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Tutorial 3 - Poisson process and Brownian motion

Exercise 1 (2+2 points).

Assume that the service of buses in Freiburg starts at 8 pm and then they arrive according
to a Poisson process of intensity λ = 4 per hour. Franz Kafka starts to wait for a bus at
8pm.

(a) What is the expected waiting time for the next bus?

(b) At 8:30pm Kafka is still waiting. What is now the expected waiting time?

Solution.
Suppose t = 0 corresponds to the time 8pm and let X = (Xt)t≥0 denote the Poisson
process with intensity λ = 4. According to Proposition 13.13, we can assume that there
exists independent, exponentially distributed random variables S1,S2, . . . with parameter
λ such that

Xt :=

{
0 if t = 0,

max{k ∈ {0,1,2,3, . . .} : S1 + . . .+ Sk ≤ t}, if t > 0.

(a) We can then model the expected waiting time by S1 and E[S1] =
1
λ = 15min.

(b) Let Y model the waiting time for the next bus given that Kafka has already waited
for 30min. By the definition of conditional probability, we have that for each t ≥ 0,

P(Y > t) = P(S1 > 0.5 + t|S1 > 0.5)

= P(S1 > 0.5 + t)P(S > 0.5) = e−4(0.5+t)e−4(0.5) = e−4t.

Hence, Y is also exponentially distributed with the same parameter. This implies
that Franz Kafka is in fact not in a better situation than at 8pm, as the expected
waiting time is again E[Y ] = 1

λ = 15min .

Exercise 2 (1+3 Points).

(a) Let Z be a standard normal random variable. For all t ≥ 0, let Xt =
√
tZ. The

stochastic process X = {Xt : t ≥ 0} has continuous paths and ∀t ≥ 0, Xt ∼ N(0,t).
Is X a Brownian motion? Justify!

(b) Let Wt and W̃t be two independent Brownian motion and ρ is a constant contained
in the unit interval. For all t ≥ 0, let Xt = ρWt+

√
1− ρ2W̃t. The stochastic process

X = {Xt : t ≥ 0} has continuous paths and ∀t ≥ 0, Xt ∼ N(0,t). Is X a Brownian
motion? Justify!
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Solution.

(a) We check the stationary increments property for the process X . That is; consider
the increment for 0 ≤ s < t, we ascertain whether or not the distribution of the
increments depends only on the time difference t− s.

Xt −Xs =
√
tZ −

√
sZ = (

√
t−

√
s)Z.

Clearly,
E[Xt −Xs] = (

√
t−

√
s)E[Z] = 0.

and,

Var(Xt −Xs) = Var((
√
t−

√
s)Z) = (

√
t−

√
s)2Var(Z) = (

√
t−

√
s)2.

The variance (
√
t−

√
s)2 does not equal t− s, indicating that the increments are not

stationary. Thus, the process X is not a Brownian motion.

(b) We will first show that the increments Xti −Xti−1 are independent and that Xti −
Xti−1 ∼ N(0,ti − ti−1) for i = 1, . . . ,n. We proceed as follows:

(i) Independence of Increments. Consider the increment: For 0 ≤ t1 < t2 <
. . . < tn,

Xti −Xti−1 = ρ(Wti −Wti−1) +
√
1− ρ2(W̃ti − W̃ti−1).

The increments Wti − Wti−1 and W̃ti − W̃ti−1 are independent because they
are increments of independent Brownian motions. Furthermore, for i ̸= j,
the increments Xti − Xti−1 and Xtj − Xtj−1 involve disjoint intervals of the
Brownian motions (i.e., the increments do not overlap). Thus, since increments
of independent processes are independent, it follows that:

Xti −Xti−1 is independent of Xtj −Xtj−1 for i ̸= j.

(ii) Distribution of Increments. We show that Xti − Xti−1 ∼ N(0,ti − ti−1).
The mean is:

E[Xti −Xti−1 ] = E[ρ(Wti −Wti−1)] +E[
√
1− ρ2(W̃ti − W̃ti−1)] = 0.

The variance is computed as follows:

Var(Xti −Xti−1) = Var
(
ρ(Wti −Wti−1) +

√
1− ρ2(W̃ti − W̃ti−1)

)
.

Since Wti −Wti−1 and W̃ti − W̃ti−1 are independent, we have:

Var(Xti −Xti−1) = ρ2Var(Wti −Wti−1) + (1− ρ2)Var(W̃ti − W̃ti−1).

