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Tutorial 1 - Repetition of probability theory

Exercise 1 (2+2 =4 Points).

Let X ≥ 0 be a nonnegative real-valued random variable.

(a) Assume that E[X] < ∞. Show that nE
[
ln
(
1 + X

n

)]
→ E[X] as n → ∞.

(b) Assume that E[X] = ∞. Show that nE
[
ln
(
1 + X

n

)]
→ ∞ as n → ∞.

Hint: It might be helpful to show that n 7→ (1 + X
n )

n is increasing.

Solution.

(a) From

(1 + X
n )

n =
n∑

k=0

(
n

k

)
(Xn )

k =
n∑

k=0

Xk

k!

n · · · (n− k + 1)

nk

we see the monotonicity. Set Xn = n ln
(
1 + X

n

)
. We also note that for x ≥ 0, the

inequality ln(1 + x) ≤ x holds. Thus, ln
(
1 + X

n

)
≤ X

n . That is, n ln
(
1 + X

n

)
≤ X

(an integrable random variable which does not depend on n. Taking expectations,
we have:

nE

[
ln

(
1 +

X

n

)]
≤ E[X].

Next, we analyze the limit of n ln
(
1 + X

n

)
as n → ∞. We can use the fact that:

lim
n→∞

n ln

(
1 +

X

n

)
= X.

By the Dominated Convergence Theorem, since X is integrable and dominates
n ln

(
1 + X

n

)
, we conclude:

lim
n→∞

E

[
n ln

(
1 +

X

n

)]
= E[X].

Thus, we have:

nE

[
ln

(
1 +

X

n

)]
→ E[X] as n → ∞.
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(b) By applying Fatou’s lemma, we have:

lim inf
n→∞

E

[
n ln

(
1 +

X

n

)]
≥ E

[
lim inf
n→∞

n ln

(
1 +

X

n

)]
.

From part (a), we know that:

lim
n→∞

n ln

(
1 +

X

n

)
= X =⇒ lim inf

n→∞
n ln

(
1 +

X

n

)
= X.

Since E[X] = ∞, it follows that:

lim inf
n→∞

E

[
n ln

(
1 +

X

n

)]
≥ E[X] = ∞.

Hence, we conclude that:

nE

[
ln

(
1 +

X

n

)]
→ ∞ as n → ∞.

Exercise 2 (3+1= 4 Points).

(a) Let (Xn)n∈N be an independent family of random variables such that P(Xn = −1) =
P(Xn = +1) = 1

2 and let Sn = X1 + X2 + . . . + Xn for any n ∈ N. Show that
lim supn→∞ Sn = ∞ almost surely.

(b) Suppose that X and Y are random variables in L2 such that

E[X|Y ] = Y and E[Y |X] = X almost surely.

Show that X = Y almost surely.

Hint: Theorem 11.2

Solution.

(a) Recall that the Kolmogorov’s 0-1 law helps to clarify when sums of independent
random variables are almost sure to converge. We can set Fi := σ(Xi), i = 1,2, . . . .
Since the (Xn)n∈N are independent, the above means that we have an independent
family of σ-algebras (Fi)i=1,2,.... Using the Kolmogorov’s 0-1 law, we know that
F1,F2, · · · ⊆ F independent implies T := T (F1,F2, . . . ) = T ((σ(X1),σ(X2), . . .)
P-trivial. By definition,

T (F1,F2, . . . ) =
⋂
n≥1

σ
( ⋃

m>n

Fm

)
and lim sup

n→∞
Sn :=

⋂
n≥1

⋃
m≥n

Sm,

with Sm = Xm + Xm+1 + . . . + Xk measurable with respect to σ
(⋃

m≥nFm

)
=

σ
(⋃

m≥n σ(Xm)
)
. Using the symmetric property of the random variables,

lim supn→∞ Sn = ∞ and lim infn→∞ Sn = −∞ have the same probability which is
either 0 or 1. From the above, we could not have P(lim supn→∞ Sn) = 0, hence,
P(lim supn→∞ Sn) = 1 and so lim supn→∞ Sn = ∞ almost surely.
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(b) Define the difference Z = X − Y . We need to show that Z = 0 almost surely. From
the first condition, we have:

E[Z|Y ] = E[X − Y |Y ] = E[X|Y ]− Y = Y − Y = 0.

