universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024ws_stochproc.html https://www.stochastik.uni-freiburg.de/

Tutorial 1 - Repetition of probability theory

Exercise 1 (2+2 = 4 Points).

Let $X \ge 0$ be a nonnegative real-valued random variable.

- (a) Assume that $\mathbf{E}[X] < \infty$. Show that $n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \to \mathbf{E}[X]$ as $n \to \infty$.
- (b) Assume that $\mathbf{E}[X] = \infty$. Show that $n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \to \infty$ as $n \to \infty$.

Hint: It might be helpful to show that $n \mapsto (1 + \frac{X}{n})^n$ is increasing.

Solution.

(a) From

$$(1+\frac{X}{n})^n = \sum_{k=0}^n \binom{n}{k} (\frac{X}{n})^k = \sum_{k=0}^n \frac{X^k}{k!} \frac{n \cdots (n-k+1)}{n^k}$$

we see the monotonicity. Set $X_n = n \ln \left(1 + \frac{X}{n}\right)$. We also note that for $x \ge 0$, the inequality $\ln(1+x) \le x$ holds. Thus, $\ln \left(1 + \frac{X}{n}\right) \le \frac{X}{n}$. That is, $n \ln \left(1 + \frac{X}{n}\right) \le X$ (an integrable random variable which does not depend on n. Taking expectations, we have:

$$n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \le \mathbf{E}[X].$$

Next, we analyze the limit of $n \ln \left(1 + \frac{X}{n}\right)$ as $n \to \infty$. We can use the fact that:

$$\lim_{n \to \infty} n \ln\left(1 + \frac{X}{n}\right) = X.$$

By the Dominated Convergence Theorem, since X is integrable and dominates $n \ln \left(1 + \frac{X}{n}\right)$, we conclude:

$$\lim_{n \to \infty} \mathbf{E}\left[n \ln\left(1 + \frac{X}{n}\right)\right] = \mathbf{E}[X].$$

Thus, we have:

$$n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \to \mathbf{E}[X] \text{ as } n \to \infty.$$

(b) By applying Fatou's lemma, we have:

$$\liminf_{n \to \infty} \mathbf{E}\left[n \ln\left(1 + \frac{X}{n}\right)\right] \ge \mathbf{E}\left[\liminf_{n \to \infty} n \ln\left(1 + \frac{X}{n}\right)\right]$$

From part (a), we know that:

$$\lim_{n \to \infty} n \ln\left(1 + \frac{X}{n}\right) = X \implies \liminf_{n \to \infty} n \ln\left(1 + \frac{X}{n}\right) = X.$$

Since $\mathbf{E}[X] = \infty$, it follows that:

$$\liminf_{n \to \infty} \mathbf{E}\left[n \ln\left(1 + \frac{X}{n}\right)\right] \ge \mathbf{E}[X] = \infty.$$

Hence, we conclude that:

$$n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \to \infty \text{ as } n \to \infty.$$

Exercise 2 (3+1=4 Points).

- (a) Let $(X_n)_{n\in\mathbb{N}}$ be an independent family of random variables such that $\mathbf{P}(X_n = -1) = \mathbf{P}(X_n = +1) = \frac{1}{2}$ and let $S_n = X_1 + X_2 + \ldots + X_n$ for any $n \in \mathbb{N}$. Show that $\limsup_{n\to\infty} S_n = \infty$ almost surely.
- (b) Suppose that X and Y are random variables in \mathcal{L}^2 such that

 $\mathbf{E}[X|Y] = Y$ and $\mathbf{E}[Y|X] = X$ almost surely.

Show that X = Y almost surely. *Hint:* Theorem 11.2

Solution.

(a) Recall that the Kolmogorov's 0-1 law helps to clarify when sums of independent random variables are almost sure to converge. We can set $\mathcal{F}_i := \sigma(X_i), i = 1, 2, ...$ Since the $(X_n)_{n \in \mathbb{N}}$ are independent, the above means that we have an independent family of σ -algebras $(\mathcal{F}_i)_{i=1,2,...}$ Using the Kolmogorov's 0-1 law, we know that $\mathcal{F}_1, \mathcal{F}_2, \cdots \subseteq \mathcal{F}$ independent implies $\mathcal{T} := \mathcal{T}(\mathcal{F}_1, \mathcal{F}_2, \ldots) = \mathcal{T}((\sigma(X_1), \sigma(X_2), \ldots))$ **P**-trivial. By definition,

