=E[1Xtn−1
∈An−1

·1Xtn∈An |Xtn−2 ]

mathcalFt]

= · · · = E[1Xt0∈A0E[1X1∈A1 , ..., 1Xtn∈An |Xt0 ]|Ft]

= E[1Xt0∈A0 , ..., 1Xtn∈An |Xt] = P[Xt0 ∈ A0, ..., Xtn ∈ An|Xt].

where we have used Proposition 11.18. This shows that (Xt0 , ..., Xtn) is independent of Ft

given Xt, i.e. the independence on cylinder sets {Xt0 ∈ A0, ..., Xtn ∈ An}. This is extended
by means ofan argument with a Dynkin system to all sets in σ((Xu)u≥t).

A special case is that of a Markov process that is spatially homogeneous. This always behaves
in the same way, regardless of its current value is. We have already become familiar with
such processes via the Brownian motion and the Poisson process.Equivalent to this is that
the process has independent increments, as Lemma 15.9 shows.

Definition 15.8 (Spatially homogeneous Markov process).
Let E be an Abelian group.

1. A Markov kernel from E to E is called homogeneous if µ(x,B) = µ(0, B − x) for all
x ∈ E and B ∈ B(E) is valid. (Here B − x = {y − x : y ∈ B}.)

2. A Markov process X is called spatially homogeneous, if the Markov kernels µXs,t are
homogeneous, s ≤ t.

3. A Markov process X = (Xt)t≥0 has independent increments if Xt −Xs is independent
of Fs, s ≤ t.

Lemma 15.9 (homogeneity and independent increments). Let X = (Xt)t∈I be a Markov
process with state space E, where E is an Abelian group. The process X has independent
increments if and only if X is spatially homogeneous. In this case, the completion of the
filtration (Ft)t≥0 with Ft = σ((Xs)s≤t) is right-continuous.

Proof. First, let X be a spatially homogeneous Markov process, i.e. µXs,t(x,B) = µXs,t(0, B−x)
for all x ∈ E and B ∈ B(E). Then,

P(Xt −Xs ∈ B|Fs) = P(Xt ∈ Xs +B|Fs) = µs,t(Xs, Xs +B) = µXs,t(0, B).

Thus Xt −Xs is according to Lemma 11.13 independent of Fs, so X has independent incre-
ments.
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Conversely, X has independent increments. Then (Xt −Xs)t≥s is also a Markov process
with the same Markov kernels and

µXs,t(Xs, B) = P(Xt ∈ B|Fs) = P(Xt −Xs ∈ B −Xs|Fs) = µXs,t(0, B −Xs).

We now come to the second part of the statement, the right continuity of the filtration
generated by X . Let t ∈ I and u1, u2, ... ∈ I with un ↓ t. Wlog we assume that Ft is
complete. We must show that F+

t =
⋂

nFun = Ft. First of all, (Ft,G1,G2, ...) is with
Gn = σ(Xun−1 −Xun) an independent family. It is F+

t independent of (G1, ...,Gn) for each n.
Let A ∈ F+

t be. Then, according to Proposition 11.18,

P(A|Ft) = P(A|Ft,G1, ...,Gn)
n→∞−−−→ 1A

almost surely by Theorem 14.36 and because 1A is measurable with respect to σ(Ft,G1, .G2, ...).
In particular, since Ft is complete, F+

t ⊆ Ft ⊆ F+
t .

15.2 Strong Markov processes

With martingales, we have become familiar with the procedure that a property that applies
for fixed times (e.g. Xs = E[Xt|Fs]) is transferred to stopping times. (This led to the Optional
Sampling Theorem, i.e. XS = E[XT |FS ] for almost surely bounded stopping times S ≤ T ).

The Markov property is initially again a property for fixed points in time, which can be
written, for example, as

P(Xs+t ∈ A|Fs) = µXs,s+t(Xs, A).

Replacing the fixed time s in the last equation with a stopping time S leads to strong Markov
processes. Most of the processes discussed here belong to this class, however Example 15.14
is an exception.

Definition 15.10 (Strong Markov process). Let X = (Xt)t∈I be a Markov process with
generated filtration (Ft)t∈I and progressively measurable. Further let S be a (Ft)t∈I stopping
time. Then X has the strong Markov property at S if

P(XS+t ∈ A|FS) = µXS,S+t(XS , A)

for A ∈ B(E) or equivalent to this

E[f(XS+t)|FS ] = (TX
S,S+tf)(XS)

applies to f ∈ B(E). Further, X is a strong Markov process if X has the strong Markov
property at all almost surely finite stopping times.

Proposition 15.11 (Strong Markov at discrete stopping times). Let X = (Xt)t∈I be a
Markov process with generated filtration (Ft)t∈I and progressively measurable. Further let S
be an almost surely finite (Ft)t∈I-stopping time, which only assumes discrete (i.e. in particular
only countably many) values. Then X has the strong Markov property for S.

If I in particular is discrete, then every Markov process X also has the strong Markov
property.
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Proof. Let {s1, s2, ...} be the range of values of S and f ∈ B(E) and A ∈ FS . Then (since
the range of values of S is discrete) A ∩ {S = si} ∈ Fsi and

E[f(XS+t), A] =
∑
i

E[f(XS+t), A ∩ {S = si}]

=
∑
i

E[f(Xsi+t), A ∩ {S = si}]

=
∑
i

E
[
E[f(Xsi+t)|Xsi ], A ∩ {S = si}

]
=

∑
i

E[(Tsi,si+tf)(Xsi), A ∩ {S = si}
]

=
∑
i

E[(TS,S+tf)(XS), A ∩ {S = si}
]

= E[(TS,S+tf)(XS), A
]
.

Since (TS,S+tf)(XS) is measurable according to FS , the assertion follows.

Theorem 15.12 (Strong Markov with continuous transition operator). Let X = (Xt)t∈I
be a Markov process with generated filtration (Ft)t∈I with right-continuous paths. If TX

s,tf is

continuous for f ∈ Cb(E) and s 7→ TX
s,s+tf continuous for all f ∈ Cb(E) (with respect to the

supremum norm on Cb(E)), then X is a strong Markov process.

Proof. First, according to Lemma 13.32, the process X is progressively measurable. Let S
be an almost surely finite stopping time, which, according to Proposition 13.28, we replace
by stopping times S1, S2, ... with Sn ↓ S so that Sn only takes on assumes discrete values,
n = 1, 2, ... Then, because of the right continuity of the paths of X that XSn

n→∞−−−→ XS is
almost certain and for f ∈ Cb(E) is

E[f(XS+t)|FS ] = lim
n→∞

E[E[f(XSn+t)|FSn ]|FS ]

= lim
n→∞

E[(TX
Sn,Sn+tf)(XSn)|FS ]

= E[(TX
S,S+tf)(XS)|FS ] = (TX

S,S+tf)(XS),

where the continuity conditions in the third equality are included.

Example 15.13 (Poisson process and Brownian motion are strong Markov).

1. Let X = (Xt)t≥0 be a Poisson process with intensity λ ≥ 0. Then X is strongly Markov,
because:
According to Example 15.4.2, (TX

s,tf)(x) = E[f(x+P )], where P ∼ Poi(λ(t− s)). Thus

s 7→ TX
s,s+tf is constant. Further, x 7→ (TX

s,s+tf)(x) is measurable and due to the discrete
topology on {0, 1, 2, ...} also continuous. The strong Markov property thus follows from
Theorem 15.12.

2. Let X = (Xt)t≥0 be a Brownian motion. Then X is strongly Markov, because:
According to Example 15.4.3 is (TX

s,tf)(x) = E[f(x +
√
t− sZ)], where Z ∼ N(0, 1).

This means that s 7→ TX
s,s+tf is constant and x 7→ (TX

s,s+tf)(x) is constant. Again, the
strong Markov property follows from Theorem 15.12.
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It is not so easy to specify non-strong Markov processes. However, here is an example.

Example 15.14 (A non-strong Markov process). Let T ∼ exp(1) be distributed. We further
define the stochastic process X = (Xt)t≥0 with

Xt = (t− T )+

and completion of the canonical filtration (Ft)t≥0. Then for f ∈ B(R)

E[f(Xs+t)|Fs] =

{
E[f((t− T )+)], if Xs = 0,

f(x+ t), if Xs > 0.

In particular, the right-hand side only depends on Xs and therefore X is a Markov process
with transition operator

(TX
s,s+t)f(x) = 1x=0E[f((t− T )+)] + 1x>0f(x+ t).

Now consider the random time S = inf{t : Xt > 0} (i.e. S = T ). According to Proposi-
tion 13.30.2, T is an option time and thus, since {T = t} is a zero set and Ft is complete,
{T ≤ t} = {T < t} ∪ {T = t} ∈ Ft. Thus T is (Ft)t≥0 a stopping time. Now,

E[f(XS+t)|FS ] = f(t),

da S is measurable according to FS and XS+t = t almost surely is valid. On the other hand,
XS = 0 and therefore

(TX
S,S+tf)(XS) = (TX

S,S+tf)(0) = E[f((t− T )+)].

Since the right-hand sides of the last two equations for many f ∈ B(E) do not match, X is
not a strong Markov process.

15.3 The distribution of a Markov process

For a Markov process X , the Markov kernels µXs,t and the transition operators TX
s,t are im-

portant tools. We will discuss in Theorem 15.17 that a consistency condition (the Chapman-
Kolmogorov equations, see Corollary 15.16) is not only necessary but also sufficient for a
family of Markov kernels to be Markov kernels for a Markov process.

Lemma 15.15 (Finite-dimensional distributions). Let X = (Xt)t∈I be a Markov process with
Xt ∼ νXt for distributions νXt on E and Markov kernels (µXs,t)s≤t. Then, for t0 < · · · < tn

(Xt0 , ...Xtn) ∼ νXt0 ⊗ µXt0,t1 ⊗ · · · ⊗ µXtn−1,tn

and

P((Xt1 , ..., Xtn) ∈ ·|Ft0) = (µXt0,t1 ⊗ · · · ⊗ µXtn−1,tn)(Xt0 , ·)

Proof. The proof of the first formula is done by induction. For n = 0 the statement is clear.
If it applies for n, then the following applies for f ∈ Cb(En+2)

E[f(Xt0 ,..., Xtn+1)] = E[E[f(Xt0 , ..., Xtn+1)|Ftn ]]

= E
[ ∫

f(Xt0 , ..., Xtn , xn+1)µ
X
tn,tn+1

(Xtn , dxn+1)
]

=

∫
νXt0 ⊗ µXt0,t1 ⊗ · · · ⊗ µXtn,tn+1

(dx0, ..., dxn+1)f(x0, ..., xn+1)
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so the first formula applies to n+1. For the second formula, we note that the right-hand side
Xt0 is measurable. Furthermore, with Lemma 15.7

P((Xt1 , ..., Xtn) ∈ ·|Ft0) = P((Xt1 , ..., Xtn) ∈ ·|Xt0)

and for A ∈ B(E) and B ∈ B(En) with the first formula

E[1(Xt1 ,...,Xtn )∈B, Xt0 ∈ A] = P((Xt0 , ..., Xtn) ∈ A×B)

=

∫
A
νXt0 (dx)(µ

X
t0,t1 ⊗ · · · ⊗ µXtn,tn+1

(x,B) = E[(µXt0,t1 ⊗ · · · ⊗ µXtn,tn+1
)(Xt0 , B), Xt0 ∈ A],

from which the assertion follows.