Using the second given condition, we have

E[Z|X] = E[X − Y |X] = E[X|X]−E[Y |X] = X −X = 0.

It remains for us to ascertain that E[Z2] = 0. Consider the following:

E[(X − Y )2] = E[E[(X − Y )2|X]] = E[E[X2 − 2XY + Y 2|X]]

= E[E[X2]− 2E[XY ] +E[Y 2]|X]

= E[X2 − 2X E[Y |X]︸ ︷︷ ︸
X

+E[Y 2|X]]

= E[X2]−E[Y 2] = E[Y 2 −X2]

If we condition on Y instead,

E[(X − Y )2] = E[E[(X − Y )2|Y ]] = E[E[X2 − 2XY + Y 2|Y ]]

= E[E[X2]− 2E[XY ] +E[Y 2]|Y ]

= E[X2 − 2Y E[X|Y ]︸ ︷︷ ︸
Y

+E[Y 2]]

= E[X2]−E[Y 2] = E[X2 − Y 2]

That is, we get

E[Z2] = E[(X − Y )2] = E[Y 2 −X2] = E[X2 − Y 2] = 0

Therefore, X = Y almost surely.

Exercise 3 (2+2=4 Points).

For every n ∈ N, let Xn be a random variable with probability density

fX(x) = nx−n−11[1,∞)(x).

(a) Determine the distribution function of Xn and show that Xn
n→∞−−−→p 1.

(b) Investigate for which n the expected value of Xn exists and, if necessary, specify it.
Does the convergence from (a) also apply in L1?

Solution.

(a) For x > 1, FXα(x) =
x∫
1

αt−α−1dt = −t−α
∣∣∣x
t=1

= 1− x−α and FXα(x) = 0 otherwise.

Thus, it follows that for ε > 0,

P(|Xα − 1| > ε) = P(Xα > 1 + ε) = (1 + ε)−α → 0.

3



(b) We have

E[Xα] =

∞∫
1

αx−αdx =


log x

∣∣∣∞
1

= ∞ for α = 1,(
α

1−αx
1−α

)∣∣∣∞
1

=

{
∞ for α < 1
α

α−1 for α > 1.

It also applies for α > 1 that

∥Xα − 1∥L1 = E[Xα]− 1 =
α

α− 1
− 1 =

1

α− 1
→ 0.

Exercise 4 (1+1+1+1= 4 Points).

You roll two six-sided fair dice, where one die has the digits {1,2,3,4,5,6} and the second die
has the digits {3,3,6,6,6,6}. Let Xi,i = 1,2 be the result of the ith roll and Y = X1 +X2.

(a) Enter the probabilities P(Y = k) for k = 2,3,...,12 in the table.

k 2 3 4 5 6 7 8 9 10 11 12

P(Y = k)

(b) Determine the expected value of Y .

(c) Enter the conditional probabilities P(X2 = x|Y = k) for x = 3,6 and k = 2,3,...,12
in the table.

k 2 3 4 5 6 7 8 9 10 11 12

P(X2 = 3|Y = k)

P(X2 = 6|Y = k)

(d) Determine the conditional expectations E[X1|Y ] and E[X2|Y ].

Solution.

(a) We have {Y = k} = ({X2 = 6} ∩ {X1 = k − 6}) ∪ ({X2 = 3} ∩ {X1 = k − 3}).

For k = 2,3, {X1 = k − 3} = {X1 = k − 6} = ∅ and thus P(Y = k) = 0.

For k = 4,5,6, {X1 = k − 6} = ∅ and therefore

P(Y = k) = P(X1 = k − 3)P(X2 = 3) = 1
6 · 1

3 = 1
18 .
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For k = 10,11,12, {X1 = k − 3} = ∅ and therefore

P(Y = k) = P(X1 = k − 6)P(X2 = 6) = 1
6 · 2

3 = 1
9 .

