universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 2 - Definition and existence of stochastic processes

Exercise 1 (1+2+1=4 Points).

Let $\Omega = \{1, 2, 3, 4, 5\}.$

(a) Find the smallest σ - algebra \mathcal{F}_1 containing

$$\mathcal{F}_2 := \{\{1,2,3\},\{3,4,5\}\}.$$

(b) Is the random variable $X: \Omega \to \mathbb{R}$ defined by

$$X(1) = X(2) = 0$$
, $X(3) = 10$, $X(4) = X(5) = 1$

measurable with respect to \mathcal{F}_1 ?

(c) Find the σ -algebra \mathcal{F}_3 generated by $Y:\Omega\to\mathbb{R}$ and defined by

$$Y(1) = 0$$
, $Y(2) = Y(3) = Y(4) = Y(5) = 1$.

Solution.

- (a) $\mathcal{F}_1 = \{\emptyset, \Omega, \{1, 2, 3\}, \{3, 4, 5\}, \{3\}, \{1, 2, 4, 5\}, \{1, 2\}, \{4, 5\}\}.$
- (b) The random variable X is measurable with respect to \mathcal{F}_1 since we have for each $A \in \mathcal{B}(\mathbb{R})$:

if
$$0 \in A, 1,10 \notin A$$
: $X^{-1}(A) = \{1,2\} \in \mathcal{F}_1,$

if
$$1 \in A, 0,10 \notin A$$
: $X^{-1}(A) = \{4,5\} \in \mathcal{F}_1$,

if
$$10 \in A, 1, 10 \notin A : X^{-1}(A) = \{3\} \in \mathcal{F}_1,$$

if
$$0,1,10 \notin A$$
,: $X^{-1}(A) = \emptyset \in \mathcal{F}_1$,

if
$$0,1,10 \in A$$
,: $X^{-1}(A) = \Omega \in \mathcal{F}_1$.

where $X^{-1}(A) = \{ \omega \in \Omega : X(w) \in A. \}$ We can reduce every other case to these, take for example, if $0,1, \in A$ but $10 \notin A$, then:

$$X^{-1}(A) = X^{-1}(\{0\}) \cup X^{-1}(\{1\}) = \{1,2\} \cup \{4,5\} = \{1,2,3,4,5\} \in \mathcal{F}_1.$$

(c)
$$\mathcal{F}_3 = \sigma(Y) = \{\Omega, \emptyset, \{1\}, \{2,3,4,5\}\}.$$

Exercise 2 (2+2 points).

- (a) Given an example of two stochastic processes \mathcal{X} and \mathcal{Y} which are versions of each other, but no modifications of each other.
- (b) Give an example of a real-valued stochastic process \mathcal{X} , such that $\mathbf{V}[X_t] > 0$ for all t and $\mathcal{X} = (X_t)_{t \in I}$ and $\mathcal{X}^2 := (X_t^2)_{t \in I}$ are indistinguishable.

Solution.

(a) Let $\Omega = \{1,2,3\}$ and $\mathcal{F} = \{\{1,2,3\},\emptyset,\{1,2\},\{3\}\}\}$. Define two stochastic processes $\mathcal{X} = (X_t)_{t=1,2,3,...}$ and $\mathcal{Y} = (Y_t)_{t=1,2,3,...}$ as follows:

$$X_t(w) = 1$$
 for all t and $w \in \Omega$,

$$Y_t(w) = 2$$
 for all t and $w \in \Omega$.

We need to show that X_t and Y_t are versions of each other, which means we need to verify that their distributions are the same for all sets $A \in \mathcal{F}$. Observe the following for each A in \mathcal{F} :

$$\mathbf{P}(X_t \in \{1,2,3\}) = 1 = \mathbf{P}(Y_t \in \{1,2,3\}, \\ \mathbf{P}(X_t \in \{1,2\}) = 1 = \mathbf{P}(Y_t \in \{1,2\}), \\ \mathbf{P}(X_t \in \{3\}) = 0 = \mathbf{P}(Y_t \in \{3\}), \\ \mathbf{P}(X_t \in \emptyset) = 0 = \mathbf{P}(Y_t \in \emptyset).$$