Corollary 15.16 (Chapman-Kolmogorov equations). Let X be a Markov process with Xt ∼
νXt for distributions νXt on E, Markov kernels (µXs,t)s≤t and transition operators (TX

s,t)s≤t.
Then, for s ≤ t ≤ u

µXs,tµ
X
t,u = µXs,u, (15.3)

and for f ∈ B(E)

(TX
s,t(T

X
t,uf))(Xs) = (TX

s,uf)(Xs) (15.4)

νXs -almost certain.

Proof. According to Proposition 15.15, for νXs -almost all Xs for A ∈ B(E)

µXs,u(Xs, A) = P(Xu ∈ A|Fs) = P((Xt, Xu) ∈ E ×A|Fs)

= (µXs,t ⊗ µXt,u)(Xs, E ×A) = (µXs,tµ
X
t,u)(Xs, A)

and for f ∈ B(E).

(TX
s,uf)(Xs) = E[f(Xu)|Fs] = E

[
E[f(Xu)|Ft]|Fs

]
= E[(TX

t,uf)(Xt)|Fs] = (TX
s,t(T

X
t,uf))(Xs).

It is clear that for each Markov process there are the Markov kernels (µXs,t)s≤t exist. Con-
versely, we now show that for every family of Markov kernels (µs,t)s≤t, which satisfies the
Chapman-Kolmogorov equations, there is a Markov process.

Theorem 15.17 (Existence of Markov processes).
Let I be an index set with min I = 0, ν0 a probability measure on E. Then the following
applies:

1. If (µs,t)s≤t is a family of Markov kernels with µs,tµt,u = µs,u for all s ≤ t ≤ u. Then
there is a Markov process with starting distribution ν0 and transition kernels (µs,t)s≤t.

2. If (Ts,t)s≤t is a family of transition operators with Ts,tTt,u = Ts,u for all s ≤ t ≤ u.
Then there is a Markov process with starting distribution ν0 and transition operators
(Ts,t)s≤t.
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Proof. Given (µs,t)s≤t, it is easy to calculate that

(Ts,tf)(x) :=

∫
µs,t(x, dy)f(y)

with f ∈ B(E) a family of transition operators (Ts,t)s≤t, which exactly then (15.4)is fulfilled
if (µs,t)s≤t fulfills the conditions (15.3) are fulfilled. If the other way around (Ts,t)s≤t is given,
then defines

µs,t(x,A) = (Ts,t1A)(x)

a family of Markov kernels that (15.3) is fulfilled iff (Ts,t)s≤t fulfills the condition (15.4). It
is therefore sufficient to show 1.Ḟor this we first define the measures for t1 < ... < tn with
{t1, ..., tn} ⊆f I

νt1,...,tn = ν0µ0,t1 ⊗ µt1,t2 ⊗ · · · ⊗ µtn−1,tn .

To show that (νt1,...,tn){t1,...,tn}⊆f I a projective family is J = {t1, ..., tn} andH = {t1, ..., tk−1, tk+1, ..., tn}.
Then for B = B1 × · · · ×Bk−1 ×Bk+1 × · · · ×Bn ∈ B(EH)

(πJH)∗νJ(B) = νJ((π
J
H)−1(B))

= (ν0µ0,t1 ⊗ µt1,t2 ⊗ · · ·µtn−1,tn)(B1 × · · · ×Bk−1 × E ×Bk+1 × · · · ×Bn)

= (ν0µ0,t1 ⊗ µt1,t2 ⊗ · · ·µtk−1,tkµtk,tk+1
⊗ µtk+1,tk+2

⊗ · · ·µtn−1,tn)(B)

= (ν0µ0,t1 ⊗ µt1,t2 ⊗ · · ·µtk−1,tk+1
⊗ µtk+1,tk+2

⊗ · · ·µtn−1,tn)(B)

= νH(B).

According to Theorem 5.24 there is a process X = (Xt)t∈I with the finite-dimensional distri-
butions (νJ)J⊆f I and starting distribution ν0. It remains to show that X is a Markov process.

For this, let A ∈ B(EJ) for a J ⊂ I and max J = s ≤ t and B ∈ B(E). Then,

P((Xr)r∈J ∈ A,Xt ∈ B) = νJ∪{t}(A×B) = E[µs,t(Xs, B), (Xr)r∈J ∈ A].

If (Ft)t∈I is the filtration generated by X , the filtration, then the following applies to A ∈ Fs

P(Xt ∈ B,A) = E[µs,t(Xs, B), A].

From the definition of the conditional expectation, we can read that P(Xs ∈ B|Fs) =
µs,t(Xs, B) = P(Xs ∈ B|Xs). From this the assertion follows.

Corollary 15.18 (Distribution of Markov processes). Let ν and (µs,t)s≤t be as in Theo-
rem 15.17. Then there is a probability distribution Pν on B(E)I , such that Pν is the dis-
tribution of the Markov process with transition kernels (µs,t)s≤t and initial distribution ν.
Furthermore, x 7→ Px := Pδx defines a transition kernel from E to B(E)I and

Pν =

∫
ν(dx)Px.

Proof. It is easy to calculate that Pν(A) =
∫
ν(dx)Px(A) applies to cylinder sets A. As usual,

one extends this statement to all A ∈ B(E)I .
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15.4 Semigroups and generators

Temporally homogeneous Markov processes play a special role. With these, µXs,t depends only
on the time difference t− s.

Definition 15.19 (Temporally homogeneous Markov process and its semigroups). Let I be
closed under addition. A Markov process X is called temporally homogeneous if there is a
family of Markov kernels (µt)t∈I with µXs,t = µt−s. Then we also write µXt = µt and denote

(µXt )t∈I as transitional semigroup4.
This is (of course) exactly the case if there is a family of transition operators (Tt)t∈I with

TX
s,t = Tt−s. In this case, we write TX

t = Tt and denote (TX
t )t∈I as operator semigroup.

Remark 15.20 (Transfer to temporally homogeneous Markov processes). Let X be a tem-
porally homogeneous Markov process with transition and operator semigroup (µXt )t∈I and
(TX

t )t∈I . Then, according to the results from Section 15.3,

(Xt0 , ...Xtn) ∼ νXt0 ⊗ µXt1−t0 ⊗ · · · ⊗ µXtn−tn−1

and

P((Xt1 , ..., Xtn) ∈ ·|Ft0) = (µXt1−t0 ⊗ · · · ⊗ µXtn−tn−1
)(Xt0 , ·).

In addition, the Chapman-Kolmogorov equations become

µXs µ
X
t = µXs+t,

TX
s T

X
t = TX

s+t

for all s, t ∈ I. The strong Markov property is in this case

P[XS+t ∈ A|FS ] = µt(XS , A),

E[f(XS+t)|FS ] = (Ttf)(XS)

for all almost surely finite stopping times S, A ∈ B(E) or f ∈ B(E).

Remark 15.21 (Semigroup property). Let (µXt )t∈I be the transition semigroup and (TX
t )t∈I

the operator semigroup of a temporally homogeneous Markov process X . Then, by the Chapman-
Kolmogorov equations

µXs µ
X
t = µXs+t,

TX
s T

X
t = TX

s+t

for all s, t ∈ I. For this reason, one speaks of (commutative) transition and operator semi-
groups.

Certain properties of operator semigroups often facilitate proofs. This leads to the concept
of the Feller semigroup. To save us save paperwork, we use the distributions Px from Corol-
lary 15.18 and denote the expected value with respect to this distribution with Ex.

Definition 15.22 (Feller semigroup, Feller process). Let I = R+.

4A semigroup is a pair (I, ∗), where ∗ is an associative map I × I → I
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1. Let (Tt)t∈I be a family of operators with Tt : B(E) → B(E). This is called an operator
semigroup if Tt(Tsf) = Tt+sf for all f ∈ B(E). Such a semigroup is called

(a) positive if Ttf ≥ 0 if f ≥ 0 for all t ∈ I,

(b) contraction if 0 ≤ Ttf ≤ 1 for 0 ≤ f ≤ 1 for a

(c) conservative if Tt1 = 1 for all t ∈ I,

(d) strongly continuous if ||Ttf − f ||∞
t→0−−→ 0 for all f ∈ Cb(E).

(e) Feller semigroup if Ttf(x)
t→0−−→ f(x) for x ∈ E and f ∈ Cb(E) and Ttf ∈ Cb(E)

for all f ∈ Cb(E) and t ∈ I.

2. A temporally homogeneous Markov process X = (Xt)t∈I is called Feller process if its
operator semigroup (TX

t )t∈I is a Feller semigroup.

Remark 15.23 (Probabilistic properties of Feller processes). Let I = R+ and (TX
t )t∈I be the

operator semigroup of a Markov process X = (Xt)t∈I .

1. The semigroup (TX
t )t∈I is conservative and a positive contraction.

Indeed: Of course, TX
t 1(x) = Ex[1] = 1, which shows the conservativeness of (TX

t )t∈I .
Similarly, one writes for f ∈ B(E) with 0 ≤ f ≤ 1

TX
t f(x) = Ex[f(x)] ≤ Ex[1] = 1

and thus (TX
t )t∈I is a contraction.

2. Let X0 = x. Then TX
t f(x)

t→0−−→ f(x) for all f ∈ Cb(E) if and only if Xt
t→0−−→p x.

Indeed: ’→’: It follows with g(y) := r(x, y) ∧ 1 that Ex[r(x, Yt) ∧ 1] = TX
t g(x)

t→0−−→
g(x) = 0, which shows the claimed convergence. ’⇐’: Xt

t→0
===⇒ x applies and thus

according to the definition of weak convergence for f ∈ Cb(E) in particular TX
t f(x) =

Ex[f(Xt)]
t→∞−−−→ Ex[f(x)] = f(x).

Lemma 15.24 (Poisson process and Brownian motion are Feller). Both the Poisson process
(with rate λ ≥ 0) and the Brownian motion are Feller processes.

Proof. Let X x = (Xx
t )t≥0 be a Poisson process and Yy = (Y y

t )t≥0 a Brownian motion, each

started in x ∈ R and y ∈ R. The following applies X x d
= x + X 0 and Yy d

= y + Y0. Then

Xx
t ∼ N(x, t) and Y y

t ∼ y+Poi(tλ). In particular, obviously Xt
t→0−−→p x, Yt

t→0−−→p. Therefore,

TX
t f(x)

t→0−−→ f(x) and TY
t f(y)

t→0−−→ f(y) for f ∈ Cb(R) according to remark 15.23.2 Further,

TX
t f(x) = Ex[f(Xt)] = E0[f(x+Xt)]

x→x′
−−−→ E0[f(x

′ +Xt)] = TX
t f(x

′)

and analogously for the process Y. From this follow all assertions.

