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Prelude

Modern probability theory (including statistics) is based on measure theory. This manuscript
is part of a course with the aim to introduce measure theory for students with a solid back-
round in mathematics, which aim to dive deeper into probability theory.

In various parts of mathematics, we aim to assign a set some value, and describe it as its
content, volume, etc. In probability, this value is the probability of the set. Since this concept
of assigning values to sets has the same features in many areas (e.g. if two sets are disjoint,
the volume of their union is the sum of the volumes), several areas are dealing with measure
theory.

We approach measure theory in several steps. First, in Chapter 1, we have to deal with set
systems (i.e. sets of sets), since it turns out that it leads to contradictions if we assign volumes
to all sets. Here, we will learn about semi-rings and o-fields as specific set systems. Second, in
Chapter 2, we construct measures on these set systems. We will do so by constructing outer
measures (defined on all sets) and restricting them to a o-field. Third, in Chapter 3, we will
be dealing with measurable functions and integrals with respect to measures. In probabilistic
terms, these are random variables, and their expectations. Fourth, in Chapter 4, we will
study certain subsets of measurable functions (or random variables), known as LP-spaces.
Last, in Chapter 5, we will be dealing with product spaces, which are important for the
theory of stochastic processes. Since various notions (Borel sets, compact systems) are from
set-theoretic topology, we give a repetition of the relevant terms in Appendix A.

There are various textbooks in measure theory with a focus on probability. The following
have guided me as references for the purpose of this manuscript.

Bogatchev, Vladimir I. Measure Theory. Springer, 2007

Billingsley, Patrick. Probability and Measure. Wiley, third edition, 1995

Kallenberg, Olaf. Foundations of Modern Probability Theory. Springer, third edition,
2021

Klenke, Achim. Probability theory. A comprehensive course. Springer, 2014

The present english version of this manuscript was written based on the German version
with the help of DeepL.


https://www.deepl.com/translator
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1 Set systems

Probability theory formalises the colloquially used word probable. This is (in the broadest
sense) a property of a possible outcome of an experiment. Fundamental to probability theory
is the concept of an ewvent, which is intended to describe everything that can happen in the
experiment. Events are represented by subsets of an abstract basic space, which is always
called €. The aim of this section is to assign a probability to as many subsets of €2 as possible.
This leads to the concept of a o-algebra, because these contain exactly the subsets of the base
space to which probabilities are then assigned in the next section. In other words, elements of
o-algebras will be events in the above sense. The other set systems introduced in this section
will be used to define suitable o-algebras.

1.1 Semi-rings, rings and o-fields
The notions in this section are connected as follows: For C C 2%, we have
C o-field = Cring = C semi-ring.
Some more properties of the three notions are given in table 1.
Definition 1.1 (Semi-ring, ring, o-field). Let Q be a set and O # H, R, F C 2%,

1. H is N-stable (or closed under N, or a mw-system), if (A,B € H = ANB € H). It is
called o-N-stable (or closed under o-N) if (A1, Az, ... € H =2, An € H).
It is called U-stable (or closed under U), if (A, B € H = AUB € H). It is called
o — U-stable (or closed under o-U) if (A1, Az, ... € H = U2, An € H).
It is complement-stable (or closed under complements), if A € H = A° € H. It is
set-difference-stable (or closed under set-differences), if (A,B € H = B\ A€ H).

2. H is a semi-ring, if it is (i) closed under N and (i) VA, B € H3Cy,...,C, € H with !
B\A=W;,C;.

3. R is a ring, if it is closed under U and set-differences.

4. F is a o-field (or o-algebra), if Q € F, it is closed under complements and closed under
o-U. Then, (2, F) is called measurable space.

Remark 1.2 (Relationships between the collections of sets).
1. Every ring R is a semi-ring: For closedness under N, we write for A,B € R
ANB=A\(A\B)€eR.
The second property is trivial.

2. Every o-field F is a ring: We need to understand that F is closed under set-differences.
For this, we write for A,B € F

B\A=BnA°=(B°UA)"“.

'We write AW B for AUB if AN B = 0.