Hence for all $A \in \mathcal{F}$:

$$\mathbf{P}(X_t \in A) = \mathbf{P}(Y_t \in A).$$

Thus, X_t and Y_t have the same distribution with respect to the sigma-algebra \mathcal{F} . Therefore, we conclude that X_t and Y_t are versions of each other. However, since $X_t(w) = 1$ and $Y_t(w) = 2$ for all t and for all $w \in \Omega$, it follows that $X_t(w) \neq Y_t(w)$ for all $w \in \Omega$. Thus,

$$\mathbf{P}(X_t = Y_t) = \mathbf{P}(\{\omega \in \Omega : X_t(\omega) = Y_t(\omega)\}) = \mathbf{P}(\emptyset) = 0 \neq 1 \text{ for all } t.$$

So, \mathcal{X} is not a modification of \mathcal{Y} , and vice versa.

(b) Let $\mathcal{X} = (X_t)_{t \in I}$ be defined as:

$$X_t = \begin{cases} 1, & \text{with probability } \frac{1}{2}, \\ 0, & \text{with probability } \frac{1}{2}. \end{cases}$$

Clearly,

$$\mathbf{E}[X_t] = \frac{1}{2}, \quad \mathbf{E}[X_t^2] = \frac{1}{2} \implies \mathbf{V}[X_t] = \frac{1}{4} > 0.$$

Furthermore,

$$X_t^2 = \begin{cases} 1, & \text{with probability } \frac{1}{2}, \\ 0, & \text{with probability } \frac{1}{2}. \end{cases}$$

Thus, $\mathbf{P}(X_t = X_t^2 \text{ for all } t \in I) = 1$. Hence, \mathcal{X} and \mathcal{X}^2 are indistinguishable with $\mathbf{V}[X_t] > 0$ for all t.

Exercise 3 (4 Points).

Let I be some index set, (E,r) be Polish and $(\mathbf{P}_i)_{i\in I}$ a family of probability measures on $\mathcal{B}(E)$. Show that there exists an E-valued stochastic process $(X_t)_{t\in I}$ such that $(X_{t_1},...,X_{t_n}) \sim \bigotimes_{i=1}^n \mathbf{P}_{t_i}$ for any $t_1,...,t_n \in I$. In other words, $(X_t)_{t\in I}$ is an independent family with $X_t \sim \mathbf{P}_t$.

Solution.

Recall that if (Ω, \mathcal{F}) is a measurable space, I an arbitrary index set and $(\Omega^J, \mathcal{F}^J)_{J\subseteq_f I}$ is a family of measurable product spaces, equipped with the product σ -algebra, as in Definition 5.3. A family of probability measures $(\mathbf{P}_J)_{J\subseteq_f I}$, where \mathbf{P}_J is a probability measure on \mathcal{F}^J , is called a projective family if $\mathbf{P}_H = (\pi_H^J)_* \mathbf{P}_J$ for all $H \subseteq J \subseteq_f I$. Also, if for a projective family $(\mathbf{P}_J)_{J\subseteq_f I}$ of probability measures there exists a probability measure \mathbf{P}_I on \mathcal{F}^I with $\mathbf{P}_J = (\pi_J)_* \mathbf{P}_I$ for all $J \subseteq_f I$, then \mathbf{P}_I is called the projective limit of the projective family and we write $\mathbf{P}_I = \varprojlim_{J\subseteq_f I} \mathbf{P}_J$. In the above, we have the following probability spaces: $(E,\mathcal{B}(E),\mathbf{P}_i)_{i\in I}$. Suppose $X_i:E\to E$ represent the random variables (identity maps!) which are $\mathcal{B}(E)/\mathcal{B}(E)$ measurable. As in Example 5.22 and Remark 5.23, define: $\mathbf{P}^{\otimes J}:=\otimes_{j\in J}(X_j*\mathbf{P}_j),\ J\subseteq_f I$. We claim that the family $(\mathbf{P}^{\otimes J})_{J\subseteq_f I}$ is projective. If $H\subseteq J\subseteq_f I$, then for $A_j\in\mathcal{B}(E),j\in H$,

