universität freiburg

Stochastic processes

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024ws_stochproc.html https://www.stochastik.uni-freiburg.de/

Tutorial 1 - Repetition of probability theory

Exercise 1 (2+2 = 4 Points).

Let $X \ge 0$ be a nonnegative real-valued random variable.

- (a) Assume that $\mathbf{E}[X] < \infty$. Show that $n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \to \mathbf{E}[X]$ as $n \to \infty$.
- (b) Assume that $\mathbf{E}[X] = \infty$. Show that $n\mathbf{E}\left[\ln\left(1+\frac{X}{n}\right)\right] \to \infty$ as $n \to \infty$.

Hint: It might be helpful to show that $n \mapsto (1 + \frac{X}{n})^n$ is increasing.

Exercise 2 (3+1=4 Points).

- (a) Let $(X_n)_{n\in\mathbb{N}}$ be an independent family of random variables such that $\mathbf{P}(X_n = -1) = \mathbf{P}(X_n = +1) = \frac{1}{2}$ and let $S_n = X_1 + X_2 + \ldots + X_n$ for any $n \in \mathbb{N}$. Show that $\limsup_{n\to\infty} S_n = \infty$ almost surely.
- (b) Suppose that X and Y are random variables in \mathcal{L}^2 such that

 $\mathbf{E}[X|Y] = Y$ and $\mathbf{E}[Y|X] = X$ almost surely.

Show that X = Y almost surely. *Hint:* Theorem 11.2 **Exercise 3** (2+2=4 Points).

For every $n \in \mathbb{N}$, let X_n be a random variable with probability density

$$f_X(x) = nx^{-n-1} \mathbb{1}_{[1,\infty)}(x)$$

- (a) Determine the distribution function of X_n and show that $X_n \xrightarrow{n \to \infty} 1$.
- (b) Investigate for which n the expected value of X_n exists and, if necessary, specify it. Does the convergence from (a) also apply in \mathcal{L}^1 ?

Exercise 4 (1+1+1+1=4 Points).

You roll two six-sided fair dice, where one die has the digits $\{1,2,3,4,5,6\}$ and the second die has the digits $\{3,3,6,6,6,6\}$. Let X_{i} , i = 1,2 be the result of the *i*th roll and $Y = X_1 + X_2$.

(a) Enter the probabilities $\mathbf{P}(Y = k)$ for k = 2, 3, ..., 12 in the table.

k	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{P}(Y=k)$											

- (b) Determine the expected value of Y.
- (c) Enter the conditional probabilities $\mathbf{P}(X_2 = x | Y = k)$ for x = 3,6 and k = 2,3,...,12in the table.

k	2	3	4	5	6	7	8	9	10	11	12
$\boxed{\mathbf{P}(X_2 = 3 Y = k)}$											
$\mathbf{P}(X_2 = 6 Y = k)$											

(d) Determine the conditional expectations $\mathbf{E}[X_1|Y]$ and $\mathbf{E}[X_2|Y]$.