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Tutorial 2 - Definition and existence of stochastic processes

Exercise 1 (1+2+1=4 Points).

Let Ω = {1,2,3,4,5}.

(a) Find the smallest σ- algebra F1 containing

F2 := {{1,2,3},{3,4,5}}.

(b) Is the random variable X : Ω→ R defined by

X(1) = X(2) = 0, X(3) = 10, X(4) = X(5) = 1

measurable with respect to F1?

(c) Find the σ-algebra F3 generated by Y : Ω→ R and defined by

Y (1) = 0, Y (2) = Y (3) = Y (4) = Y (5) = 1.

Solution.

(a) F1 = {∅,Ω,{1,2,3},{3,4,5},{3},{1,2,4,5},{1,2},{4,5}}.

(b) The random variable X is measurable with respect to F1 since we have for each
A ∈ B(R):

if 0 ∈ A, 1,10 /∈ A : X−1(A) = {1,2} ∈ F1,

if 1 ∈ A, 0,10 /∈ A : X−1(A) = {4,5} ∈ F1,

if 10 ∈ A, 1,10 /∈ A : X−1(A) = {3} ∈ F1,

if 0,1,10 /∈ A, : X−1(A) = ∅ ∈ F1,

if 0,1,10 ∈ A, : X−1(A) = Ω ∈ F1.

where X−1(A) = {ω ∈ Ω : X(w) ∈ A.} We can reduce every other case to these,
take for example, if 0,1, ∈ A but 10 /∈ A, then:

X−1(A) = X−1({0}) ∪X−1({1}) = {1,2} ∪ {4,5} = {1,2,3,4,5} ∈ F1.

(c) F3 = σ(Y ) = {Ω,∅,{1},{2,3,4,5}}.
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Exercise 2 (2+2 points).

(a) Given an example of two stochastic processes X and Y which are versions of each
other, but no modifications of each other.

(b) Give an example of a real-valued stochastic process X , such that V[Xt] > 0 for all
t and X = (Xt)t∈I and X 2 := (X2

t )t∈I are indistinguishable.

Solution.

(a) Let Ω = {1,2,3} and F = {{1,2,3},∅,{1,2},{3}}. Define two stochastic processes
X = (Xt)t=1,2,3,... and Y = (Yt)t=1,2,3,... as follows:

Xt(w) = 1 for all t and w ∈ Ω,

Yt(w) = 2 for all t and w ∈ Ω.

We need to show that Xt and Yt are versions of each other, which means we need to
verify that their distributions are the same for all sets A ∈ F . Observe the following
for each A in F :

P(Xt ∈ {1,2,3}) =1 = P(Yt ∈ {1,2,3},
P(Xt ∈ {1,2}) =1 = P(Yt ∈ {1,2}),
P(Xt ∈ {3}) =0 = P(Yt ∈ {3}),
P(Xt ∈ ∅) =0 = P(Yt ∈ ∅).

Hence for all A ∈ F :
P(Xt ∈ A) = P(Yt ∈ A).

Thus, Xt and Yt have the same distribution with respect to the sigma-algebra F .
Therefore, we conclude that Xt and Yt are versions of each other. However, since
Xt(w) = 1 and Yt(w) = 2 for all t and for all w ∈ Ω, it follows that Xt(w) ̸= Yt(w)
for all w ∈ Ω. Thus,

P(Xt = Yt) = P({ω ∈ Ω : Xt(ω) = Yt(ω)}) = P(∅) = 0 ̸= 1 for all t.

So, X is not a modification of Y, and vice versa.

(b) Let X = (Xt)t∈I be defined as:

Xt =

{
1, with probability 1

2 ,

0, with probability 1
2 .

Clearly,

E[Xt] =
1

2
, E[X2

t ] =
1

2
=⇒ V[Xt] =

1

4
> 0.

Furthermore,

X2
t =

{
1, with probability 1

2 ,

0, with probability 1
2 .

Thus, P(Xt = X2
t for all t ∈ I) = 1. Hence, X and X 2 are indistinguishable with

V[Xt] > 0 for all t.
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Exercise 3 (4 Points).

Let I be some index set, (E,r) be Polish and (Pi)i∈I a family of probability measures on
B(E). Show that there exists an E-valued stochastic process (Xt)t∈I such that (Xt1 ,...,Xtn) ∼
⊗n

i=1Pti for any t1,...,tn ∈ I. In other words, (Xt)t∈I is an independent family with
Xt ∼ Pt.

Solution.
Recall that if (Ω,F) is a measurable space, I an arbitrary index set and (ΩJ ,FJ)J⊆f I is a
family of measurable product spaces, equipped with the product σ-algebra, as in Definition
5.3. A family of probability measures (PJ)J⊆f I , where PJ is a probability measure on FJ ,

is called a projective family if PH = (πJ
H)∗PJ for all H ⊆ J ⊆f I. Also, if for a projective

family (PJ)J⊆f I of probability measures there exists a probability measure PI on FI with
PJ = (πJ)∗PI for all J ⊆f I, then PI is called the projective limit of the projective
family and we write PI = lim←−J⊆f I

PJ . In the above, we have the following probability

spaces: (E,B(E),Pi)i∈I . Suppose Xi : E → E represent the random variables (identity
maps!) which are B(E)/B(E) measurable. As in Example 5.22 and Remark 5.23, define:
P⊗J := ⊗j∈J(Xj ∗ Pj), J ⊆f I. We claim that the family (P⊗J)J⊆f I is projective. If
H ⊆ J ⊆f I, then for Aj ∈ B(E),j ∈ H,

(πJ
H)∗P

⊗J
(×
i∈H

Aj

)
= P⊗J

(
(πJ

H)−1
(×
j∈H

Aj

))
= P⊗J

(×
j∈H

Aj × ×
j∈J\H

E
)

=
∏
j∈J

Pj(Xj ∈ Aj) ·
∏

j∈J\H

(Xj ∈ E)

=
∏
j∈H

Pj(Xj ∈ Aj)

= P⊗H
(×
j∈H

Aj

)
.