For concrete Markov processes, semigroups are usually difficult to specify. (However, see the
exceptions of the Poisson process and the Brownian motion from example 15.4). It is easier
to define what happens in an infinitesimally short time. This is described by the generator of
the operator semigroup.
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Definition 15.25 (generator). Let I = [0,∞), X = (Xt)t∈I be a temporally homogeneous
Markov process with operator semigroup (TX

t )t∈I . Then the generator of X (or of its operator
semigroup) is defined as

(GX f)(x) = lim
t→0

Ex[f(Xt)− f(x)]

t
= lim

t→0

1

t
((TX

t f)(x)− f(x)),

for all f for which the limit value exists. The set of functions f for which (GX f)(x) exists
for all x ∈ E exists is the domain of GX and is denoted by D(GX ).

Example 15.26 (Generator for Poisson process and Brownian motion).

1. Let X = (Xt)t∈I be a Poisson process with parameter λ and GX its generator. Then,

(GX f)(x) = λ(f(x+ 1)− f(x)

for x ∈ N and f ∈ B(N).
Because we calculate, if Pt is a Poisson distributed random variable with parameter λt

(GX f)(x) = lim
t→0

1

t
(Ex[f(x+ Pt)− f(x)]) = lim

t→0

1

t

∞∑
k=1

e−λt (λt)
k

k!
(f(x+ k)− f(x))

= lim
t→0

λ

∞∑
k=0

e−λt (λt)k

(k + 1)!
(f(x+ 1 + k)− f(x))

= λ(f(x+ 1)− f(x)

due to dominated convergence.

2. Let X = (Xt)t∈I be a Brownian motion and GX its generator. Then

(GX f)(x) = 1
2f

′′(x)

for x ∈ R and f ∈ C2
b (R), the set of bounded, twice continuously differentiable functions

with with bounded derivatives.

Because we calculate, if Z is a N(0, 1)-distributed random variable with the Taylor
approximation and a random variable Y with |Y | ≤ |Z|

(GX f)(x) = lim
t→0

1

t
(Ex[f(x+

√
tZ)− f(x)])

= lim
t→0

1

t
(Ex[f

′(x)
√
tZ + 1

2f
′′(x)tZ2 + 1

2(f
′′(x+

√
tY )− f ′′(x))tZ2])

= 1
2f

′′(x) + lim
t→∞

E[12(f
′′(x+

√
tY )− f ′′(x))Z2] = 1

2f
′′(x)

(15.5)

by dominated convergence.

We calculate analogously: If X = (Xt)t∈I with Xt = (X1
t , ..., X

d
t ) is a d-dimensional

Brownian motion. Then,

(GX f)(x) =
1

2

d∑
i=1

∂2f

∂x2i
(x)

for x ∈ Rd and f ∈ C2
b (R2).

59



Remark 15.27 (Feller semigroups and strong continuity). If E is at least locally compact,
one can – if one replaces Cb(E) by C0(E), the continuous functions vanishing at infinity – at
least show that every Feller semigroup is strongly continuous. This makes it easier in some
proofs to verifying the uniform convergence for strong continuity. In particular, according
to Lemma 15.24 the (Feller) semigroups of the Poisson process and Brownian motion are
strongly continuous.

Lemma 15.28 (Relationship between operator semigroup and generator). Let X be a Feller
process with operator semigroup (TX

t )t∈I . Further, let GX be the generator of X and D ⊆
D(GX ) with GX (D) ⊆ Cb(E). For f ∈ Cb(E) is then

∫ t
0 (T

X
s f)ds ∈ D(GX ) with

(TX
t f)(x)− f(x) =

(
GX

(∫ t

0
(TX

s f)ds
))

(x) (15.6)

and for f ∈ D and t ≥ 0 is also TX
t f ∈ D(GX ) and the following applies

GX (TX
t f) = TX

t (GX f),

(TX
t f)(x)− f(x) =

∫ t

0
(TX

s (GX f))(x)ds,
(15.7)

thus

Ex[f(Xt)] = f(x) +

∫ t

0
E[(GX f)(Xs)]ds.

Proof. For x ∈ E and f ∈ Cb(E), t 7→ (TX
t f)(x) is continuous. Because of the Feller property

of (TX
t )t∈I ,

(TX
t+hf)(x) = (TX

t (TX
h f))(x) = (TX

t f)(x).

For the first equation,

1

h
Ex

[ ∫ t

0
(TX

s f)(Xh)− (TX
s f)(x)ds

]
=

1

h

(∫ t

0
(TX

s+hf)(x)− (TX
s f)(x)ds

)
=

1

h

(∫ t+h

h
(TX

s f)(x)ds−
∫ t

0
(TX

s f)(x)ds
)

=
1

h

∫ t+h

t
(TX

s f)(x)ds−
1

h

∫ h

0
(TX

s f)(x)ds

h→0−−−→ (TX
t f)(x)− f(x).

For the other statements, first of all

d

dt
Ex[f(Xt)] = lim

h→0

1
hEx[f(Xt+h)− f(Xt)]

= (TX
t lim

h→0

1
hEx[f(Xh)− f(x)] = (TX

t (GX f))(x),

but also

d

dt
Ex[f(Xt)] = lim

h→0

1
hEx[f(Xt+h)− f(Xt)]

= lim
h→0

1
hEx[(T

X
t f)(Xh)− (TX

t f)(x)] = (GX (TX
t f))(x),
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which shows the first equation. For the second equation, we note that t 7→ (TX
t (GX f))(x) is

continuous according to the condition, so

(TX
t f)(x)− f(x) =

∫ t

0

d

ds
Ex[f(Xs)]ds =

∫ t

0
(TX

s (GX f))(x)ds.

Corollary 15.29 (Domain is dense). Let X , (TX
t )t∈I and GX as in Lemma 15.28 and the

conditions in Lemma 15.28 apply with D = Cb(E). Furthermore, let (TX
t )t∈I be strongly

continuous. Then D(GX ) is dense in Cb(E) with respect to the supremum norm, i.e. each
f ∈ Cb(E) can be approximated by functions from D(GX ).

Proof. For each f ∈ Cb(E) the following applies according to the condition

1
t

∫ t

0
(TX

s f)ds
t→0−−→ f

with respect to the supremum norm. Since the function on the left-hand side after (15.6) lie
in D(GX ), the assertion is shown.

Theorem 15.30 (Martingales derived from Markov processes). Let X = (Xt)t∈I be a Feller
process with generator GX and domain D(GX ). Further let D ⊆ D(GX ) be such that GX (D) ⊆
Cb(E). Then, for f ∈ D both(

f(Xt)−
∫ t

0
(GX f)(Xs)ds

)
t∈I

as well as, in the case of (GX f)/f ∈ L(
f(Xt) exp

(
−
∫ t

0

(GX f)(Xs)

f(Xs)
ds
))

t∈I

are martingales.

Proof. Let t ≥ s. For the first process, we note

E
[
f(Xt)− f(Xs)−

∫ t

s
(GX f)(Xr)dr

∣∣∣Fs

]
= E

[
f(Xt)− f(Xs)−

∫ t

s
(GX f)(Xr)dr

∣∣∣Xs

]
= (Tt−sf)(Xs)− f(Xs)−

∫ t

s
(Tr−s(G

X f))(Xs)dr = 0

according to Lemma 15.28. Furthermore,

Ex

[
f(Xt) exp

(
−
∫ t

0

(GX f)(Xr)

f(Xr)
dr
)
− f(Xs) exp

(
−
∫ s

0

(GX f)(Xr)

f(Xr)
dr
)∣∣∣Fs

]
= Ex

[
f(Xt) exp

(
−
∫ t

s

(GX f)(Xr)

f(Xr)
dr
)
− f(Xs)

∣∣∣Xs

]
· exp

(
−
∫ s

0

(GX f)(Xr)

f(Xr)
dr
)
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and

d

dt
EXs

[
f(Xt) exp

(
−
∫ t

0

(GX f)(Xr)

f(Xr)
dr
)]

= EXs

[
(GX f)(Xt) exp

(
−
∫ t

0

(GX f)(Xr)

f(Xr)
dr
)

− f(Xt) exp
(
−
∫ t

0

(GX f)(Xr)

f(Xr)
dr
)(GX f)(Xt)

f(Xt)

]
= 0.

Again, integration from s to t provides the assertion.

Example 15.31 (Ordinary differential equation). Let X = (Xt)t≥0 with values in Rd which
is a solution of the ordinary differential equation

d

dt
Xt = g(Xt)

where g = (gi)i=1,...,d : Rd → Rd is a Lipshitz function. Then X is deterministic, but can also
be regarded as homogeneous in time (because g does not additionally depend on t) Markov
process. The generator of X is calculated for f ∈ C1

b (Rd) and X0 = x as

(GX f)(x) = lim
t→0

1
t (f(Xt)− f(x)) =

d

dt
(f(Xt))

∣∣∣
t=0

=

d∑
i=1

∂f

∂xi
(g(x)) · gi(x) = (∇f)(g(x)) · g(x).

Example 15.32 (Poisson process and Brownian motion). In the following, let fn(x) =
xe−x/n, i.e. fn ∈ Cb(R+) and gn(x) = x2e−x/n such that fn(x)

n→∞−−−→ f(x) and gn(x)
n→∞−−−→

g(x) with f(x) = x and g(x) = x2.

1. Let X = (Xt)t≥0 be a Poisson process with rate λ. Thus, according to theorem 15.30
and Example 15.26 (

Xt ∧ n−
∫ t

0
λ1Xs≤n−1ds

)
t≥0

is a martingale. Since Xt is integrable, it follows from dominated convergence that(
Xt − λt

)
t≥0

is a martingale. Analogously, one concludes (from the integrability of X2
t that(

X2
t − λ

∫ t

0
(Xs + 1)2 −X2

sds
)
t≥0

is a martingale. See also example 14.46.

2. Let X = (Xt)t≥0 be a Brownian motion. From the integrability of Xt, X
2
t and eµXt, one

concludes from Theorem 15.30 that because of GXh(x) = 1
2h

′′(x)(
Xt − 1

2

∫ t

0
id′′(Xs)ds

)
t≥0

= (Xt)t≥0,(
X2

t − 1
2

∫ t

0
(id2)′′(Xs)ds

)
t≥0

= (X2
t − t)t≥0,(

exp
(
µXt − 1

2

∫ t

0

(eµ.)′′(Xs)

eµXs
ds
))

t≥0
=

(
exp

(
µXt − 1

2µ
2t
))

t≥0

are all martingales. See also example 14.47.
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Example 15.33 (Jump processes). The simplest Markov processes are piecewise constant
processes. We now describe the following process: Given Xs = x, the process jumps after
an exponentially distributed time with rate λ(x). The process jumps according to the Markov
kernel µ(Xs, .), i.e. it jumps with probability µ(Xs, dy) to y.

