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Tutorial 1 - Repetition of probability theory

Exercise 1 (2+2 =4 Points).
Let X > 0 be a nonnegative real-valued random variable.

(a) Assume that E[X] < co. Show that nE [In (1 + £)] — E[X] as n — oc.

n

(b) Assume that E[X] = co. Show that nE [In (1 + %)] — 00 as n — o0.

Hint: 1t might be helpful to show that n — (1 + 2)" is increasing.

Solution.

(a) From
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we see the monotonicity. Set X,, = nln (1 + %) We also note that for z > 0, the
inequality In(1 + z) < x holds. Thus, In (1 + %) < % That is, nln (1 + %) <X
(an integrable random variable which does not depend on n. Taking expectations,

s fin(14 )] <mon)

Next, we analyze the limit of nln (1 + %) as n — 0o. We can use the fact that:

lim nln <1—|—X> = X.
n

n—oo

we have:

By the Dominated Convergence Theorem, since X is integrable and dominates
nln (1 + %), we conclude:

lim E [nln <1 + X)] = E[X].

n—oo

Thus, we have:

nE {m <1 + f)] — E[X] asn— .
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(b) By applying Fatou’s lemma, we have:

liminf E [nln (1 + X>} > E [liminfnln (1 + X)] .
n—00 n n—00 n

From part (a), we know that:

n—0o00 n n—00

lim nln (1 + X) =X = liminfnln <1 + f) = X.
Since E[X] = oo, it follows that:

liér_lg)réfE [nln (1 + )] > E[X] = 0.
Hence, we conclude that:

X
nE[ln(l—i—)} — 00 asn — oo.
n

Exercise 2 (3+1= 4 Points).

(a) Let (X, )nen be an independent family of random variables such that P(X,, = —1) =
P(X, =+1) = % and let S, = X1+ Xo+...4+ X,, for any n € N. Show that
lim sup,,_, o, Sn = oo almost surely.

(b) Suppose that X and Y are random variables in £2 such that
EX|Y]=Y and E[Y|X]=X almost surely.

Show that X =Y almost surely.
Hint: Theorem 11.2

Solution.

(a) Recall that the Kolmogorov’s 0-1 law helps to clarify when sums of independent
random variables are almost sure to converge. We can set F; := o(X;), i =1,2,....
Since the (X,,)nen are independent, the above means that we have an independent
family of o-algebras (F;)i=12,... Using the Kolmogorov’s 0-1 law, we know that
Fi,F2,--+ C F independent implies T := T (Fi,F2,...) = T((c(X1),0(X2),...)
P-trivial. By definition,

T(F1,Fo,...) = ﬂ O’( U fm> and limsup S, := ﬂ U S

n>1 m>n n—reo n>1m>n

with S, = X + Xon+1 + ... + X measurable with respect to O’<Um2n fm> =

J(Um>n O’(Xm)>. Using the symmetric property of the random variables,

limsup,, ., Sn = 00 and liminf, . S, = —oo have the same probability which is
either 0 or 1. From the above, we could not have P(limsup,,_, ., S,) = 0, hence,
P(lim sup,,_,o, Sn) = 1 and so limsup,,_,, Sn = 0o almost surely.



(b) Define the difference Z = X — Y. We need to show that Z = 0 almost surely. From
the first condition, we have:

E[Z]Y] =E[X - Y|[Y] =E[X|Y]-Y =Y —- Y =0.
Using the second given condition, we have
E[Z|X] = E[X - Y|X] = E[X|X] - E[Y|X] = X — X = 0.
It remains for us to ascertain that E[Z2] = 0. Consider the following:

E[(X —Y)?) = E[E[(X —Y)}X]] = E[E[X? - 2XY + Y| X]]

E[E[X?] - 2E[XY] + E[Y?]|X]

= E[X? - 2X E[Y|X] +E[Y?|X]]
X

= E[X? - E[Y? =E[Y? - X7

If we condition on Y instead,

E[(X - Y)) = E[E[(X - Y)}|Y]] = E[E[X? - 2XY + Y?|Y]]
[E[X?] - 2E[XY] + E[Y?]]Y]
(X2 —2Y E[X|Y]+E[Y?]
Y
= E[X?] - E[Y? = E[X? -Y?

E
E

That is, we get
E[Z’ ] =E[(X - Y)’|=E[Y? - X} =E[X?-Y? =0
Therefore, X =Y almost surely.

Exercise 3 (242=4 Points).
For every n € N, let X,, be a random variable with probability density
fx(z) = nm_"_l]l[lvoo) (z).

n—oo

(a) Determine the distribution function of X, and show that X,, ——, 1.

(b) Investigate for which n the expected value of X,, exists and, if necessary, specify it.
Does the convergence from (a) also apply in £1?

