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Tutorial 2 - Definition and existence of stochastic processes

Exercise 1 (14+2+1=4 Points).
Let Q = {1,2,3,4,5).

(a) Find the smallest o- algebra F; containing
Fo:=1{{1,2,3},{3,4,5}}.
(b) Is the random variable X : 2 — R defined by
X(1)=X(2)=0, X(3)=10, X(4)=X()=1
measurable with respect to F17

(c) Find the o-algebra F3 generated by Y : Q@ — R and defined by

Solution.

(a) F1 =10,9,{1,2,3},{3,4,5},{3},{1,2,4,5},{1,2},{4,5} }.

(b) The random variable X is measurable with respect to Fj since we have for each

A € B(R):
if 0€A1,10¢A: X 1(A)={1,2)eF,
if 1€A4,010¢A: X 1(A)={45) e F,
if 10€A,1,10¢A: X YA)={3)er,
if  0,1,10¢A4,: X 1A =0ecF,
if  0,1,10€A,: X '(A)=Q¢cF.

where X 1(A4) = {w € Q: X(w) € A.} We can reduce every other case to these,
take for example, if 0,1, € A but 10 ¢ A, then:

X1A) =x"T{ohuxt({1}) = {12} U {45} = {1,2,3,4,5} € F.

(c) Fs=0(Y)={Q,0,{1},{2,3,4,5}}.


https://pfaffelh.github.io/hp/2024ws_stochproc.html
https://www.stochastik.uni-freiburg.de/

Exercise 2 (242 points).

(a) Given an example of two stochastic processes X and ) which are versions of each
other, but no modifications of each other.

(b) Give an example of a real-valued stochastic process X, such that V[X;] > 0 for all
t and X = (X;)ie; and X2 := (X?)es are indistinguishable.

Solution.

(a) Let @ = {1,2,3} and F = {{1,2,3},0,{1,2},{3}}. Define two stochastic processes
X = (Xt)i=1,23,. and Y = (Y;)¢=123.... as follows:

Xi(w) =1 forallt and w € €,

Yi(w) =2 for all t and w € Q.

We need to show that X; and Y; are versions of each other, which means we need to
verify that their distributions are the same for all sets A € F. Observe the following
for each A in F:

P(X; € {1,23}) =1 = P(Y; € {1,2,3},
P(X; € {1,2}) =1 =P(Y; € {1,2}),
P(X; € {3}) =0 =P(Y; € {3}),
P(X; €0) =0=P(Y; €0).

Hence for all A € F:
P(X;€A)=P(Y; € A).

Thus, X; and Y; have the same distribution with respect to the sigma-algebra F.
Therefore, we conclude that X; and Y; are versions of each other. However, since
X¢(w) =1 and Y;(w) = 2 for all ¢ and for all w € Q, it follows that X;(w) # Yi(w)
for all w € . Thus,

PX;=Y)=P{weQ: Xi(w) =Yi(w)}) =P(0) =0 # 1 for all ¢.
So, X is not a modification of ), and vice versa.

(b) Let X = (X};)ter be defined as:

X — 1, with probability %,
! 0, with probability %

Clearly,
5 1 1

E[X] =3, BlX}|=5 = VIX]=7>0.

1

5’
Furthermore,

X2 _ {1, with probability %,

b 0, with probability %

Thus, P(X; = X? for all t € I) = 1. Hence, X and &X? are indistinguishable with
V[X;] > 0 for all ¢.



Exercise 3 (4 Points).
Let I be some index set, (E,r) be Polish and (P;);er a family of probability measures on
B(E). Show that there exists an E-valued stochastic process (X;)¢es such that (Xy,,...,X3,) ~

@p_ Py, for any ti,...,t, € I. In other words, (X;)ies is an independent family with
X ~ Py

Solution.

Recall that if (Q2,F) is a measurable space, I an arbitrary index set and (Q7,F7) ;c ;Iisa
family of measurable product spaces, equipped with the product o-algebra, as in Definition
5.3. A family of probability measures (P )c,r, where P is a probability measure on F 7
is called a projective family if Py = (7). Py for all H C J C¢ I. Also, if for a projective
family (Py)c ;1 of probability measures there exists a probability measure P; on F I with
P; = (mj)«Py for all J Cf I, then Py is called the projective limit of the projective
family and we write P; = l&n JCT P ;. In the above, we have the following probability
spaces: (E,B(E),P;);c;. Suppose X; : E — E represent the random variables (identity
maps!) which are B(E)/B(E) measurable. As in Example 5.22 and Remark 5.23, define:
P® = ®;c;(X; * P;), J Cp I. We claim that the family (P®J)Jgf[ is projective. If
H C JCy 1, then for Aj € B(E),j € H,

