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Tutorial 3 - Poisson process and Brownian motion

Exercise 1 (242 points).

Assume that the service of buses in Freiburg starts at 8 pm and then they arrive according
to a Poisson process of intensity A = 4 per hour. Franz Kafka starts to wait for a bus at
Spm.

(a) What is the expected waiting time for the next bus?
(b) At 8:30pm Kafka is still waiting. What is now the expected waiting time?
Solution.

Suppose t = 0 corresponds to the time 8pm and let X = (X;);>0 denote the Poisson
process with intensity A = 4. According to Proposition 13.13, we can assume that there

exists independent, exponentially distributed random variables 57,59, ... with parameter
A such that
X - 0 if t=0,
T Y max{k € {0,1,2,3,...} : S1 + ...+ Sp < t}, if t>0.

(a) We can then model the expected waiting time by S; and E[S1] = } = 15min.

(b) Let Y model the waiting time for the next bus given that Kafka has already waited
for 30min. By the definition of conditional probability, we have that for each ¢ > 0,

P(Y >t) = P(S; > 0.5+ ¢S > 0.5)
=P(S1 > 0.5+ 1)P(S > 0.5) = e H05+)=4(05) — =4t

Hence, Y is also exponentially distributed with the same parameter. This implies
that Franz Kafka is in fact not in a better situation than at 8pm, as the expected
waiting time is again E[Y] = + = 15min.

Exercise 2 (143 Points).

(a) Let Z be a standard normal random variable. For all t > 0, let X; = v/tZ. The
stochastic process X = {X; : ¢ > 0} has continuous paths and V¢ > 0, X; ~ N(0,t).
Is X a Brownian motion? Justify!

(b) Let W; and W; be two independent Brownian motion and p is a constant contained
in the unit interval. For allt > 0, let X; = pW;++/1 — p2Wt. The stochastic process
X = {X; : t > 0} has continuous paths and Vt > 0, X; ~ N(0,t). Is X a Brownian
motion? Justify!
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Solution.

(a) We check the stationary increments property for the process X. That is; consider
the increment for 0 < s < t, we ascertain whether or not the distribution of the
increments depends only on the time difference ¢ — s.

X, — X, =VtZ —\/sZ = (Nt —/5)Z.

Clearly,
' E[X; - X,] = (Vi - V5)E[Z] = 0.

and,
Var(X; — X,) = Var((vVt — V5)Z) = (Vt — V5)*Var(Z) = (Vi - V/s)*.

The variance (vt —/s)? does not equal ¢ — s, indicating that the increments are not
stationary. Thus, the process X is not a Brownian motion.

(b) We will first show that the increments X;, — X;, , are independent and that X, —
X, , ~ N(0,t; —t;—y1) for i =1,...,n. We proceed as follows:

(i) Independence of Increments. Consider the increment: For 0 < ¢; < ty <
<ty

Xy = Xty = p(We, = Wi, ) + V1= pz(Wti o Wtifl)'

The increments Wy, — Wy, , and W;, — W;,_, are independent because they
are increments of independent Brownian motions. Furthermore, for i # j,
the increments Xy, — Xy, and X;, — X3, involve disjoint intervals of the
Brownian motions (i.e., the increments do not overlap). Thus, since increments
of independent processes are independent, it follows that:

Xt; — Xt,_, is independent of Xy, — Xy, , for ¢ # j.

1—1

(ii) Distribution of Increments. We show that Xy, — X, | ~ N(0,t; — ti—1).
The mean is:

E[X;, — Xi,_,] = E[p(Wy, = Wi,_)] + E[V1 = p2(Wy, = Wy, _,)] = 0.
The variance is computed as follows:
Var(X;, — X, ,) = Var (p(Wti — Wi )+ V1= p2(Wy, — Wtz;l)) .
Since Wy, — Wy,_, and W;, — W;,_, are independent, we have:
Var(X;, — X3, ,) = p*Var(Wy, — Wy, ) + (1 — p*)Var(Wy, — Ws,_,).
Since Var(W;, — W;, ) =t; —t;—1 and Var(Wti — Wti—l) =1t; — t;_1, we have:
Var(Xy,—Xi,_,) = p*(ti—tio1)+(1=p?) (ti—ti1) = (ti—ti1)(0*+(1=p?)) = ti—ti 1.

