universität freiburg

Stochastic processes

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024ws_stochproc.html https://www.stochastik.uni-freiburg.de/

Tutorial 3 - Poisson process and Brownian motion

Exercise 1 (2+2 points).

Assume that the service of buses in Freiburg starts at 8 pm and then they arrive according to a Poisson process of intensity $\lambda = 4$ per hour. Franz Kafka starts to wait for a bus at 8pm.

- (a) What is the expected waiting time for the next bus?
- (b) At 8:30pm Kafka is still waiting. What is now the expected waiting time?

Solution.

Suppose t = 0 corresponds to the time 8pm and let $\mathcal{X} = (X_t)_{t\geq 0}$ denote the Poisson process with intensity $\lambda = 4$. According to Proposition 13.13, we can assume that there exists independent, exponentially distributed random variables S_1, S_2, \ldots with parameter λ such that

$$X_t := \begin{cases} 0 & \text{if } t = 0, \\ \max\{k \in \{0, 1, 2, 3, \ldots\} : S_1 + \ldots + S_k \le t\}, & \text{if } t > 0. \end{cases}$$

- (a) We can then model the expected waiting time by S_1 and $\mathbf{E}[S_1] = \frac{1}{\lambda} = 15$ min.
- (b) Let Y model the waiting time for the next bus given that Kafka has already waited for 30min. By the definition of conditional probability, we have that for each $t \ge 0$,

$$\mathbf{P}(Y > t) = \mathbf{P}(S_1 > 0.5 + t | S_1 > 0.5)$$

= $\mathbf{P}(S_1 > 0.5 + t)\mathbf{P}(S > 0.5) = e^{-4(0.5+t)}e^{-4(0.5)} = e^{-4t}$

Hence, Y is also exponentially distributed with the same parameter. This implies that Franz Kafka is in fact not in a better situation than at 8pm, as the expected waiting time is again $\mathbf{E}[Y] = \frac{1}{\lambda} = 15 \min$.

Exercise 2 (1+3 Points).

- (a) Let Z be a standard normal random variable. For all $t \ge 0$, let $X_t = \sqrt{tZ}$. The stochastic process $\mathcal{X} = \{X_t : t \ge 0\}$ has continuous paths and $\forall t \ge 0, X_t \sim N(0,t)$. Is \mathcal{X} a Brownian motion? Justify!
- (b) Let W_t and W_t be two independent Brownian motion and ρ is a constant contained in the unit interval. For all $t \ge 0$, let $X_t = \rho W_t + \sqrt{1 - \rho^2} \tilde{W}_t$. The stochastic process $\mathcal{X} = \{X_t : t \ge 0\}$ has continuous paths and $\forall t \ge 0, X_t \sim N(0,t)$. Is \mathcal{X} a Brownian motion? Justify!

Solution.

(a) We check the stationary increments property for the process \mathcal{X} . That is; consider the increment for $0 \leq s < t$, we ascertain whether or not the distribution of the increments depends only on the time difference t - s.

$$X_t - X_s = \sqrt{t}Z - \sqrt{s}Z = (\sqrt{t} - \sqrt{s})Z.$$

Clearly,

$$\mathbf{E}[X_t - X_s] = (\sqrt{t} - \sqrt{s})\mathbf{E}[Z] = 0.$$

and,

$$\operatorname{Var}(X_t - X_s) = \operatorname{Var}((\sqrt{t} - \sqrt{s})Z) = (\sqrt{t} - \sqrt{s})^2 \operatorname{Var}(Z) = (\sqrt{t} - \sqrt{s})^2.$$

The variance $(\sqrt{t} - \sqrt{s})^2$ does not equal t - s, indicating that the increments are not stationary. Thus, the process \mathcal{X} is not a Brownian motion.