$$(\pi_H^J)_* \mathbf{P}^{\otimes J} \Big(\underset{i \in H}{\times} A_j \Big) = \mathbf{P}^{\otimes J} \Big((\pi_H^J)^{-1} \Big(\underset{j \in H}{\times} A_j \Big) \Big)$$

$$= \mathbf{P}^{\otimes J} \Big(\underset{j \in H}{\times} A_j \times \underset{j \in J \setminus H}{\times} E \Big)$$

$$= \prod_{j \in J} \mathbf{P}_j (X_j \in A_j) \cdot \prod_{j \in J \setminus H} (X_j \in E)$$

$$= \prod_{j \in H} \mathbf{P}_j (X_j \in A_j)$$

$$= \mathbf{P}^{\otimes H} \Big(\underset{i \in H}{\times} A_j \Big).$$

Thus, we claim that the projective limit exists! (See Theorem 5.24 [Existence of processes, Kolmogorov])

$$\mathbf{P}^{\otimes I} = \otimes_{i \in I} (X_i * \mathbf{P}_i) = \varprojlim_{J \subseteq I} \otimes_{j \in J} (X_j * \mathbf{P}_j) = \varprojlim_{J \subseteq I} \mathbf{P}^{\otimes J}.$$

Thus, for any $j = \{t_1, t_2, \dots, t_n\} \subseteq I$ and for all $A := (A_j)_{j \in J} \in \mathcal{B}(E)$,

$$\mathbf{P}^{\otimes J}(A) = \bigotimes_{j \in J} (X_j * \mathbf{P}_j(A_j)) = \bigotimes_{j \in J} \left(\mathbf{P}_j(X_j^{-1}(A_j)) \right)$$
$$= \bigotimes_{j \in J} (\mathbf{P}_j(A_j)) = \bigotimes_{j \in J} \mathbf{P}_j(A).$$

That is, such E-valued stochastic process $\mathcal{X} = (X_t)_{t \in I}$ exists!

Exercise 4 (1+1+2=4 Points).

Let $(X_k)_{k\in\mathbb{N}_0}$ be a **symmetric** simple random walk, i.e. $X_k = \sum_{i=0}^{k-1} Z_i$ where $Z_1, Z_2, ...$ are iid with $\mathbf{P}(Z_1 = \pm 1) = \frac{1}{2}$. For $n \in \mathbb{N}$ define

$$S_n = \sum_{k=1}^n X_k.$$

¹Recall the convention that $\sum_{i=0}^{-1} a_i = 0$

- (a) Show whether or not $(S_n)_{n\in\mathbb{N}_0}$ is a simple random walk (not necessarily symmetric).
- (b) Compute the covariance $\mathbf{COV}[X_k, X_l]$ for $k \leq l \in \mathbb{N}$.
- (c) Compute the variance of S_n for $n \in \mathbb{N}$.

Note: You may need to recall that

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad \text{and} \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \quad \text{for } n \in \mathbb{N}.$$

Solution.

(a) We start by writing

$$S_n = \sum_{k=1}^n \sum_{i=0}^{k-1} Z_i = \sum_{i=0}^{n-1} \sum_{k=i+1}^n Z_i = \sum_{i=0}^{n-1} (n-i)Z_i$$

This expression shows that S_n is a linear combination of the Z_i values, where each Z_i is multiplied by the number of times it contributes to the sum S_n . Specifically, Z_i appears in S_n a total of n-i times. To verify whether S_n constitutes a simple random walk, we analyze its increment:

$$S_{n+1} - S_n = X_{n+1}$$
.

Since $X_{n+1} = Z_0 + Z_1 + \cdots + Z_n$, we can express:

$$S_{n+1} = S_n + X_{n+1} = S_n + (Z_0 + Z_1 + \dots + Z_n).$$

Each increment $S_{n+1}-S_n$ depends on the Z values, but it does not result in independent increments because the contribution of each Z_i to S_n depends on their indices. Thus, although S_n is a sum of random variables, it is not a simple random walk because the increments are not independent and identically distributed. Therefore, we conclude that:

The process $(S_n)_{n\in\mathbb{N}_0}$ is not a simple random walk.