Thus,
Xe, — X, ~ N(Ot; —ti—1).



Exercise 3 (2+2=4 Points).
Let dk € N, C € R4 and X ~ N(0,0). (Recall from definition 10.14 from the
manuscript of probability theory!)
(a) If there is S € R¥*? with C = STS, and Z ~ N(0,I;) (where I}, is the k x k identity
matrix), show that STZ US'e

(b) Let t; < ... < t, and Z ~ N(0,I;). Find S € R¥9 such that STZ ~ N(0,C) with
Cij == t; A'tj (as in the covariance matrix of Brownian Motion).

Solution.
(a) We have
0
0
E[S'Z1=S"E[Z]=5"| . | =o0.

0

Also,

Cov(S'2,8"2)=E[(S"2)(S"2)"] -E[STZIE[ST7]T

=0
=E[STZZ"S] (expanding the first term)
= STE[ZZ"]S (using linearity of expectation)
=ST1;S (since E[ZZ'] = 1)
=S's (since multiplying by the identity does not change the matrix)
=C.

Since both STZ and X are distributed as N(0,C), where the distribution of ST Z
is uniquely determined by the expected value and the covariance matrix, we have

sTz4<x.

(b) The covariance matrix C' is defined as Cj; = t; At;, which is symmetric and positive
semi-definite, representing the covariance structure of Brownian motion. To show
that C' is symmetric, we note:C;; = t; At; = t; At; = Cj;. To show that C is
positive semi-definite, we need to prove: ' Cz >0 for all € R%. Expanding this
expression gives:

d d
.%TCJ} = Z inx]’(ti A tj).
i=1 j=1
Since t; A t; represents the minimum of two non-negative terms, we have:

d d
xTCI = ZZﬁZ.T](tZ AN tj) > 0.

i=1 j=1

Now because C' is symmetric and positive semi-definite, we can perform a Cholesky
decomposition: C = LLT, where L is a lower triangular matrix. To satisfy the
condition Cov(STZ,STZ) = C, we set: S = LT, making S an upper triangular
matrix. Since Z ~ N(0,1)

S'Z=(L"Y'Z=LZ~N(,LZZ"L") = N(0,LI;L") = N(0,C).



Thus, the matrix S that satisfies ST Z ~ N(0,C) is given by:
S=L" where C =LL" and Cij = t; Ntj.

Exercise 4 (4 Points).

Let X = (Xy)nen be a Gaussian process. Show that if X' converges to a random variable
X in probability, it also converges in £? to X.

Solution.
We can use one of the results from probability theory here. (See Theorem 7.11!) First,
Chebyshev’s inequality allows us for € > 0,

B[ X, — X*]

P(X, - X| 2 ) < — -2

Recall that X is called Gaussian if ¢; Xy, + --- + ¢, Xy, for each choice of cy,....c, € R

and ty,...,t,, € I is normally distributed. Since X, rH—°°>p X, according to proposition 7.6
there is a subsequence ni,no, ... with X, k2% X almost surely. With Fatou’s Lemma,

E[| X% = Ellim inf | X, 7] < sggE[\Xn\z] <
n

because of Lemma 7.9. In particular, X € £2. For every § > 0, due to convergence in
probability,

n—oo

P(|X, — X| > 6) 2= 0.

From lemma 7.9 and dominated convergence,

lim B[IX, — X[2 = lim Bl|X, — X[%|X, - X| > 8] + B[ X, - X[} [ X, X| < 8] <62

n—oo

Since § > 0 was arbitrary, X,, ——— 2 X follows.