Let λ ∈ B(E) be given with 0 ≤ λ ≤ λ∗ and the Markov kernel µ from E to E. Further,
let (Yk)k=0,1,2,... be a Markov chain in discrete time with P(Yk+1 ∈ A|Yk) = µ(Yk, A) for all
A ∈ B(E). Furthermore, let T1, T2, ... be independent and exp(1)-distributed. (We note that
this means that Tk/λ according to exp(λ) is distributed). We define the jump process (Xt)t≥0

by

Xt =


Y0, t <

T0
λ(Y0)

,

Yk,

k−1∑
j=0

Tj
λ(Yj)

≤ t <

k∑
j=0

Tj
λ(Yj)

.
(15.8)

This is a Markov process since it is memoryless by the exponential distribution. To calculate
the generator of X , we note that the probability that in time t more than than 2 jumps take
place is at most 1− e−λ∗t(1 + 1

2λ
∗t) = O(t2). So the following applies for f ∈ Cb(E)

(GX f)(x) = lim
t→0

Ex[f(Xt)− f(x)]

t

= lim
t→0

1
t

(
(e−λ(x)t − 1)f(x) + λ(x)te−λ(x)t

∫
µ(x, dy)f(y)

)
= λ(x)

∫
µ(x, dy)

(
f(y)− f(x)

)
dy.

(15.9)

We now give some more examples of Markov jump processes on countable state spaces.

Example 15.34 (Master equation). Let X = (Xt)t≥0 be a jump process on a countable state
space E, given as in the last example by the functions λ and the Markov kernel µ(, .). We
now set λ(x, y) := λ(x)µ(x, y) and denote this quantity as the jump rate from x to y, i.e.

Gf(x) =
∑
y∈E

λ(x, y)(f(y)− f(x))

is the generator of X . If you insert the following into this equation function f(y) = 1y=x (for
a fixed x) into this equation, you get

d

dt
P(Xt = x) =

d

dt
E[f(Xt)] = E[(Gf)(Xt)]

= E
[∑
y∈E

λ(Xt, y)(1y=x − 1Xt=x)
]

=
∑
z∈E

P(Xt = z)
∑
y∈E

λ(z, y)(1x=y − 1x=z)

=
∑
z∈E

λ(z, x)P(Xt = z)− λ(x, z)P(Xt = x).

(15.10)

This equation is therefore a differential equation for (P(Xt = x))x∈E. The solution of this
equation thus provides the exact distribution of Xt. This equation is also known in physics as
the master equation.
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We will now also replace the generator equation with

Ex[f(Xh)] = f(x) + hGf(x) + o(h).

write.

Example 15.35 (Branching processes in continuous time). In a continuous-time branching
process (with state space Z+), each individual dies at rate 1 and is replaced by a random
number of random number of offspring (with distribution µ). Here the generator results in

Gf(x) = x
∞∑
n=0

µ(n)(f(x− 1 + n)− f(x)).

For example, for fr(x) = rx,

Gfr(x) = xrx−1
∞∑
n=0

µ(n)(rn − r) = xrx−1(gµ(r)− r) = (gµ(r)− r)
d

dr
fr(x).

From this you calculate

Ex[r
Xt ] = rx + (gµ(r)− r)

∫ t

0

d

dr
Ex[r

Xs ]ds,

so the function u : (t, r) 7→ Ex[r
Xt ] solves the equation

d

dt
u(t, r) = (gµ(r)− r)

d

dr
u(t, r) (15.11)

with the boundary conditions u(0, r) = rx, u(t, 1) = 1.

Example 15.36 (Yule process). The simplest branching process is the Yule process, in which
each individual is replaced by two offspring. In this case µ = δ2 and thus gµ(r) = r2, so here
in (15.11)

d

dt
u(t, r) = −r(1− r)

d

dr
u(t, r)

apply. We now claim that this equation in the case x = 1 is given by

u(t, r) =
e−tr

1− r(1− e−t)
.

Indeed,

(1− r(1− e−t))2
d

dt
u(t, r) = −(1− r(1− e−t))re−t + e−2tr2 = −r(1− r)e−t

(1− r(1− e−t))2
d

dr
u(t, r) = (1− r(1− e−t))e−t + e−tr(1− e−t) = e−t.

Since the generating function of the geometric distribution is just

ggeo(p)(r) =

∞∑
n=1

(1− p)n−1prn =
pr

1− r(1− p)
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we have shown that in this case Xt ∼ geo(e−t). This can also be shown using the master
equation

d

dt
P(Xt = x) = (x− 1)P(Xt = x− 1)− xP(Xt = x).

This is because for P(Xt = x) = (1− e−t)x−1e−t

d

dt
(1− e−t)x−1e−t = (x− 1)(1− e−t)x−2e−2t − (1− e−t)x−1e−t

= (1− e−t)x−2e−t((x− 1)e−t − (1− e−t)) = (1− e−t)x−2e−t(xe−t − 1)

and

(x− 1)P(Xt = x− 1)− xP(Xt = x) = (1− e−t)x−2e−t(x− 1− x(1− e−t))

= (1− e−t)x−2e−t(xe−t − 1).

Example 15.37 (Probability of extinction of a branching process). Let T = T0 be the ex-
tinction time of a branching process. Then obviously Px(T <∞) = P1(T <∞)x and

P1(T <∞) = (1− h)P1(T <∞) + h
∞∑
n=0

µ(n)P1(T <∞)n + o(h)

therefore, for r := P1(T <∞) just

r = gµ(r) (15.12)

apply. This equation trivially has the solution r = 1. In the case
∑

n nµ(n) ≤ 1 this is the only
solution, which shows that the extinction probability in this case is 1. (This we have already
seen through martingale theory). In the case µ = pδ0 + qδ2 with q > p (i.e.

∑
n nµ(n) > 1)

you calculate that (15.12) applies exactly when 0 = qr2 − r + p, i.e. for

r =
1±

√
1− 4pq

2q
=

1± 2q − 1

2q
.

Since the extinction probability must be less than 1 is therefore just (p/q) ∧ 1.

Example 15.38 (Hitting times). Let E′ ⊆ E and T := TE′ be the hitting time of E′. We
want to calculate the mapping u : x 7→ Ex[T ]. Obviously, u(x) = Ex[T ] = 0 for x ∈ E′, so
with λ(x) =

∑
y λ(x, y)

Ex[T ] = (1− hλ(x))Ex[T + h] +
∑
y

Ex[T |Xh = y] ·P(Xh = y)

= Ex[T ] + h(1− λ(x)Ex[T ] +
∑
y

λ(x, y)Ey[T ] +O(h2)

= Ex[T ] + h(1 +GE•[T ]) +O(h2).

Therefore, the function u must fulfill the equation

Gu(x) = −1, x /∈ E′,

u(x) = 0, x ∈ E′.
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Example 15.39 (Birth-death processes). Markov processes with E = Z+ and transition rate
λ(x, y) = 0 for x− y| > 1 are called birth-death processes. Typically one denotes

λ(n, n+ 1) =: λn, λ(n, n− 1) =: µn,

and thus the generator is given by

Gf(n) = λn(f(n+ 1)− f(n)) + µn(f(n− 1)− f(n)).

For the expected hitting times of 0, i.e. u(n) := En[T0], we now show that

u(0) = 0,

u(n) =

n∑
k=1

1

µkπk

∞∑
j=k

πj

with π1 = 1 and

πi =
i∏

j=2

λj−1

µj
.

Then,

Gu(n) = λn
1

µn+1πn+1

∞∑
j=n+1

πj − µn
1

µnπn

∞∑
j=n

πj

=
1

πn

∞∑
j=n+1

πj −
1

πn

∞∑
j=n

πj = −1.

16 Properties of Brownian motion

Although we have already introduced Brownian motion in Chapter 13.3, there is still a lot of
properties we have not covered yet. We already know that Brownian motion is a martingale,
a Gaussian process and a strong Markov process with independent and identically distributed
increments and has continuous paths. From this, we can deduce new properties, for example,
Blumenthal’s 0-1 law, which is an addition to the Kolmogorov’s 0-1 law.

Theorem 16.1 (Blumenthal’s 0-1 law). Let X = (Xt)t≥0 be a Brownian motion, defined on
a probability space (Ω,F ,P), started in x ∈ R, and F0+ :=

⋂
t>0 σ(Xs : s ≤ t). Then F0+

P-trivial, i.e. P(A) ∈ {0, 1} for A ∈ F0+.
Let further T :=

⋂
s≥0 σ(Xt : t ≥ s) be the terminal σ-algebra of X . Then T is P-trivial.

Proof. According to Lemma 15.9, the filtration (Ft)t≥0 with Ft = σ(Xs : s ≤ t) is right-
continuous. From the right continuity in 0 follows F0+ = σ(X0). Since X0 = x is constant,
F0+ must therefore be a P-trivial σ-algebra.

Furthermore, with X according to theorem 13.19 also X ′ = (X ′
t)t≥0 with X ′

t = tX1/t

a Brownian motion started in 0. With what has just been shown,
⋂

t≥0 σ(X
′
s : s ≤ t) is

P-trivial. It follows, however, that⋂
s≥0

σ(Xt : t ≥ s) =
⋂
s≥0

σ(tX1/t : t ≤ s) =
⋂
s≥0

σ(X ′
t : t ≤ s)

is P-trivial, i.e. the assertion.
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Remark 16.2. Although Blumenthal’s 0-1 law looks simple, it may nevertheless be surprising.
As we will show later, the Brownian motion – in a suitable sense – can be thought of as the
limit of random walks. If we start a random walk in 0, then this random walk either jumps
upwards first or downwards first. In particular, for small times they spend either more time
in the positive or in the negative.

Let us define analogously for Brownian motion

At :=
{∫ t

0
1Xs>0ds ≥

∫ t

0
1Xs<0ds

}
the set of Brownian paths that have spent more time in the positive by time t and and A :=⋂

t>0

⋂
0<s≤tAs, which is the set of paths that have spent more time in the positive up to some

small time t. Then A ∈ ⟩sF0+, so for reasons of symmetry P(A) = 0 must apply. So there
is almost certainly no Brownian path that has spent more time in the positive, for very small
times.

However, this law is only the prelude to a series of further properties. Here we examine
the quadratic variation in Section 16.1, the reflection principle based on the strong Markov
property in Section 16.2, the law of the iterated logarithm in Section 16.3, the convergence of
random walks against Brownian motion in Section 16.4 and a further connection with random
walks in Section 16.5.

16.1 Quadratic variation

The paths of Brownian motion in Figures 3 and 5 look – albeit steady – very rough. This
property should now be specified.

Definition 16.3 (Variation and quadratic variation). Let f ∈ DR([0,∞)), t ≥ 0 and for
n = 1, 2, ... let 0 = tn,0 < tn,1 < · · · < tn,kn = t be given. We denote ζn := {tn,0, ..., tn,kn} as

n-th partition (of [0, t]). Assuming maxk(tn,k − tn,k−1)
n→∞−−−→ 0, i.e. the partitions exploit the

interval [0, t] for n → ∞ better and better. Then we define the ℓ-variation of f with respect
to ζ = (ζn)n=1,2,... as

νℓ,t,ζ(f) := lim
n→∞

νnℓ,t,ζ(f)

with

νnℓ,t,ζ(f) =

kn∑
k=1

|f(tn,k)− f(tn,k−1)|ℓ.