- (b) We will first show that the increments $X_{t_i} X_{t_{i-1}}$ are independent and that X_{t_i} $X_{t_{i-1}} \sim N(0, t_i - t_{i-1})$ for $i = 1, \ldots, n$. We proceed as follows:
 - (i) Independence of Increments. Consider the increment: For $0 \le t_1 < t_2 <$ $\ldots < t_n,$

$$X_{t_i} - X_{t_{i-1}} = \rho(W_{t_i} - W_{t_{i-1}}) + \sqrt{1 - \rho^2} (\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}).$$

The increments $W_{t_i} - W_{t_{i-1}}$ and $\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}$ are independent because they are increments of independent Brownian motions. Furthermore, for $i \neq j$, the increments $X_{t_i} - X_{t_{i-1}}$ and $X_{t_j} - X_{t_{j-1}}$ involve disjoint intervals of the Brownian motions (i.e., the increments do not overlap). Thus, since increments of independent processes are independent, it follows that:

 $X_{t_i} - X_{t_{i-1}}$ is independent of $X_{t_i} - X_{t_{i-1}}$ for $i \neq j$.

(ii) **Distribution of Increments**. We show that $X_{t_i} - X_{t_{i-1}} \sim N(0, t_i - t_{i-1})$. The mean is:

$$\mathbf{E}[X_{t_i} - X_{t_{i-1}}] = \mathbf{E}[\rho(W_{t_i} - W_{t_{i-1}})] + \mathbf{E}[\sqrt{1 - \rho^2}(\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}})] = 0.$$

The variance is computed as follows:

$$\mathbf{Var}(X_{t_i} - X_{t_{i-1}}) = \mathbf{Var}\left(\rho(W_{t_i} - W_{t_{i-1}}) + \sqrt{1 - \rho^2}(\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}})\right).$$

Since $W_{t_i} - W_{t_{i-1}}$ and $\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}$ are independent, we have:

$$\mathbf{Var}(X_{t_i} - X_{t_{i-1}}) = \rho^2 \mathbf{Var}(W_{t_i} - W_{t_{i-1}}) + (1 - \rho^2) \mathbf{Var}(\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}).$$

Since $Var(W_{t_i} - W_{t_{i-1}}) = t_i - t_{i-1}$ and $Var(\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}) = t_i - t_{i-1}$, we have:

 $\mathbf{Var}(X_{t_i} - X_{t_{i-1}}) = \rho^2(t_i - t_{i-1}) + (1 - \rho^2)(t_i - t_{i-1}) = (t_i - t_{i-1})(\rho^2 + (1 - \rho^2)) = t_i - t_{i-1}.$

Thus,

$$X_{t_i} - X_{t_{i-1}} \sim N(0, t_i - t_{i-1}).$$

Exercise 3 (2+2=4 Points).

Let $d,k \in \mathbb{N}$, $C \in \mathbb{R}^{d \times d}$ and $X \sim N(0,C)$. (Recall from definition 10.14 from the manuscript of probability theory!)

- (a) If there is $S \in \mathbb{R}^{k \times d}$ with $C = S^{\top}S$, and $Z \sim N(0, I_k)$ (where I_k is the $k \times k$ identity matrix), show that $S^{\top}Z \stackrel{d}{=} X$.
- (b) Let $t_1 \leq ... \leq t_n$ and $Z \sim N(0, I_d)$. Find $S \in \mathbb{R}^{d \times d}$ such that $S^{\top}Z \sim N(0, C)$ with $C_{ij} := t_i \wedge t_j$ (as in the covariance matrix of Brownian Motion).

Solution.

(a) We have

$$\mathbf{E}[S^{\top}Z] = S^{\top}\mathbf{E}[Z] = S^{\top} \begin{pmatrix} 0\\0\\\vdots\\0 \end{pmatrix} = 0.$$

Also,

$$\begin{aligned} \mathbf{Cov}(S^{\top}Z,S^{\top}Z) &= \mathbf{E}[(S^{\top}Z)(S^{\top}Z)^{\top}] - \underbrace{\mathbf{E}[S^{\top}Z]\mathbf{E}[S^{\top}Z]^{\top}}_{=0} \\ &= \mathbf{E}[S^{\top}ZZ^{\top}S] \quad (\text{expanding the first term}) \\ &= S^{\top}\mathbf{E}[ZZ^{\top}]S \quad (\text{using linearity of expectation}) \\ &= S^{\top}I_dS \quad (\text{since } \mathbf{E}[ZZ^{\top}] = I_d) \\ &= S^{\top}S \quad (\text{since multiplying by the identity does not change the matrix}) \\ &= C. \end{aligned}$$

Since both $S^{\top}Z$ and X are distributed as N(0,C), where the distribution of $S^{\top}Z$ is uniquely determined by the expected value and the covariance matrix, we have $S^{\top}Z \stackrel{d}{=} X$.