$$\mathcal{T}(\mathcal{F}_1, \mathcal{F}_2, \dots) = \bigcap_{n \ge 1} \sigma \Big(\bigcup_{m > n} \mathcal{F}_m\Big) \text{ and } \limsup_{n \to \infty} S_n := \bigcap_{n \ge 1} \bigcup_{m \ge n} S_m,$$

with $S_m = X_m + X_{m+1} + \ldots + X_k$ measurable with respect to $\sigma \left(\bigcup_{m \ge n} \mathcal{F}_m \right) = \sigma \left(\bigcup_{m \ge n} \sigma(X_m) \right)$. Using the symmetric property of the random variables, lim $\sup_{n \to \infty} S_n = \infty$ and lim $\inf_{n \to \infty} S_n = -\infty$ have the same probability which is

 $\limsup_{n\to\infty} S_n = \infty$ and $\liminf_{n\to\infty} S_n = -\infty$ have the same probability which is either 0 or 1. From the above, we could not have $\mathbf{P}(\limsup_{n\to\infty} S_n) = 0$, hence, $\mathbf{P}(\limsup_{n\to\infty} S_n) = 1$ and so $\limsup_{n\to\infty} S_n = \infty$ almost surely. (b) Define the difference Z = X - Y. We need to show that Z = 0 almost surely. From the first condition, we have:

$$\mathbf{E}[Z|Y] = \mathbf{E}[X - Y|Y] = \mathbf{E}[X|Y] - Y = Y - Y = 0$$

Using the second given condition, we have

$$\mathbf{E}[Z|X] = \mathbf{E}[X - Y|X] = \mathbf{E}[X|X] - \mathbf{E}[Y|X] = X - X = 0.$$

It remains for us to ascertain that $\mathbf{E}[Z^2] = 0$. Consider the following:

$$\mathbf{E}[(X - Y)^{2}] = \mathbf{E}[\mathbf{E}[(X - Y)^{2}|X]] = \mathbf{E}[\mathbf{E}[X^{2} - 2XY + Y^{2}|X]]$$

= $\mathbf{E}[\mathbf{E}[X^{2}] - 2\mathbf{E}[XY] + \mathbf{E}[Y^{2}]|X]$
= $\mathbf{E}[X^{2} - 2X\underbrace{\mathbf{E}[Y|X]}_{X} + \mathbf{E}[Y^{2}|X]]$
= $\mathbf{E}[X^{2}] - \mathbf{E}[Y^{2}] = \mathbf{E}[Y^{2} - X^{2}]$

If we condition on Y instead,

$$\begin{aligned} \mathbf{E}[(X - Y)^2] &= \mathbf{E}[\mathbf{E}[(X - Y)^2|Y]] = \mathbf{E}[\mathbf{E}[X^2 - 2XY + Y^2|Y]] \\ &= \mathbf{E}[\mathbf{E}[X^2] - 2\mathbf{E}[XY] + \mathbf{E}[Y^2]|Y] \\ &= \mathbf{E}[X^2 - 2Y\underbrace{\mathbf{E}[X|Y]}_{Y} + \mathbf{E}[Y^2]] \\ &= \mathbf{E}[X^2] - \mathbf{E}[Y^2] = \mathbf{E}[X^2 - Y^2] \end{aligned}$$

That is, we get

$$\mathbf{E}[Z^2] = \mathbf{E}[(X - Y)^2] = \mathbf{E}[Y^2 - X^2] = \mathbf{E}[X^2 - Y^2] = 0$$

Therefore, X = Y almost surely.

Exercise 3 (2+2=4 Points).

For every $n \in \mathbb{N}$, let X_n be a random variable with probability density

$$f_X(x) = nx^{-n-1} \mathbb{1}_{[1,\infty)}(x).$$

- (a) Determine the distribution function of X_n and show that $X_n \xrightarrow{n \to \infty} 1$.
- (b) Investigate for which n the expected value of X_n exists and, if necessary, specify it. Does the convergence from (a) also apply in \mathcal{L}^1 ?

Solution.