If the limit value is independent of ζ, we call this the ℓ-variation and denote it by νℓ,t(f). The
1-variation is also called variation and the 2-variation is also called quadratic variation.

In addition, ζ is called ascending if ζn ⊆ ζn+1 holds for all n = 1, 2, ....

Lemma 16.4 (Elementary properties of the (quadratic) variation). Let f be continuous and
t ≥ 0. Then the following applies to ζ as in Definition 16.3

νℓ,t,ζ(f) <∞ → νℓ+1,t,ζ(f) = 0,

νℓ+1,t,ζ(f) > 0 ⇒ νℓ,t,ζ(f) = ∞.

67



Proof. It is sufficient to show the first property. We write

0 ≤ lim
n→∞

kn∑
k=1

|f(tn,k)− f(tn,k−1)|ℓ+1

≤ lim
n→∞

sup
k

|f(tn,k)− f(tn,k−1)| · lim
n→∞

kn∑
k=1

|f(tn,k)− f(tn,k−1)|ℓ = 0

since f is uniformly continuous on [0, t].

Proposition 16.5 (Quadratic variation of Brownian motion). Let X = (Xt)t≥0 be a Brown-
ian motion. Then for ζ as in Definition 16.3,

νn2,t,ζ(X )
n→∞−−−→L2 t.

If ζ is ascending, then also

νn2,t,ζ(X )
n→∞−−−→fs t.

In particular, the variation of X is almost certainly infinite.

Proof. We write νn2,t,ζ := νn2,t,ζ(X ). First to the L2-convergence. It is known that Xt −Xs ∼√
t− sX1 is valid for s ≤ t. Therefore

E[νn2,ζ ] =

kn∑
k=1

E[(Xtn,k
−Xtn,k−1

)2] =

kn∑
k=1

(tn,k − tn,k−1)E[X2
1 ] =

kn∑
k=1

(tn,k − tn,k−1) = t

as well as

E[(νn2,ζ − t)2] = V[νn2,ζ ] =

kn∑
k=1

V[(Xn,k −Xn,k−1)
2] =

kn∑
k=1

(tn,k − tn,k−1)
2E[X4

1 ]
n→∞−−−→ 0.

For the almost sure convergence, we first assume wlog that there is 0 ≤ t1, t2, ... ≤ t, so that
ζn = {t1, ..., tn}. We will further show that (ν−n

2,ζ )n=...,−2,−1 is a (backward) martingale, so
that

E[νn−1
2,ζ − νn2,ζ |νn2,ζ , νn+1

2,ζ , ...] = 0

applies to all n. If t′n and t′′n are the points in time directly before and after tn in ζn,

νn−1
2,ζ − νn2,ζ = (Xt′′n −Xt′n)

2 − (Xt′′n −Xtn)
2 − (Xtn −Xt′n)

2

= 2(Xt′′n −Xtn)(Xtn −Xt′n).

We define a second Brownian motion (X̃t)t≥0 by an independent random variable Y with
P(Y = 1) = P(Y = −1) = 1

2 and

X̃s = Xs∧tn + Y (Xs −Xs∧tn).

This means that (X̃s)0≤s≤t after tn atXtn is mirrored. In particular, (Xtn−Xt′n) = (X̃tn−X̃t′n)

and (Xt′′n −Xtn) = −(X̃t′′n − X̃tn). It is ν
k
2,t,ζ(X ) = νk2,t,ζ(X̃ ) for k = n, n+ 1, ... and thus

E[νn−1
2,t,ζ (X )− νn2,t,ζ(X )|νn2,ζ , νn+1

2,ζ , ...] = E[νn−1
2,t,ζ (X̃ )− νn2,t,ζ(X̃ )|νn2,ζ , νn+1

2,ζ , ...],
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thus

E[νn−1
2,t,ζ (X )− νn2,t,ζ(X )|νn2,ζ , νn+1

2,ζ , ...]

= 1
2

(
E[νn−1

2,t,ζ (X )− νn2,t,ζ(X )|νn2,ζ , νn+1
2,ζ , ...] +E[νn−1

2,t,ζ (X̃ )− νn2,t,ζ(X̃ )|νn2,ζ , νn+1
2,ζ , ...]

)
= E[(Xt′′n −Xtn)(Xtn −Xt′n) + (X̃t′′n − X̃tn)(X̃tn − X̃t′n)|ν

n
2,ζ , ν

n+1
2,ζ , ...] = 0,

which shows the desired martingale property. According to Theorem 14.37, (νn2,t,ζ)n=1,2,...

converges almost surely towards t.

Corollary 16.6 (Brownian motion has nowhere differentiable paths). A Brownian motion
X = (Xt)t≥0 almost certainly has nowhere differentiable paths. This means that

P
(
lim
h→0

Xt+h −Xt

h
exists for some t > 0

)
= 0.

Proof. It is sufficient to consider the set of paths of Brownian motion whose quadratic varia-
tion in time [0, t] is exactly t. (The set of these paths has probability 1, as Proposition 16.5
shows). Each path in this set has positive quadratic variation in every small time interval,
i.e. according to Lemma 16.4 infinite variation. Since differentiability requires at least a finite
variation in a small time interval the assertion follows.

16.2 Strong Markov property and reflection principle

In Example 15.13 we saw that Brownian motion is a strong Markov process. This has some
useful consequences, as we will now see. The reflection principle is illustrated in Figure 6.

Lemma 16.7 (Reflection principle). Let X = (Xt)t≥0 be a Brownian motion and T is a
stopping time. Then the reflected process is X ′ = (X ′

t)t≥0 with

X ′
t := Xt∧T − (Xt −Xt∧T ) =

{
Xt, t ≤ T,

2XT −Xt, t > T

is also a Brownian motion.

Proof. First of all, it is clear from the construction that X ′ has continuous paths. Wlog,
we assume that T < ∞ holds. We define Y = (Yt)t≥0 by Yt := Xt∧T and Z = (Zt)t≥0 by
Zt := XT+t−XT . Then Z is a Brownian motion, since by the strong Markov property, (T,Y)

is independent. This means that (T,Y,Z)
d
= (T,Y,−Z), since Z d

= −Z. It also follows that

(Y,ZT )
d
= (Y,−ZT ) with ZT := (ZT

t )t≥0, Z
T
t := Z(t−T )+ . From this,

X = Y + ZT d
= Y − ZT = X ′.

This shows the assertion.

As an application of the reflection principle, we now calculate the distribution of the maximum
of a Brownian motion up to a time t. First, however, we note that from Doob’s Lp inequality,
Proposition 14.26, estimates about the distribution of the maximum. Let X = (Xt)t≥0 be
a Brownian motion and M = (Mt)t≥0 with Mt = sups≤tXs the maximum process. Then
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Figure 6:
The reflection principle of Brownian motion states that for a Brownian motion (Xt)t≥0 the
process reflected to T at x = XT (X ′

t)t≥0 is also a Brownian motion.

it follows from Proposition 14.26 (or the extension to continuous-time processes from Theo-
rem 14.51) with p = 2

P(Mt ≥ x) ≤ 1
x2E[X2

t ] =
t
x2 .

However, especially for large x, this probability is in fact much smaller, as the next result
shows.

Theorem 16.8 (Maximum of Brownian motion). Let X = (Xt)t≥0 be a Brownian motion
started in X0 = 0. We define the maximum process M = (Mt)t≥0 by Mt = sup0≤s≤tXs.
Then,

Mt
d
=Mt −Xt

d
= |Xt|.

All three random variables have the density

x 7→
√

2

πt
exp

(
− x2

2t

)
1x≥0.

Proof. Let φt(x) = 1√
2πt

exp
(
− x2

2t

)
the density of Brownian motion at time t. Then the

density of |Xt| is given by 2φt(x)1x≥0. So it remains to show that both Mt and Mt−Xt have
exactly this density. For this we set T := Tx = inf{s ≥ 0 : Xs = x}. For 0, y ≤ x, because of
Lemma 16.7, if (X ′

t)t≥0 is the process mirrored at T ,

P(Mt ≥ x,Xt ≤ y) = P(X ′
t ≥ 2x− y) =

∫ ∞

2x−y
φt(z)dz

and thus for x ≥ 0

P(Mt ≥ x) = P(Mt ≥ x,Xt ≤ x) +P(Xt ≥ x)

= 2

∫ ∞

x
φt(z)dz
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from which it follows that Mt
d
= |Xt|. We further calculate

P(Mt −Xt ≥ x) = lim
ε→0

1
ε

∫ ∞

0
P(z ≤Mt ≤ z + ε,Xt ≤ z − x)dz

= lim
ε→0

1
ε

∫ ∞

0
P(Mt ≥ z,Xt ≤ z − x)−P(Mt ≥ z + ε,Xt ≤ z − x)dz

= lim
ε→0

1
ε

∫ ∞

0
2φt(z + x)dz =

∫ ∞

x
2φ(z)dz.

Again, Mt −Xt
d
= |Xt| applies.

Remark 16.9 (The path-valued reflection principle). The reflection principle only shows the
equality of the distributions of |Xt|,Mt,Mt−Xt at a fixed time t. It now remains open whether
(|Xt|)t≥0 ∼ (Mt −Xt)t≥0 is also valid. Even if we do not show this here, this assertion turns
out to be correct. (By the way: Surely (Mt)t≥0 is distributed differently than (|Xt|)t≥0 or
(Mt −Xt)t≥0, since the last two processes can also decrease, but (Mt)t≥0 not).

16.3 The Law of the Iterated Logarithm

We want to determine how a Brownian motion X = (Xt)t≥0 maximally grows. This means
that we have a function t 7→ ht so that

0 < lim sup
t→∞

Xt

ht
<∞. (16.1)

We already know from the law of large numbers that Xt
t

t→∞−−−→ 0. The following also applies

lim sup
t→∞

Xt√
t
= ∞. (16.2)

Indeed: Certainly lim supt→∞
Xt√
t
is measurable with respect to the terminal σ-algebra of X ,

i.e. according to Theorem 16.1 almost certainly constant. Suppose, lim supt→∞
Xt√
t

t→∞−−−→ γ

for a 0 < γ <∞. Then it would apply in particular that P(Xt√
t
> 2γ)

t→∞−−−→ 0, in contradiction

to the central limit theorem.
The task now is to find a function t 7→ ht with

√
t ≤ ht ≤ t so that (16.1) applies. This is

determined by the iterated logarithm as follows:

Theorem 16.10 (Iterated logarithm for Brownian motion). Let X = (Xt)t≥0 be a Brownian
motion. Then

lim sup
t→∞

Xt√
2t log log t

= lim sup
t→0

Xt√
2t log log 1/t

= 1, (16.3)

almost surely.