As illustration: Consider for k = 2:

$$X_2 = Z_0 + Z_1$$
.

The possible values of X_2 are:

$$\begin{cases} 2 & \text{if} \quad Z_0 = 1, \, Z_1 = 1, \\ 0 & \text{if} \quad Z_0 = 1, \, Z_1 = -1 \quad \text{or} \quad Z_0 = -1, \, Z_1 = 1, \\ -2 & \text{if} \quad Z_0 = -1, \, Z_1 = -1. \end{cases}$$

The increment $S_{n+1} - S_n = X_{n+1}$ is not independent of previous Z_i . The distribution of X_k changes with k (e.g., X_2 can take values -2,0,2). Note that, $\mathbf{P}(X_2 = \pm 1) = 0$.

(b) We compute as follows:

$$\begin{aligned} \mathbf{COV}[X_k, X_l] &= \mathbf{E}[(X_k - \mathbf{E}[X_k])(X_l - \mathbf{E}[X_l])] \\ &= \mathbf{E}[X_k X_l] = \mathbf{E}\left[\left(\sum_{i=0}^{k-1} Z_i\right) \left(\sum_{j=0}^{l-1} Z_i\right)\right] \end{aligned}$$

When we expand the sum above, we observe that the terms of the form $\mathbf{E}[Z_iZ_j]$, for $i \neq j$ will varnish because Z_i and Z_j are independent for $i \neq j$. The only terms left are the those of the form $\mathbf{E}[Z_iZ_i]$ or $\mathbf{E}[Z_jZ_j]$. Their value is 1, and since there are k of them $(k \leq l)$, then

$$\mathbf{COV}[X_k, X_l] = k.$$

(c) We already know that $\mathbf{E}[S_n] = 0$. So, it suffices to compute

$$\mathbf{V}[S_n] = \mathbf{E}[S_n^2] = \mathbf{E}\left[\left(\sum_{k=1}^n X_k\right) \left(\sum_{l=1}^n X_l\right)\right]$$

Recall the identity of Bienamyé (see Proposition 6.9!)

$$\mathbf{V}\Big[\sum_{k=1}^{n} X_{k}\Big] = \mathbf{E}\Big[\Big(\sum_{k=1}^{n} X_{k}\Big)^{2}\Big] = \sum_{k=1}^{n} \sum_{l=1}^{n} \mathbf{E}[X_{k}X_{l}] = \sum_{k=1}^{n} \mathbf{E}[X_{k}^{2}] + 2\sum_{1 \le k < l \le n} \mathbf{E}[X_{k}X_{l}]$$

$$= \sum_{k=1}^{n} \mathbf{V}[X_{k}] + 2\sum_{1 \le k < l \le n} \mathbf{COV}[X_{k}X_{l}].$$

For each $k=1,2,\ldots,n$, there are exactly n-k values of l such that $k< l\leq n$. Therefore, $\sum_{1\leq k\leq l\leq n}k=\sum_{k=1}^nk(n-k)$, and so

$$\mathbf{V}[S_n] = \sum_{k=1}^n k + 2\sum_{k=1}^n k(n-k) = (2n+1)\sum_{k=1}^n k - 2\sum_{k=1}^n k^2$$
$$= (2n+1)\frac{n(n+1)}{2} - 2\frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)(2n+1)}{6}.$$

Alternatively: We can use the representation $X_k = \sum_{i=1}^k Y_k$ so that

$$\mathbf{V}[S_n] = \mathbf{E}\left[\left(\sum_{k=1}^n X_k\right)^2\right] = \mathbf{E}\left[\left(\sum_{k=1}^n \sum_{i=1}^k Y_i\right)^2\right]$$

$$= \mathbf{E}\left[\left(\sum_{i=1}^n \sum_{k=1}^k Y_i\right)^2\right] = \mathbf{E}\left[\left(\sum_{i=1}^n (n-i+1)Y_i\right)^2\right]$$

$$= \sum_{i=1}^n (n-i+1)^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

where we have used the fact that $\mathbf{E}[Y_iY_j] = 0$ for $i \neq j$.