For k = 7,8,9 it is the case that

P(Y = k) = P(X1 = k−6)P(X2 = 6)+P(X1 = k−3)P(X2 = 3) = 1
6 ·

2
3 +

1
6 ·

1
3 = 1

6 .

k 2 3 4 5 6 7 8 9 10 11 12

P(Y = k) 0 0 1
18

1
18

1
18

1
6

1
6

1
6

1
9

1
9

1
9

(b) There are two possibilities for the expected value:

• Calculate with the probabilities P(Y = k) that

E[Y ] = 1
18(4+ 5+6)+ 1

6(7+ 8+9)+ 1
9(10+11+12) = 5

6 +
24
6 + 22

6 = 17
2 = 8.5.

• Alternatively, calculate E[X1] =
1
6(1 + ... + 6) = 3.5, E[X2] = 3 · 1

3 + 6 · 2
3 = 5

and with linearity of the expected value

E[Y ] = 3.5 + 5 = 8.5.

(c) On the set Y ∈ {4,5,6} is X2 = 3, on the set Y ∈ {10,11,12} is X2 = 6. For
k ∈ {7,8,9} we have

P(X2 = 3|Y = k)) = P(X2 = 3,Y = k)/P(Y = k)P(X2 = 3,X1 = k−3)/P(Y = k) = 1
3 ·

1
6/

1
6 = 1

3

and analogously P(X2 = 6|Y = k)) = 2
3 .

k 2 3 4 5 6 7 8 9 10 11 12

P(X2 = 3|Y = k) 0 0 1 1 1 1
3

1
3

1
3 0 0 0

P(X2 = 6|Y = k) 0 0 0 0 0 2
3

2
3

2
3 1 1 1

(d) We first determine E[X2|Y ]: The sets {{Y = 4},...,{Y = 12}} are a partition of Ω,
therefore

E[X2|Y ] =
12∑
k=4

E[X2|Y = k]·1Y=k = 3·1Y ∈{4,5,6}+
(
3 · 1

3 + 6 · 2
3

)︸ ︷︷ ︸
=5

·1Y ∈{7,8,9}+6·1Y ∈{10,11,12}

For E[X1|Y ] we obtain with linearity of the conditional expectation that

Y = E[Y |Y ] = E[X1|Y ] +E[X2|Y ]

and thus,

E[X1|Y ] = Y −E[X2|Y ] = (Y −3)·1Y ∈{4,5,6}+(Y −5)·1Y ∈{7,8,9}+(Y −6)·1Y ∈{10,11,12}.
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Alternative way to calculate E[X2|Y ]: We define

f(Y ) = 3 · 1Y ∈{4,5,6} +E[X2] · 1Y ∈{7,8,9} + 6 · 1Y ∈{10,11,12}

and use the definition of the conditional expectation to show that E[X2|Y ] = f(Y ).
Integrability and σ(Y ) measurability are clear. It must therefore be shown that for
any A ∈ σ(Y ) it is true that

E[X2;A] = E[f(Y );A].

It is sufficient to check this property on the generator {Y = k},k = 4,...,12 of σ(Y ).
For k ∈ {4,5,6,10,11,12} this follows fromX2·1Y=k = 3 for k = 4,5,6, orX2·1Y=k = 6
for k = 10,11,12. For k = 7,8,9 is

E[X2;Y = k] = E[X2;Y = k,X1 = k − 6] +E[X2;Y = k,X1 = k − 3]

= E[X2;X2 = 6,X1 = k − 6] +E[X2;X2 = 3,X1 = k − 3]

= 6P(X2 = 6,X1 = k − 6) + 3P(X2 = 3,X1 = k − 3)

= 6 · 2
3 · 1

6 + 3 · 1
3 · 1

6 = 5 · 1
6

= 5 ·P(Y = k) = E[f(Y );Y = k].
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