Remark 16.11. For reasons of symmetry, i.e. because −X is also a Brownian motion,

lim inf
t→∞

Xt√
2t log log t

= lim inf
t→0

Xt√
2t log log 1/t

= −1
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Figure 7:
Here are two paths of a Brownian movement are given. As you can see, the two paths leave
the curves t 7→ ±

√
2t much more frequently than the curve t 7→ ±ht.

almost surely. For illustration see Figure 7. The fact that ht :=
√
2t log log t is the correct

function means that almost every path of the Brownian motion is only finitely often outside
the two curves t 7→ ±ht but infinitely often outside the two curves t 7→ ±(1 − ε)ht, where
0 < ε < 1 is arbitrary.

Proof. First of all, we note that with Theorem 13.19 also (tX1/t)t≥0 is also a Brownian motion.
If we apply the statement for the t→ ∞ limit, it follows that

lim sup
t→0

Xt√
2t log log 1/t

= lim sup
t→∞

X1/t√
21
t log log t

= lim sup
t→∞

tX1/t√
2t log log t

= 1

almost surely. In addition, we write ht := h(t) :=
√
2t log log t. The proof for t→ ∞ requires

a few estimations. We divide the proof into three steps.

Step 1: Estimation of the normal distribution: Let φ(x) = 1√
2π
e−x2/2 the density of X1. Then

P(X1 > x) ≤ 1
xφ(x), (16.4)

P(X1 > x) ≥ x
1+x2φ(x), (16.5)

Indeed: φ′(y) = −yφ(y) and therefore

φ(x) =

∫ ∞

x
yφ(y)dy ≥ x

∫ ∞

x
φ(y)dy = x ·P(X > x),

which shows (16.4). For (16.5) we write, quite similarly,
(
φ(y)
y

)′
= −1+y2

y2
φ(y), and thus

φ(x)

x
=

∫ ∞

x

1 + y2

y2
φ(y)dy ≤ 1 + x2

x2

∫ ∞

x
φ(y)dy =

1 + x2

x2
·P(X > x).
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In the following we write a(x)
x→∞
≈ b(x), if a(x)

b(x)

x→∞−−−→ 1 applies. So, for example, according
to what has just been shown

P(Xt > x
√
t)

x→∞
≈ 1

xφ(x).

2nd step: upper estimate: According to Theorem 16.8 is for x > 0

P( sup
0≤s≤t

Xs > x
√
t) = 2 ·P(Xt > x

√
t)

x→∞
≈ 2

xφ(x).

Now let r > 1. We first notice

h(rn−1) =

√
2(log(n− 1) + log log r)

r

√
rn

n→∞
≈

√
2 log n

r

√
rn

Now for c > 0 with the last two estimates

P
(

sup
0≤t≤rn

Xt > ch(rn−1)
) n→∞

≈ 2 ·P
(
Xrn > c

√
2 log n

r

√
rn
)

n→∞
≈ 1

c

√
2r

log n
φ(c

√
2 log n1/r)

n→∞
≈ 1

c

√
r

π log n

1

nc2/r
.

(16.6)

Therefore, for c > 1 and 1 < r < c2, the right-hand side of the last equation is summable, so
the following follows with the Borel-Cantelli lemma

P
(
lim sup
t→∞

Xt

ht
≥ c

)
≤ P

(
sup

0≤t≤rn
Xt > chrn−1 for infinitely many n

)
= 0.

Thus ’≤’ follows in (16.3).

3rd step: lower estimate: Let r > 1 (typically large) and c > 0 (typically close to 1). Define
the events

An := {Xrn −Xrn−1 > ch(rn − rn−1)}.

Since Xrn −Xrn−1 ∼ N(0, rn − rn−1), the following applies according to Step 1

P(An) = P
(Xrn −Xrn−1√

rn − rn−1
> c

h(rn − rn−1)√
rn − rn−1

)
= P

(
X1 > c

√
2 log log(rn − rn−1)

)
n→∞
≈ 1

c

1√
4π log log(rn − rn−1)

exp
(
− c2 log log(rn − rn−1)

)
n→∞
≈ 1

c

1√
4π log n

1

nc2

If c < 1, these probabilities cannot be summed up in n. Since the events A1, A2, ... are
independent, according to the Borel-Cantelli lemma, an infinite number of An occur. Thus,
for an infinite number of n, if c < 1

Xrn > ch(rn − rn−1) +Xrn−1 .
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According to the ’≤’ direction, Xrn−1 > −2h(rn−1) for almost all n, i.e. lim infn→∞
Xrn−1

h(rn) ≤

− lim infn→∞
h(rn−1)
h(rn) = − 1√

r
is almost certain. Further, h(rn− rn−1)/h(rn)

n→∞−−−→ 1 and thus

lim sup
t→∞

Xt

ht
≥ lim sup

n→∞

Xrn

h(rn)
≥ lim sup

n→∞

Xrn −Xrn−1

h(rn − rn−1)
− 1√

r
≥ c− 1√

r
.

Since 0 < c < 1 and r > 0 were arbitrary, ’≥’ follows in (16.3).

16.4 Donsker’s Theorem

Brownian motion X = (Xt)t≥0 is a stochastic process with continuous paths. Paul Lévy
considered approximated Brownian motion as the path of a random walk, where

Xt+dt −Xt = ±
√
dt, each with probability 1

2 .

(Of course, this can only be a formal representation, after all it is unclear what
√
dt is supposed

to be). Donsker’s Theorem presented here makes the connection between random walks and
Brownian motion. It asserts the convergence of random walks against Brownian motion in
distribution.

Remark 16.12 (Random walks and Brownian motion). In this section, Y1, Y2, ... are in-
dependent and identically distributed random variables with E[Y1] = 0 and V[Y1] = σ2 and

X̃n,t :=
Y1+···+Y⌊nt⌋√

nσ2
for t ≥ 0 and X̃n = (X̃n,t)t≥0. We know from the central limit theorem

that for t > 0
X̃n,t

n→∞
====⇒ Xt,

where Xt ∼ N(0, t) is distributed. Analogously, for 0 < t1 < · · · < tk <∞(
X̃n,t1 , X̃n,t2 − X̃n,t1 , ..., X̃n,tk − X̃n,tk−1

) n→∞
====⇒ (Xt1 , Xt2 −Xt1 , ..., Xtk −Xtk−1

),

if (Xt1 , ..., Xtk) is Brownian motion X at the points in time t1, .., tk. Does this now mean

already the convergence of the random walks against the Brownian motion, therefore Xn
n→∞
====⇒

X ? No! For this convergence, we must use both Xn and X as random variables with values
in a topological space – let’s call it C – where the convergence in distribution is based on
the convergence of expected values with respect to continuous, bounded functions f : C → R.
However, for the uncountable product space, the σ-algebra B(R)⊗[0,∞) is not the Borel σ-
algebra on the product space, and we have developed the theory of weak convergence only for
the case of probability measures on a Borel’s σ-algebra.

In order to formulate the convergence in distribution against the Brownian motion we first
need a suitable state space. This is defined as C := CR([0,∞)), provided with the topology of
compact convergence (see Definition 16.13). In order to convergence in this space, we define
the linear interpolation of the processes X̃n so that their paths are also continuous. For this
we set

Xn,t := X̃n,t + (nt− ⌊nt⌋)
Y⌊nt⌋+1√
nσ2

. (16.7)

and Xn = (Xn,t)t≥0. Now it makes sense to ask whether

Xn
n→∞
====⇒ X
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applies, whereby here the weak convergence with respect to the distributions on B(CR([0,∞)))
is meant here.

is

Definition 16.13 (Uniform convergence on compacta). Let (E, r) be a metric space. For
f, f1, f2, ... ∈ CE([0,∞)) let fn

n→∞−−−→ f uniform on compacta if and only if sup0≤s≤t r(fn(s), f(s))
n→∞−−−→

0 for all t > 0.

Lemma 16.14 (CE([0,∞)) is Polish). Let E be Polish with complete metric r. Then the
topology of uniform convergence on compacta on CE([0,∞)) is separable. Moreover, defined

rC(f, g) :=

∫ ∞

0
e−t · (1 ∧ sup

0≤s≤t
|r(f(s), g(s))|)dt

a complete metric on CE([0,∞)), which induces this topology induces. In particular, CE([0,∞))
is Polish.

Proof. To show separability, it is sufficient to name a countable class of functions that every
function in CE([0,∞)) can be locally approximated by such functions on compacta. For
this purpose, let D ⊆ E be dense and countable. For every finite sequence x1, ..., xn ∈
D and t1, ..., tn let f = fx1,...,xn,t1,...,tn be a continuous function with f(ti) = xi. Then⋃

n{fx1,...,xn,t1,...,tn : x1, ..., xn ∈ D, t1, ..., tn ≥ 0} is countable and dense in CE([∞)).
Now to the metric. Since t 7→ sup0≤s≤t r(f(s), g(s)) ∧ 1 is monotonically increasing,

rC(fn, f)
t→∞−−−→ 0 holds if and only if sup0≤s≤t r(fn(s), f(s))

n→∞−−−→ 0 for all t is valid. But this
is exactly the compact convergence. Let further f1, f2, ... be a Cauchy sequence with respect
to rC . Then for every t > 0 the sequence f1, f2, ..., restricted to [0, t] is a Cauchy sequence
with respect to the supremum norm on [0, t], i.e. uniformly convergent on [0, t]. The assertion
now follows by means of of a diagonal sequence argument.

First, we define two types of convergence of stochastic processes that we have just learned
about.

Definition 16.15 (Convergence of stochastic processes). Let X = (Xt)t≥0,X 1 = (X1
t )t≥0,X 2 =

(X2
t )t≥0, ... stochastic processes with state space E.

1. For each choice of t1, ..., tk, k = 1, 2, ..., it holds that

(Xn
t1 , ..., X

n
tk
)

n→∞
====⇒ (Xt1 , ..., Xtk),

we say that the finite-dimensional distributions of X 1,X 2, ... converge to those of X
converge and write

X n n→∞
====⇒

fdd
X .

(Here fdd stands for finite dimensional distributions).

2. If the processes X ,X 1,X 2, ... have paths in CE([0,∞)) and

X n n→∞
====⇒ X ,

where we use X ,X 1,X 2, ... as the random variable in CE([0,∞)), we say that X 1,X 2, ...
converges in distribution against X .
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The fdd convergence is weaker than the weak convergence of processes. However, if the
processes are tight (see Definition 9.14), both terms coincide.

Proposition 16.16 (Weak and fdd convergence). Let X ,X 1,X 2, ... be random variables with
values in CE([0,∞)). Then are equivalent

1. X n n→∞
====⇒ X .

2. X n n→∞
====⇒

fdd
X and {X n : n = 1, 2, ...} is tight in CE([0,∞)).

Proof. ’1.→2.’: First, from the weak convergence, according to Corollary 9.18 the tightness of
{X n : n = 1, 2, ...} follows. Furthermore, the mappings f 7→ (f(t1), ..., f(tk)) are continuous
for t1, ..., tk ∈ [0,∞), so the fdd convergence follows according to Theorem 9.10.

’2.⇒1.’: We define the function class

M := {f 7→ φ(f(t1), ..., f(tk)) : t1, ..., tk ∈ [0,∞), φ ∈ Cb(Ek)} ⊆ Cb(CE([0,∞)))).