(a) For
$$x > 1$$
, $F_{X_{\alpha}}(x) = \int_{1}^{x} \alpha t^{-\alpha-1} dt = -t^{-\alpha} \Big|_{t=1}^{x} = 1 - x^{-\alpha}$ and $F_{X_{\alpha}}(x) = 0$ otherwise.
Thus, it follows that for $\varepsilon > 0$,

$$\mathbf{P}(|X_{\alpha} - 1| > \varepsilon) = \mathbf{P}(X_{\alpha} > 1 + \varepsilon) = (1 + \varepsilon)^{-\alpha} \to 0.$$

(b) We have

$$\mathbf{E}[X_{\alpha}] = \int_{1}^{\infty} \alpha x^{-\alpha} dx = \begin{cases} \log x \Big|_{1}^{\infty} &= \infty \text{ for } \alpha = 1, \\ \left(\frac{\alpha}{1-\alpha} x^{1-\alpha}\right) \Big|_{1}^{\infty} &= \begin{cases} \infty & \text{ for } \alpha < 1 \\ \frac{\alpha}{\alpha-1} & \text{ for } \alpha > 1. \end{cases}$$

It also applies for $\alpha > 1$ that

$$||X_{\alpha} - 1||_{\mathcal{L}^1} = \mathbf{E}[X_{\alpha}] - 1 = \frac{\alpha}{\alpha - 1} - 1 = \frac{1}{\alpha - 1} \to 0$$

Exercise 4 (1+1+1+1=4 Points).

You roll two six-sided fair dice, where one die has the digits $\{1,2,3,4,5,6\}$ and the second die has the digits $\{3,3,6,6,6,6\}$. Let X_{i} , i = 1,2 be the result of the *i*th roll and $Y = X_1 + X_2$.

(a) Enter the probabilities $\mathbf{P}(Y = k)$ for k = 2, 3, ..., 12 in the table.

k	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{P}(Y=k)$											

- (b) Determine the expected value of Y.
- (c) Enter the conditional probabilities $\mathbf{P}(X_2 = x | Y = k)$ for x = 3,6 and k = 2,3,...,12 in the table.

k	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{P}(X_2 = 3 Y = k)$											
$\mathbf{P}(X_2 = 6 Y = k)$											

(d) Determine the conditional expectations $\mathbf{E}[X_1|Y]$ and $\mathbf{E}[X_2|Y]$.

Solution.

(a) We have $\{Y = k\} = (\{X_2 = 6\} \cap \{X_1 = k - 6\}) \cup (\{X_2 = 3\} \cap \{X_1 = k - 3\}).$ For $k = 2,3, \{X_1 = k - 3\} = \{X_1 = k - 6\} = \emptyset$ and thus $\mathbf{P}(Y = k) = 0.$ For $k = 4,5,6, \{X_1 = k - 6\} = \emptyset$ and therefore

$$\mathbf{P}(Y=k) = \mathbf{P}(X_1 = k - 3)\mathbf{P}(X_2 = 3) = \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{18}.$$

For $k = 10,11,12, \{X_1 = k - 3\} = \emptyset$ and therefore

$$\mathbf{P}(Y=k) = \mathbf{P}(X_1 = k - 6)\mathbf{P}(X_2 = 6) = \frac{1}{6} \cdot \frac{2}{3} = \frac{1}{9}.$$

For k = 7,8,9 it is the case that

$$\mathbf{P}(Y=k) = \mathbf{P}(X_1 = k - 6)\mathbf{P}(X_2 = 6) + \mathbf{P}(X_1 = k - 3)\mathbf{P}(X_2 = 3) = \frac{1}{6} \cdot \frac{2}{3} + \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{6}$$

k	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{P}(Y=k)$	0	0	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

(b) There are two possibilities for the expected value:

• Calculate with the probabilities $\mathbf{P}(Y = k)$ that

$$\mathbf{E}[Y] = \frac{1}{18}(4+5+6) + \frac{1}{6}(7+8+9) + \frac{1}{9}(10+11+12) = \frac{5}{6} + \frac{24}{6} + \frac{22}{6} = \frac{17}{2} = 8.5.$$