Thus, we claim that the projective limit exists! (See Theorem 5.24 [Existence of processes,
Kolmogorov])

P⊗I = ⊗i∈I(Xi ∗Pi) = lim←−
J⊆f I

⊗j∈J(Xj ∗Pj) = lim←−
J⊆f I

P⊗J .

Thus, for any j = {t1,t2, . . . ,tn} ⊆ I and for all A := (Aj)j∈J ∈ B(E),

P⊗J(A) = ⊗j∈J (Xj ∗Pj(Aj)) = ⊗j∈J

(
Pj(X

−1
j (Aj))

)
= ⊗j∈J (Pj(Aj)) = ⊗j∈JPj(A).

That is, such E−valued stochastic process X = (Xt)t∈I exists!

Exercise 4 (1+1+2= 4 Points).

Let (Xk)k∈N0 be a symmetric simple random walk, i.e. Xk =
∑k−1

i=0 Zi where Z1,Z2,...
are iid with P(Z1 = ±1) = 1

2
1. For n ∈ N define

Sn =
n∑

k=1

Xk.

1Recall the convention that
∑−1

i=0 ai = 0
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(a) Show whether or not (Sn)n∈N0 is a simple random walk (not necessarily symmetric).

(b) Compute the covariance COV[Xk,Xl] for k ≤ l ∈ N.

(c) Compute the variance of Sn for n ∈ N.

Note: You may need to recall that

n∑
k=1

k =
n(n+ 1)

2
and

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
, for n ∈ N.

Solution.

(a) We start by writing

Sn =

n∑
k=1

k−1∑
i=0

Zi =

n−1∑
i=0

n∑
k=i+1

Zi =

n−1∑
i=0

(n− i)Zi

This expression shows that Sn is a linear combination of the Zi values, where each
Zi is multiplied by the number of times it contributes to the sum Sn. Specifically,
Zi appears in Sn a total of n − i times. To verify whether Sn constitutes a simple
random walk, we analyze its increment:

Sn+1 − Sn = Xn+1.

Since Xn+1 = Z0 + Z1 + · · ·+ Zn, we can express:

Sn+1 = Sn +Xn+1 = Sn + (Z0 + Z1 + · · ·+ Zn).

Each increment Sn+1−Sn depends on the Z values, but it does not result in indepen-
dent increments because the contribution of each Zi to Sn depends on their indices.
Thus, although Sn is a sum of random variables, it is not a simple random walk
because the increments are not independent and identically distributed. Therefore,
we conclude that:

The process (Sn)n∈N0 is not a simple random walk.

As illustration: Consider for k = 2:

X2 = Z0 + Z1.

The possible values of X2 are:
2 if Z0 = 1, Z1 = 1,

0 if Z0 = 1, Z1 = −1 or Z0 = −1, Z1 = 1,

−2 if Z0 = −1, Z1 = −1.

The increment Sn+1−Sn = Xn+1 is not independent of previous Zi. The distribution
of Xk changes with k (e.g., X2 can take values −2,0,2). Note that, P(X2 = ±1) = 0.
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(b) We compute as follows:

COV[Xk,Xl] = E[(Xk −E[Xk])(Xl −E[Xl])]

= E[XkXl] = E

(k−1∑
i=0

Zi

) l−1∑
j=0

Zi


When we expand the sum above, we observe that the terms of the form E[ZiZj ], for
i ̸= j will varnish because Zi and Zj are independent for i ̸= j. The only terms left
are the those of the form E[ZiZi] or E[ZjZj ]. Their value is 1, and since there are
k of them (k ≤ l), then

COV[Xk,Xl] = k.

(c) We already know that E[Sn] = 0. So, it suffices to compute

V[Sn] = E[S2
n] = E

[(
n∑

k=1

Xk

)(
n∑

l=1

Xl

)]

Recall the identity of Bienamyé (see Proposition 6.9!)

V
[ n∑
k=1

Xk

]
= E

[( n∑
k=1

Xk

)2]
=

n∑
k=1

n∑
l=1

E[XkXl] =
n∑

k=1

E[X2
k ] + 2

∑
1≤k<l≤n

E[XkXl]

=

n∑
k=1

V[Xk] + 2
∑

1≤k<l≤n

COV[XkXl].

For each k = 1,2, . . . ,n, there are exactly n − k values of l such that k < l ≤ n.
Therefore,

∑
1≤k≤l≤n k =

∑n
k=1 k(n− k), and so

V[Sn] =
n∑

k=1

k + 2
n∑

k=1

k(n− k) = (2n+ 1)
n∑

k=1

k − 2
n∑

k=1

k2

= (2n+ 1)
n(n+ 1)

2
− 2

n(n+ 1)(2n+ 1)

6
=

n(n+ 1)(2n+ 1)

6
.

Alternatively: We can use the representation Xk =
∑k

i=1 Yk so that

V[Sn] = E
[( n∑

k=1

Xk

)2]
= E

( n∑
k=1

k∑
i=1

Yi

)2


= E

( n∑
i=1

k∑
k=1

Yi

)2
 = E

( n∑
i=1

(n− i+ 1)Yi

)2


=
n∑

i=1

(n− i+ 1)2 =
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)
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where we have used the fact that E[YiYj ] = 0 for i ̸= j.
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