Solution.

z T
(a) For x> 1, Fx, (z) = [at ™ tdt = -t = 1 —2z7% and Fx_(z) = 0 otherwise.
=

1
Thus, it follows that for € > 0,

P(|Xo—1[>e) =P(Xa>1+¢)=(1+2)"* = 0.



(b) We have

00 log:p‘ = oo for a =1,
1
E[Xa] = /a:v Ydx = ( N xl*&) 0o _ 00 fora <1
1 l—a 1 45 fora>1
It also applies for o > 1 that
Xe— 1 = E[Xa] - 1= - —1=—1_ 9
¢ £ “ Ca-1 a-1 '

Exercise 4 (1+1+1+1= 4 Points).

You roll two six-sided fair dice, where one die has the digits {1,2,3,4,5,6} and the second die
has the digits {3,3,6,6,6,6}. Let X;,i = 1,2 be the result of the ith roll and Y = X7 + Xo.

(a) Enter the probabilities P(Y = k) for k = 2,3,...,12 in the table.

k 2 3 4 ) 6 7 8 9 10 11 12
P(Y =k)
(b) Determine the expected value of Y.
(c) Enter the conditional probabilities P(X2 = z|Y = k) for z = 3,6 and k = 2,3,...,12
in the table.
k 2 3 4 ) 6 7 8 9 10 11 12

P(Xs = 3|Y = k)

P(X, = 6]Y = k)

(d) Determine the conditional expectations E[X;|Y] and E[X5|Y].

Solution.

(a) We have {Y =k} = ({Xo=6}N{X; =k —6}) U({X2 =3} N{X; =k —3}).
For k=23, {X1 =k -3} ={X; =k —6} =0 and thus P(Y = k) = 0.
For k =456, {X1 =k — 6} = () and therefore
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k=3)P(Xy=3)=¢ 3=

L
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For k =10,11,12, {X; = k — 3} = () and therefore

PY=k=PX1=k—-6P(X,=6)=2-2=1
For k =7,8,9 it is the case that
PY =k =P(X1=k—6P(Xo=6)+P(X; =k-3)P(X,=3)=2-2+1.1 =1
k 2 3 4 ) 6 7 8 9 10 11 12
PY=k)| 0 | 0 |\ % | % | % |5 |5 | 6 |5 |5 |3
There are two possibilities for the expected value:
e Calculate with the probabilities P(Y = k) that
EY] = 54+5+6)+5(7T+8+9)+5(10+11+12) = g+ T + T = 5 =8.5.
e Alternatively, calculate E[X1] = $(1+ ...+ 6) = 3.5, E[Xs] =3-24+6-2=5
and with linearity of the expected value
E[Y]=35+5=8.5.
On the set Y € {4,5,6} is Xo = 3, on the set Y € {10,11,12} is Xy = 6. For
ke {7,8,9} we have
P(Xo=3Y =k)=P(X2=3Y =k)/PY =k)P(X2=3X,=k-3)/P(Y =k) = %/%
and analogously P(X, = 6|Y = k)) = 2.
k 2 3 4 7 8 9 10 11 12
P(X,=3Y =k)| 0 0 1 : : 3 0 0 0
P(X;=6|Y =k)| 0 0 0 2 2 2 1 1 1

We first determine E[X3|Y]: The sets {{Y = 4},...{Y = 12}} are a partition of (2,

therefore

12

E[Xo|V] =) E[Xo|V =k|-ly— = 3-1ycpuse+ (3 3 + 6 3) Iyefrso+6-1yefioiniz
—_——

k=4

For E[X|Y] we obtain with linearity of the conditional expectation that

and thus,

=5

Y = E[Y|Y] = E[X;[Y] + E[X3|Y]

EX Y] =Y -E[Xo|Y] = (Y =3)-1yequs6y+ (Y =5) lyerrsor+ (Y =6)-1ycfio1,12)-




Alternative way to calculate E[X5|Y]: We define

FY) =3 1ycuse + E[Xo] - lyeqrgoy + 6 lyeqioii,12)

and use the definition of the conditional expectation to show that E[X,|Y] = f(Y).
Integrability and o(Y') measurability are clear. It must therefore be shown that for
any A € o(Y) it is true that

E[Xy; A] = E[f(Y); A].

It is sufficient to check this property on the generator {Y = k}.k = 4,...,12 of o(Y').
For k € {4,5,6,10,11,12} this follows from X5-1y_; = 3 for k = 4,5,6, or Xo-1y_;, = 6
for k =10,11,12. For k =7,8,9 is

E[X2;Y = k| =E[X2;Y =k, X1 =k — 6] + E[X2;Y =k, X; =k — 3]
=E[X2; X0 =6,X; =k —6]+E[X9; Xo =3,X; =k — 3]
=6P(Xo=6,X; =k—6)+3P(Xy=3X, =k —3)

— 2.1 1,1 1
_6'5'6—1_3'5'6_5'6
=5-P(Y =k)=E[f(Y);Y = k.