(b) The covariance matrix C is defined as $C_{ij} = t_i \wedge t_j$, which is symmetric and positive semi-definite, representing the covariance structure of Brownian motion. To show that C is symmetric, we note: $C_{ij} = t_i \wedge t_j = t_j \wedge t_i = C_{ji}$. To show that C is positive semi-definite, we need to prove: $x^{\top}Cx \ge 0$ for all $x \in \mathbb{R}^d$. Expanding this expression gives:

$$x^{\top}Cx = \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j (t_i \wedge t_j).$$

Since $t_i \wedge t_j$ represents the minimum of two non-negative terms, we have:

$$x^{\top}Cx = \sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j (t_i \wedge t_j) \ge 0.$$

Now because C is symmetric and positive semi-definite, we can perform a Cholesky decomposition: $C = LL^{\top}$, where L is a lower triangular matrix. To satisfy the condition $\mathbf{Cov}(S^{\top}Z,S^{\top}Z) = C$, we set: $S = L^{\top}$, making S an upper triangular matrix. Since $Z \sim N(0,I_d)$

$$S^{\top}Z = (L^{\top})^{\top}Z = LZ \sim N(0, LZZ^{\top}L^{\top}) = N(0, LI_dL^{\top}) = N(0, C).$$

Thus, the matrix S that satisfies $S^{\top}Z \sim N(0,C)$ is given by:

$$S = L^{\top}$$
 where $C = LL^{\top}$ and $C_{ij} = t_i \wedge t_j$.

Exercise 4 (4 Points).

Let $\mathcal{X} = (X_n)_{n \in \mathbb{N}}$ be a Gaussian process. Show that if \mathcal{X} converges to a random variable X in probability, it also converges in \mathcal{L}^2 to X.

Solution.

We can use one of the results from probability theory here. (See Theorem 7.11!) First, Chebyshev's inequality allows us for $\varepsilon > 0$,

$$\mathbf{P}(|X_n - X| \ge \varepsilon) \le \frac{\mathbf{E}[|X_n - X|^2]}{\varepsilon^2}.$$

Recall that \mathcal{X} is called *Gaussian* if $c_1 X_{t_1} + \cdots + c_n X_{t_n}$ for each choice of $c_1, \dots, c_n \in \mathbb{R}$ and $t_1, \dots, t_n \in I$ is normally distributed. Since $X_n \xrightarrow{n \to \infty} p X$, according to proposition 7.6 there is a subsequence n_1, n_2, \dots with $X_{n_k} \xrightarrow{k \to \infty} X$ almost surely. With Fatou's Lemma,

$$\mathbf{E}[|X|^2] = \mathbf{E}[\liminf_{k \to \infty} |X_{n_k}|^2] \le \sup_{n \in \mathbb{N}} \mathbf{E}[|X_n|^2] < \infty$$

because of Lemma 7.9. In particular, $X \in \mathcal{L}^2$. For every $\delta > 0$, due to convergence in probability,

$$\mathbf{P}(|X_n - X| > \delta) \xrightarrow{n \to \infty} 0$$

From lemma 7.9 and dominated convergence,

$$\lim_{n \to \infty} \mathbf{E}[|X_n - X|^2] = \lim_{n \to \infty} \mathbf{E}[|X_n - X|^2; |X_n - X| > \delta] + \mathbf{E}[|X_n - X|^2; |X_n - X| \le \delta] \le \delta^2.$$

Since $\delta > 0$ was arbitrary, $X_n \xrightarrow{n \to \infty}_{\mathcal{L}^2} X$ follows.