Since Var(Wti −Wti−1) = ti − ti−1 and Var(W̃ti − W̃ti−1) = ti − ti−1, we have:

Var(Xti−Xti−1) = ρ2(ti−ti−1)+(1−ρ2)(ti−ti−1) = (ti−ti−1)(ρ
2+(1−ρ2)) = ti−ti−1.

Thus,
Xti −Xti−1 ∼ N(0,ti − ti−1).
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Exercise 3 (2+2=4 Points).

Let d,k ∈ N, C ∈ Rd×d and X ∼ N(0,C). (Recall from definition 10.14 from the
manuscript of probability theory!)

(a) If there is S ∈ Rk×d with C = S⊤S, and Z ∼ N(0,Ik) (where Ik is the k× k identity

matrix), show that S⊤Z
d
= X.

(b) Let t1 ≤ ... ≤ tn and Z ∼ N(0,Id). Find S ∈ Rd×d such that S⊤Z ∼ N(0,C) with
Cij := ti ∧ tj (as in the covariance matrix of Brownian Motion).

Solution.

(a) We have

E[S⊤Z] = S⊤E[Z] = S⊤


0
0
...
0

 = 0.

Also,

Cov(S⊤Z,S⊤Z) = E[(S⊤Z)(S⊤Z)⊤]−E[S⊤Z]E[S⊤Z]⊤︸ ︷︷ ︸
=0

= E[S⊤ZZ⊤S] (expanding the first term)

= S⊤E[ZZ⊤]S (using linearity of expectation)

= S⊤IdS (since E[ZZ⊤] = Id)

= S⊤S (since multiplying by the identity does not change the matrix)

= C.

Since both S⊤Z and X are distributed as N(0,C), where the distribution of S⊤Z
is uniquely determined by the expected value and the covariance matrix, we have

S⊤Z
d
= X.

(b) The covariance matrix C is defined as Cij = ti ∧ tj , which is symmetric and positive
semi-definite, representing the covariance structure of Brownian motion. To show
that C is symmetric, we note:Cij = ti ∧ tj = tj ∧ ti = Cji. To show that C is
positive semi-definite, we need to prove: x⊤Cx ≥ 0 for all x ∈ Rd. Expanding this
expression gives:

x⊤Cx =
d∑

i=1

d∑
j=1

xixj(ti ∧ tj).

Since ti ∧ tj represents the minimum of two non-negative terms, we have:

x⊤Cx =
d∑

i=1

d∑
j=1

xixj(ti ∧ tj) ≥ 0.

Now because C is symmetric and positive semi-definite, we can perform a Cholesky
decomposition: C = LL⊤, where L is a lower triangular matrix. To satisfy the
condition Cov(S⊤Z,S⊤Z) = C, we set: S = L⊤, making S an upper triangular
matrix. Since Z ∼ N(0,Id)

S⊤Z = (L⊤)⊤Z = LZ ∼ N(0,LZZ⊤L⊤) = N(0,LIdL
⊤) = N(0,C).
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Thus, the matrix S that satisfies S⊤Z ∼ N(0,C) is given by:

S = L⊤ where C = LL⊤ and Cij = ti ∧ tj .

Exercise 4 (4 Points).

Let X = (Xn)n∈N be a Gaussian process. Show that if X converges to a random variable
X in probability, it also converges in L2 to X.

Solution.
We can use one of the results from probability theory here. (See Theorem 7.11!) First,
Chebyshev’s inequality allows us for ε > 0,

P(|Xn −X| ≥ ε) ≤ E[|Xn −X|2]
ε2

.

Recall that X is called Gaussian if c1Xt1 + · · · + cnXtn for each choice of c1,...,cn ∈ R
and t1,...,tn ∈ I is normally distributed. Since Xn

n→∞−−−→p X, according to proposition 7.6

there is a subsequence n1,n2, . . . with Xnk

k→∞−−−→ X almost surely. With Fatou’s Lemma,

E[|X|2] = E[lim inf
k→∞

|Xnk
|2] ≤ sup

n∈N
E[|Xn|2] < ∞

because of Lemma 7.9. In particular, X ∈ L2. For every δ > 0, due to convergence in
probability,

P(|Xn −X| > δ)
n→∞−−−→ 0.

From lemma 7.9 and dominated convergence,

lim
n→∞

E[|Xn −X|2] = lim
n→∞

E[|Xn −X|2; |Xn −X| > δ] +E[|Xn −X|2; |Xn −X| ≤ δ] ≤ δ2.

Since δ > 0 was arbitrary, Xn
n→∞−−−→L2 X follows.
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