It is clear that the fdd convergence X n n→∞
====⇒

fdd
X is equivalent to E[φ(X n)]

n→∞−−−→ E[φ(X )]

for all φ ∈ M. Furthermore M is an algebra and separates points, according to Theorem 9.24
is therefore separating. Now follows the weak convergence follows from Proposition 9.27.

To show the convergence of processes, after Proposition 16.16 both the convergence of the
finite-dimensional distributions as well as the tightness must be shown. In applications,
the verification of tightness is usually non-trivial. In particular, one needs to understand
how (relatively) compact subsets of CE([0,∞)) can be characterized. This is done using the
theorem of Arzela-Ascoli’s theorem, which is based on the modulus of continuity.

Definition 16.17 (Modulus of continuity). For f ∈ CE([0,∞)) we define the modulus of
continuity

w(f, τ, h) := sup{r(f(s), f(t)) : s, t ≤ τ, |t− s| ≤ h}.

Theorem 16.18 (Arzela-Ascoli). A set A ⊆ CE([0,∞)) is relatively compact if and only if
{f(t) : f ∈ A} for all t ∈ Q+ := [0,∞) ∩Q is relatively compact in E and for all τ > 0

lim
h→0

sup
f∈A

w(f, τ, h) = 0. (16.8)

Proof. First, let A be relatively compact. Then {f(t) : t ∈ A} must be relatively compact
for all t ≥ 0, otherwise it would be easy to construct a divergent sequence. Furthermore, A
is according to Proposition A.9 totally bounded. Further, let τ > 0, ε > 0 and f1, ..., fN , so
that A ⊆

⋃N
i=1Bε/3(fi). Since f1, ..., fN is based on [0, τ ] are uniformly continuous, there is

an h > 0 with

0 ≤ s, t ≤ τ, |t− s| < h =⇒ r(fi(t), fi(s)) ≤ ε/3, i = 1, ..., N.

So, for every f ∈ A and s, t ≤ τ, |t− s| ≤ h, that

r(f(s), f(t)) ≤ min
i=1,...,N

r(f(s), fi(s)) + r(fi(s), fi(t)) + r(fi(t), f(t)) ≤ ε
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and thus

w(f, τ, h) = sup{r(f(t), f(s)) : s, t ≤ τ, |t− s| ≤ h} ≤ ε,

independent of f . From this follows (16.8).

Conversely, (16.8) applies. It suffices to show that every sequence in A has a subsequence
that is Cauchy. By the relative compactness of {f(t) : f ∈ A} for t ∈ Q+ it is clear that for
each sequence there is a subsequence f1, f2, ... such that f1(ti), f2(ti), ... for all ti ∈ Q+ is a
Cauchy sequence (i.e. convergent). Now let ε > 0. According to the condition there is an
h > 0, so that from |t−s| ≤ h and f ∈ A it follows that r(f(s), f(t)) ≤ ε/3 holds. Further, let
M = ⌈τ/h⌉ and 0 = t1, ..., tM ∈ Q+, so that |ti+1−ti| ≤ h, i = 1, ...,M−1 and tM ≥ τ . Further
there is anN such that from n,m > N it follows that supt=t1,...,tM r(fn(t), fm(t)) ≤ ε/3. Thus,
for 0 ≤ s ≤ t

r(fn(s), fm(s)) ≤ r(fn(s), fn(t⌈s/h⌉)) + r(fn(t⌈s/h⌉), fm(t⌈s/h⌉)) + r(fm(t⌈s/h⌉), fm(s)) ≤ ε.

It follows that f1, f2, ... is a Cauchy sequence with respect to compact convergence on [0, t],
i.e. it converges on this range converges uniformly. A diagonal sequence argument extends
this statement to compact convergence.

Theorem 16.19 (Tightness in CE([0,∞))). Let X ,X 1,X 2, ... be random variables with values
in CE([0,∞)). Then X n n→∞

====⇒ X iff X n n→∞
====⇒

fdd
X and

lim
h→0

lim sup
n→∞

E[w(X n, τ, h) ∧ 1] = 0 (16.9)

for all τ > 0.

Proof. According to Proposition 16.16 it suffices to show that (16.9) is equivalent to the
tightness of the family (X n)n=1,2,....

First, let (X n)n=1,2,... be tight and ε > 0. Then there is a compact set K ⊆ CE([0,∞))
such that lim supn→∞P(X n /∈ K) ≤ ε. For τ > 0 you can use the Arzela-Ascoli Theorem h
can be chosen small enough so that w(f, τ, h) ≤ ε applies to f ∈ K. This means that

lim sup
n→∞

E[w(X n, τ, h) ∧ 1] ≤ ε+ sup
n=1,2,...

P[w(X n, τ, h) > ε] ≤ 2ε,

from which (16.9) follows.

Conversely, (16.9) and X n n→∞
====⇒

fdd
X . The mapping w is increasing in h and w(X n, τ, h)

h→0−−−→

0 almost certainly for n = 1, 2, ... So limh→0 supn=1,2,...E[w(X n, τ, h)∧1] = limh→0 supn=k,k+1,...E[w(X n, τ, h)∧
1] for all k, i.e. also limh→0 supn=1,2,...E[w(X n, τ, h)∧1] = limh→0 lim supn→∞E[w(X n, τ, h)∧
1]. So (16.9) is equivalent to

lim
h→0

sup
n=1,2,...

P[w(X n, τ, h) > ε] = 0

for all ε > 0 and τ > 0. Let τk = k and ε > 0. Then there exist h1, h2, ... > 0 such that

sup
n=1,2,...

P(w(X n, τk, hk) > 2−k) ≤ 2−(k+1)ε.
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Further, let t1, t2, ... be a count of Q+ and C1, C2, ... ⊆ R compact such that

sup
n=1,2,...

P(Xn(tk) /∈ Ck) ≤ 2−(k+1)ε.

Now we define

B :=
∞⋂
k=1

{
f ∈ CE([0,∞)) : f(tk) ∈ Ck, w(f, τk, hk) ≤ 2−k

}
.

According to Arzela-Ascoli’s theorem, B ⊆ CE([0,∞)) is relatively compact. Furthermore,

sup
n=1,2,...

P(X n /∈ B) ≤ sup
n=1,2,...

∞∑
k=1

P(Xn(tk) /∈ Ck) +P(w(X n, τk, hk) > 2−k)

≤
∞∑
k=1

2−(k+1)ε+ 2−(k+1)ε = ε.

It follows that (X n)n=1,2,... is tight.

We want to apply the last result to prove the convergence of the random walk against Brow-
nian motion. For this we need one more lemma.

Lemma 16.20. Let Y1, Y2, ... be independent and identically distributed random variables with
E[Y1] = 0 and V[Y1] = σ2 > 0 and Sn := Y1 + · · ·+ Yn. Then the following applies for r > 1

P( max
1≤k≤n

Sk > 2r
√
n) ≤ P(|Sn| > r

√
n)

1− σ2r−2
.

Proof. We define T := inf{k : |Sk| > 2r
√
n}. Then, since (Sn)n=1,2,... is strongly Markov,

P(|Sn| > r
√
n) ≥ P(|Sn| > r

√
n, max

1≤k≤n
Sk > 2r

√
n)

≥ P(T ≤ n, |Sn − ST | ≤ r
√
n)

≥ P( max
1≤k≤n

Sk > 2r
√
n) · min

1≤k≤n
P(|Sk| ≤ r

√
n).

From Chebychev’s inequality,

min
1≤k≤n

P(|Sk| ≤ r
√
n) ≥ min

1≤k≤n
1− σ2k

r2n
= 1− σ2

r2
.

Theorem 16.21 (Donsker’s theorem). Let Y1, Y2, ... be independent, identically distributed
random variables with E[Y1] = 0 and V[Y1] = σ2 > 0, and Xn = (Xn,t)t≥0 given by

Xn,t :=
1√
nσ2

(
Y1 + · · ·+ Y⌊nt⌋ + (nt− ⌊nt⌋)Y⌊nt⌋+1

)
and X = (Xt)t≥0 a Brownian motion. Then,

Xn
n→∞
====⇒ X .
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Proof. Let wlog σ2 = 1. As stated in Remark 16.12 it holds that Xn
n→∞
====⇒

fdd
X . Therefore,

according to Proposition 16.16, the tightness of the family {Xn : n ∈ N}, so (16.9) from
Theorem 16.19, must be proven. We write Sn := Y1 + · · · + Yn in the following. With
Lemma 16.20,

lim
h→0

1

h
lim sup
n→∞

P
(

sup
0≤s≤h

|Xn,t+s −Xn,t| > ε
)

≤ lim
h→0

1

h
lim sup
n→∞

P
(

sup
k=1,...,⌈nh⌉

|Sk| >
ε√
h

√
nh

)
≤ lim

h→0

1

h
lim sup
n→∞

P
( |S⌈nh⌉|√

nh
>

ε

2
√
h

)
≤ lim

h→0

2

h

∫ ∞

ε/(2
√
h)
φ(x)dx

= lim
h→0

2

h

2
√
h

ε
φ(ε/(2

√
h)) = 0

by (16.5), where φ is the density of the N(0, 1) distribution. Now let δ > 0 and h be small
enough for

lim sup
n→∞

P
(

sup
0≤s≤h

|Xn,t+s −Xn,t| > ε
)
≤ δh.

With this we can write

lim sup
n→∞

P(w(Xn, τ, h) > 2ε) = lim sup
n→∞

P( sup
0≤t≤τ−h,0≤s≤h

|Xn,t+s −Xn,t| > 2ε)

≤ lim sup
n→∞

P(sup{|Xn,kh+s −Xn,kh| : k = 0, 1, ..., [τ/h], 0 ≤ s ≤ h} > ε)

≤
[τ/h]∑
k=0

lim sup
n→∞

P(sup{|Xn,kh+s −Xn,kh| : 0 ≤ s ≤ h} > ε)

≤ [τ/h]δh
h→0−−−→ τδ.

Since δ > 0 was arbitrary, the result follows (16.9).

We end this section with a tightness criterion that is often is applicable. It builds on theo-
rem 13.8.

Theorem 16.22 (Kolmogorov-Chentsov criterion for tightness). Let X1 = (X1(t))t≥0,X2 =
(X2(t))t≥0, ... are stochastic processes with continuous paths. Assuming {Xn(0) : n ∈ N} is
tight and for every each τ > 0 there are numbers α, β, C > 0 with

sup
n

E[r(Xn(s), Xn(t))
α] ≤ C|t− s|1+β

for all 0 ≤ s, t ≤ τ . Then {Xn : n ∈ N} is tight in CE([∞)).

Proof. Let 0 < γ < β/α be arbitrary. We use the notation from the proof of theorem 13.8,
e.g. ξnk := max{r(Xn(s), Xn(t)) : s, t ∈ Dk, |t − s| = 2−k}. Elog let τ = 1. Just as in (13.1)
we calculate

∞∑
k=0

2αγkE[ξαnk] ≤ C

∞∑
k=0

2(αγ−β)k.
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Since the right-hand side does not depend on n, there is a C ′ with supnE[ξαnk] ≤ C ′e−αγk. It
is important to realize that w(Xn, 1, 2

−m) ≤
∑∞

k=m ξnk. From this,

sup
n

E[w(Xn, 1, 2
−m)α ∧ 1] ≤ sup

n
E
[( ∞∑

k=m

ξnk

)α]
≤ sup

n

( ∞∑
k=m

E[ξαnk]
1/α

)α

≤ C ′
( ∞∑

k=m

e−γk
)1/α m→∞−−−−→ 0,

from which the assertion follows.