(mip)P®7 (X A;) = P ((my) 71 ( X 4;))
i€H JjEH

=P¥( X Ajx X E)
jEH JEJ\H

=1IPi(x;€4)- [] (x;€E)

jeJ jEINH

= [[Pi(X; € 4))
JjeEH
=P X 4)).

jEH

Thus, we claim that the projective limit exists! (See Theorem 5.24 [Existence of processes,
Kolmogorov])

Pel = ®i€I(Xi * Pi) = lim ®j€J(Xj * Pj) = @ P/,
JCypI JCysI

Thus, for any j = {t1,t2,...,tp} C I and for all A := (A4;);es € B(E),
PO (4) = @jes (X, % Pi(4)) = @jes (Py(X1(4)))
= ®jes (Pj(4;)) = ®;esP;(A).
That is, such E—valued stochastic process X = (X;)cs exists!

Exercise 4 (1+1+2= 4 Points).

Let (Xk)ren, be a symmetric simple random walk, i.e. X = Zf:_ol Z; where Z1,7,...
are iid with P(Z; = £1) = }!. For n € N define

B
k=1

I'Recall the convention that Z;lo a; =0



(a) Show whether or not (S, )nen, is a simple random walk (not necessarily symmetric).
(b) Compute the covariance COV[Xy,X;] for k <1 € N.
(c) Compute the variance of S,, for n € N.

Note: You may need to recall that

" 1 " 1)(2n +1
}:k:ﬁ@i;l and zyﬁznm+)("+),ﬁnneN
k=1 2 k=1 6

Solution.

(a) We start by writing

n k—1 n—-1 n n—1
.= 543 3 Zi= Y%
k=1 1=0 =0 k=i+1 =0

This expression shows that S, is a linear combination of the Z; values, where each
Z; is multiplied by the number of times it contributes to the sum .S,,. Specifically,
Z; appears in S, a total of n — ¢ times. To verify whether S, constitutes a simple
random walk, we analyze its increment:

Sn+1 - Sn = Xn+1-
Since Xp+1 =20+ Z1+ -+ + Z,,, we can express:
Snt1 = Sn + Xnp1 :Sn+(Z0+Zl+--~+Zn).

Each increment S,, 1 —.5,, depends on the Z values, but it does not result in indepen-
dent increments because the contribution of each Z; to S,, depends on their indices.
Thus, although S, is a sum of random variables, it is not a simple random walk
because the increments are not independent and identically distributed. Therefore,
we conclude that:

The process (Sp)nen, is not a simple random walk.
As illustration: Consider for k = 2:
Xo = Zo+ 7.
The possible values of X5 are:

2 if Zy=1,2,=1,
0 if Z():l,Zl:—l or Z():—l,lel,
-2 if Zy=-1,27 =—1.

The increment Sj,41—5, = X,+1 is not independent of previous Z;. The distribution
of X}, changes with k (e.g., X5 can take values —2,0,2). Note that, P(Xy = £+1) = 0.



(b) We compute as follows:

COV[Xk,Xl] = E[(Xk — E[Xk])(Xl - E[Xl])]
k—1 -1
=E[X,X|]=E (Z ZZ-) >z
i=0 J=0

When we expand the sum above, we observe that the terms of the form E[Z;Z;], for
i # 7 will varnish because Z; and Z; are independent for ¢ # j. The only terms left
are the those of the form E[Z;Z;] or E[Z;Z;]. Their value is 1, and since there are
k of them (k <), then

COVI[X;,X|| = k.

(c) We already know that E[S,] = 0. So, it suffices to compute

(35) ().

Recall the identity of Bienamyé (see Proposition 6.9!)

V[ixk} - E[(Zn:Xk)Q] - zn:zn:E[Xle] =Y EXZ+2 Y EX.X]
k=1 k=1

k=1 I=1 k=1 1<k<i<n

V[S,] = E[s2] = E

3

=) VIXi)]+2 )  COV[X,X|.
k=1 1<k<i<n

For each k = 1,2,...,n, there are exactly n — k values of | such that k£ < [ < n.
Therefore, >y <1<, b = D=y k(n — k), and so

VI[S,] = zn:k:+2zn:k(n—k) = (2n+l)ik—2ik2
k=1 k=1 k=1 k=1

n+1) _2n(n+1)(2n+1) n(n+1)(2n+1)

2 6 6

— (1™

Alternatively: We can use the representation X = Zle Y so that

where we have used the fact that E[Y;Y;] = 0 for i # j.