• Alternatively, calculate $\mathbf{E}[X_1] = \frac{1}{6}(1 + \dots + 6) = 3.5$, $\mathbf{E}[X_2] = 3 \cdot \frac{1}{3} + 6 \cdot \frac{2}{3} = 5$ and with linearity of the expected value

$$\mathbf{E}[Y] = 3.5 + 5 = 8.5.$$

(c) On the set $Y \in \{4,5,6\}$ is $X_2 = 3$, on the set $Y \in \{10,11,12\}$ is $X_2 = 6$. For $k \in \{7,8,9\}$ we have

$$\mathbf{P}(X_2 = 3|Y = k)) = \mathbf{P}(X_2 = 3, Y = k) / \mathbf{P}(Y = k) \mathbf{P}(X_2 = 3, X_1 = k - 3) / \mathbf{P}(Y = k) = \frac{1}{3} \cdot \frac{1}{6} / \frac{1}{6} = \frac{1}{3} \cdot \frac{1}{6} - \frac{1}{6} - \frac{1}{3} \cdot \frac{1}{6} - \frac{1$$

and analogously $\mathbf{P}(X_2 = 6|Y = k)) = \frac{2}{3}$.

k	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{P}(X_2 = 3 Y = k)$	0	0	1	1	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0
$\mathbf{P}(X_2 = 6 Y = k)$	0	0	0	0	0	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	1	1	1

(d) We first determine $\mathbf{E}[X_2|Y]$: The sets $\{\{Y = 4\},...,\{Y = 12\}\}$ are a partition of Ω , therefore

$$\mathbf{E}[X_2|Y] = \sum_{k=4}^{12} \mathbf{E}[X_2|Y=k] \cdot \mathbf{1}_{Y=k} = 3 \cdot \mathbf{1}_{Y \in \{4,5,6\}} + \underbrace{\left(3 \cdot \frac{1}{3} + 6 \cdot \frac{2}{3}\right)}_{=5} \cdot \mathbf{1}_{Y \in \{7,8,9\}} + 6 \cdot \mathbf{1}_{Y \in \{10,11,12\}}$$

For $\mathbf{E}[X_1|Y]$ we obtain with linearity of the conditional expectation that

$$Y = \mathbf{E}[Y|Y] = \mathbf{E}[X_1|Y] + \mathbf{E}[X_2|Y]$$

and thus,

$$\mathbf{E}[X_1|Y] = Y - \mathbf{E}[X_2|Y] = (Y-3) \cdot \mathbf{1}_{Y \in \{4,5,6\}} + (Y-5) \cdot \mathbf{1}_{Y \in \{7,8,9\}} + (Y-6) \cdot \mathbf{1}_{Y \in \{10,11,12\}}$$

Alternative way to calculate $\mathbf{E}[X_2|Y]$: We define

$$f(Y) = 3 \cdot 1_{Y \in \{4,5,6\}} + \mathbf{E}[X_2] \cdot 1_{Y \in \{7,8,9\}} + 6 \cdot 1_{Y \in \{10,11,12\}}$$

and use the definition of the conditional expectation to show that $\mathbf{E}[X_2|Y] = f(Y)$. Integrability and $\sigma(Y)$ measurability are clear. It must therefore be shown that for any $A \in \sigma(Y)$ it is true that

$$\mathbf{E}[X_2; A] = \mathbf{E}[f(Y); A].$$

It is sufficient to check this property on the generator $\{Y = k\}, k = 4, ..., 12$ of $\sigma(Y)$. For $k \in \{4,5,6,10,11,12\}$ this follows from $X_2 \cdot 1_{Y=k} = 3$ for k = 4,5,6, or $X_2 \cdot 1_{Y=k} = 6$ for k = 10,11,12. For k = 7,8,9 is

$$\mathbf{E}[X_2; Y = k] = \mathbf{E}[X_2; Y = k, X_1 = k - 6] + \mathbf{E}[X_2; Y = k, X_1 = k - 3]$$

= $\mathbf{E}[X_2; X_2 = 6, X_1 = k - 6] + \mathbf{E}[X_2; X_2 = 3, X_1 = k - 3]$
= $6\mathbf{P}(X_2 = 6, X_1 = k - 6) + 3\mathbf{P}(X_2 = 3, X_1 = k - 3)$
= $6 \cdot \frac{2}{3} \cdot \frac{1}{6} + 3 \cdot \frac{1}{3} \cdot \frac{1}{6} = 5 \cdot \frac{1}{6}$
= $5 \cdot \mathbf{P}(Y = k) = \mathbf{E}[f(Y); Y = k].$