16.5 The Skorohod embedding Theorem

The name Skorohod was already mentioned in the connection between weak and almost sure
convergence, see Theorem 9.11. Simply spoken, a sequence of random variables converges
weakly iff it converges almost surely in a suitable probability space. If we look again at
Donsker’s theorem, we can ask ourselves the question as to what the probability space should
look like, on which the random walks converge almost surely against a Brownian motion.
In other words: how must one define the random walks and the Brownian motion so that
both always are close together. This is answered by Skorohod’s embedding theorem, Theo-
rem 16.26. It allows further conclusions to be drawn about the error, such as the law of the
iterated logarithm, Theorem 16.29. The following lemma is fundamental:

Lemma 16.23 (Randomization). For w < 0 < z let Yw,z be a random variable with state
space {w, z} with

P(Yw,z = w) =
z

z + |w|
and Yw,z = 0 for w, z = 0. Further, let Y be a real-valued random variable with E[Y ] = 0.
Then there is a pair of random variables (W,Z) with W ≤ 0, Z ≥ 0, so that Y has the
distribution YW,Z .

Proof. We set c = E[Y +] = E[Y −]. Further, let f : R → R+ is measurable with f(0) = 0.
Then, if Y ∼ µ,

c ·E[f(Y )] = E[Y +] ·E[f(−Y −)] +E[Y −] ·E[f(Y +)]

=

∫ ∫
(zf(w) + |w|f(z))1z≥01w≤0µ(dw)µ(dz)

=

∫ ∫
(z + |w|)E[f(Yw,z)]1z≥01w≤0µ(dw)µ(dz).

This means that we define (W,Z) as a random variable with a joint distribution

µW,Z(dw, dz) = µ(0)δ0,0(dw, dz) +
1
c (z + |w|)1w≤01z≥0µ(dw)µ(dz)

can be selected. (It is easy to check that the total mass of this measure is 1). Then,

cE[f(YW,Z)] = cE[E[f(WW,Z)|(W,Z)]] =
∫ ∫

(z + |w|)E[f(Yw,z)]1w≤01z≥0µ(dw)µ(dz)

and the assertion is shown, since f was arbitrary.
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Remark 16.24 (strong embedding). The lemma initially only asserts equality in distribution,
Y ∼ YW,Z . Furthermore, it is also possible to define the probability space on which Y is defined
by adding random variables (W,Z) and YW,Z , so that Y = YW,Z is almost certain.

Lemma 16.25 (Embedding of a random variable in a Brownian motion). Let Y be a real-
valued random variable with E[Y ] = 0. Further, let (W,Z) be distributed as in Lemma 16.23,
and X = (Xt)t≥0 is an independent Brownian motion. Then

TW,Z = inf{t ≥ 0 : Xt ∈ {W,Z}}

is a stopping time with respect to the filtration (Ft)t≥0 with Ft = σ(W,Z;Xs : s ≤ t). In
addition,

XTW,Z
∼ Y, E[TW,Z ] = E[Y 2].

Proof. The Brownian motion X is adapted to (Ft)t≥0 is adapted. Therefore, TW,Z according
to Proposition 13.30 is a stopping time. Clearly, for w < 0 ≤ z the random variable XTw,z

only takes the values w and z. According to Proposition 14.19, (XTw,z∧t)t≥0 is is a martingale
which, according to Theorem 14.22 converges in L1 against XTw,z . Therefore

0 = E[XTw,z ] = wP(XTw,z = w) + z(1−P(XTw,z = w)),

also

P(XTw,z = w) =
z

z + |w|
.

So XTw,z has the same distribution as Yw,z from Lemma 16.23 and is independent of X.
According to the lemma it follows that XTW,Z

∼ YW,Z ∼ Y . Further, (X2
t − t)t≥0 is a

martingale and for y < 0 ≤ z, the process (X2
Tw,z∧t−Tw,z ∧ t)t≥0 is a martingale. This means

that with monotone and dominated convergence,

E[TW,Z ] = E[E[TW,Z |W,Z]] = E[ lim
t→∞

E[TW,Z ∧ t]|W,Z]

= E[E[X2
TW,Z

|W,Z]] = E[X2
TW,Z

] = E[Y 2].

Theorem 16.26 (Skorohod’s embedding theorem). Let Y1, Y2, ... be independent and identi-
cally distributed with E[Y1] = 0, and Sn = Y1 + · · · + Yn. Then there is a probability space
(Ω,F ,P) with filtration (Ft)t≥0, as well as a Brownian motion X = (Xt)t≥0 on this probability
space, which is a (Ft)t≥0 martingale and stopping times T1, T2, ..., so that:

1. (XT1 , XT2 , ...) ∼ S1, S2, ... and

2. (Tn+1 − Tn)n=0,1,2,... are independent with E[Tn+1 − Tn] = V[Y1] for n = 1, 2, ...

Remark 16.27 (Strong embedding). 1. As in remark 16.24, it is possible to define the
probability space on which Y1, Y2, ... are defined so that (XT1 , XT2 , ...) = S1, S2, ... almost
certainly holds.

2. Without the restriction of the integrability of Tn+1 − Tn the statement of the theorem
would be trivial. Then you could simply recursively 0 = T0 ≤ T1, ... by means of

Tn = inf{t ≥ Tn−1 : Xt = Sn}.

However, these waiting times cannot be integrated.
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Proof of theorem 16.26. Let the pairs (W1, Z1), (W2, Z2), ... be distributed exactly as in Lemma 16.23.
We extend the probability space by an independent Brownian motion X = (Xt)t≥0. We re-
cursively define 0 = T0 ≤ T1 ≤ T2... by

Tn := inf{t ≥ Tn−1 : Xt −XTn−1 ∈ {Wn, Zn}}.

Thus T1, T2, ... are stopping times with respect to the filtration (Ft)t≥0 with Ft = σ(W1, Z1,W2, Z2, ...;Xs :
s ≤ t) and X is a martingale with respect to (Ft)t≥0. Furthermore, the pairs (Tn+1 −
Tn, XTn+1 −XTn)n=0,1,2,... because of the strong Markov property of the Brownian motion are
independent of each other. Therefore, it follows from Lemma 16.25 that

(XT1 , XT2 −XT1 , ...) ∼ (Y1, Y2, ...),

also

(XT1 , XT2 , ...) ∼ (S1, S2, ...),

and E[Tn+1 − Tn] = E[Yn].

Since, thanks to the last theorem, the relationship between the random walks and Brow-
nian motion is shown, it is obvious to formulate another extension of Donsker’s theorem,
Theorem 16.21.

Corollary 16.28 (Stochastic convergence of the random walks). Let Y1, Y2, ... be real-valued,
independent, identically distributed random variables with E[Y1] = 0, V[Y1] = 1 and Sn =
Y1 + · · ·+ Yn. Then you can expand the probability space so that there is a Brownian motion
X = (Xt)t≥0 with

sup
0≤s≤t

∣∣∣ 1√
n
S[sn] −

1√
n
Xsn

∣∣∣ n→∞−−−→p 0 (16.10)

for all t > 0.

Proof. We use the construction from Theorem 16.26 and Remark 16.27. Since Tn+1 − Tn are
independent and identically distributed with E[Tn+1 − Tn] = 1 and Tn/n

n→∞−−−→ 1 according
to the law of large numbers. This means that 1

n sups≤t |T[sn]− sn|
n→∞−−−→fs 0. (To see this, we

consider the set { 1
n sups≤t |T[sn]−sn| > ε} for a ε > 0. On this set there are s1, s2, ... ≤ t with

|T[snn] − snn| > εn. However, this contradicts limn→∞ T[snn]/[snn] = limn→∞ Tn/n = 1.)
We recall the definition of the continuity modulus w from Definition 16.17. With the

scaling property of the Brownian motion from Theorem 13.19, it follows that S[sn] = XT[sn]
,

lim sup
n→∞

P
( 1√

n
sup
0≤s≤t

|S[sn] −Xsn| > ε
)

≤ inf
h
lim sup
n→∞

P(w(X , (t+ h)n, nh) > ε
√
n) +P(sup

s≤t
|T[sn] − sn| > nh)

= inf
h
P(w(X , t+ h, h) > ε) = 0.

Now that the random walks and Brownian motion are directly related to each other, it makes
sense to transfer the properties of Brownian motion to the random walks. We do this for the
Law of the iterated logarithm.
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Theorem 16.29 (Law of the iterated logarithm for random walks). Let Y1, Y2, ... be real-
valued, independent, identically distributed random variable with E[Y1] = 0, V[Y1] = 1 and
Sn = Y1 + · · ·+ Yn. Then,

lim sup
n→∞

Sn√
2n log log n

= 1

almost certainly.

Proof. We only show that the probability space can be extended in such a way such that
there is a Brownian motion X = (Xt)t≥0 exists with

S[t] −Xt√
2t log log t

t→∞−−−→fs 0. (16.11)

Then the statement follows from the law of the iterated logarithm for Brownian motion,
theorem 16.10.

According to Theorem 16.26 there is an extension of the probability space and stopping
times 0 = T0, T1, ..., so that XTn = Sn. Again, Tn/n

n→∞−−−→ 1 applies according to the

law of large numbers, which is also T[t]/t
t→∞−−−→ 1 implies. Now let r > 1, c2 > r − 1 and

h(t) =
√
2t log log t. Then, with a similar calculation as in (16.6)

P
(

sup
rn−1≤t≤rn

|Xt −Xrn−1 | > ch(rn−1)
)
= P

(
sup

0≤t≤rn−rn−1

|Xt| > ch(rn−1)
)

= 2P(Xrn−rn−1 > ch(rn−1)) = 2P(X1 > ch(rn−1)/
√
rn − rn−1)

n→∞
≈ 1

c

√
(r − 1)

π log n
n−c2/(r−1),

since h(rn−1)/
√
rn − rn−1

n→∞
≈

√
(2 log n)/(r − 1). The right-hand side is summable, so with

the Borel-Cantelli lemma and XT[t]
= S[t]

P
(
lim sup
t→∞

|S[t] −Xt|
h(t)

= 0
)
≥ P

(
lim
r↓1

lim sup
t→∞

sup
t≤u≤rt

|Xu −Xt|
h(t)

= 0
)

≥ P
(
lim
r↓1

lim sup
n→∞

sup
rn−1≤t≤rn

|Xt −Xrn−1 |
h(rn−1)

= 0
)

= inf
c>0

P
(

lim
r↓1,r<c2+1

lim sup
n→∞

sup
rn−1≤t≤rn

|Xt −Xrn−1 |
h(rn−1)

≤ c
)
= 1.

Therefore follows (16.11).
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