C semi-ring | C ring | C o-field
C is N-stable ° o o
C is o-N-stable o
C is U-stable ° o
C is o-U-stable °
C is set-difference-stable . o
C is complement-stable °
B\A=W",C; . o o
NecC o

Table 1: For C C 2%, we list all properties for semi-rings, rings and o-fields. e means that
the respective property is a hypothesis in the definition, whereas o means that the respective
property is a result following from the definition of the collection of subsets.

Example 1.3 (Semi-rings, o-fields).
1. Semi-open intervals form a semi-ring: Let {2 = R. Then,
H:={(a,b] :a,b € Q,a < b}

1S a4 Semi-ring.
Indeed, if a; < by,a} <V, then? (a1,b1]N(a),b}] = (a1Val, b1 Ab]] and (a1, b1]\(a},b]] =
(a1,a} Abi] W (b, b1], where (a,b] =0, falls a > b.

2. Examples for o-fields: Trivial ezamples are {0, Q} and 2. (Recall that both are topolo-
gies as well; see Definition A.1.)
Yet another example will become important in Section 3.1: If F' is a o-field on &', and
f:Q— Q. Then,

o(f) ={fYA): A eF}c2® (1.1)

s a o-field on Q.
Indeed: If A, A}, AL, ... € o(f), then (f~H(A)e = f7H(A)°) € o(f) and | U2, f71(AL) =
f’l(U?f:l A%) €a(f).

We will frequently use the so-called Borel o-field (which is the o-field generated by a
topology; see Definition 1.7.

2 As usual, we write z A y := min(z,y) and = V y := max(z, y)



1.2 (Generators and extensions

On the one hand, we want to use o-fields as much as possible, since they contain the sets we can
assign probabilities to. On the other hand, often only semi-rings can be given constructively.
However, we can use the (ring or) o-field generated by a semi-ring., i.e. the smallest o-field
(or smallest ring) which contains the semi-ring.

Remark 1.4 (Generated set-systems). First, it is easy to see that the intersection of o-fields
(rings) is a o-field (ring). (For example, since all o-fields are closed under U, and if we take
A, B, elements of all o-fields, then AU B is an element of all o-fields and therefore in the
intersection. ):

Let C C 2. Then,

R(C) = ﬂ {R OC:R ring}
is the ring generated from C and

(€)= {f SC: F a—ﬁeld}
is the o-field generated from C. Apparently, R(R(H)) = R(H) and o(c(H)) = o(H).
The next lemma is shown after Example 1.6.

Lemma 1.5 (Ring generated from a semi-ring). Let H be a semi-ring. Then,
n
R(H) = { L‘_"J At Ay, ... Ay € H disjoint,n € N}
k=1

is the ring generated from H.

Example 1.6 (Ring generated from semi-open intervals). Let H be the semi-ring of semi-open
intervals from Example 1.8. Then,

R(H) = { | (anbe) a1, .. an by, by € Q,
k=1

ap < bg,k=1,...,n andak<bk+1,k:1,...,n—1}

is the ring generated from H.

Proof of Lemma 1.5. 1t is clear that R(H) is closed under N. In order to show that R(H)
is a ring, we start by showing closedness under set-differences. Let Ay,..., A4, € H and
Bi, ..., By, € H be disjoint, respectively. Then,

n m n m

i=1 j=1 i=1j=1
In order to show closedness under U of R(H), let A,B € R(H). Then, write AU B =
(ANB)W(A\B)W (B\ A) € R(H), since we already showed closedness under N and under
set-differences.

Last, note that there is no smaller ring than R(#), which contains H. Indeed, such a ring

would have to be closed under U, and clearly R(#) is the minimal set which contains H and
which is closed under U. O



Definition 1.7 (Borel o-algebra). Let (2,0) be a topological space. Then B(Q2) := o(O)
denotes the Borel o-algebra on Q. IfQ C R?, we denote by B(Q) the Borel o-algebra generated
by the Euclidean topology on R, If Q C R, then B(RQ) is the Borel o-algebra generated by the
topology from example A.2. Sets in B(S2) are also called (Borel-)measurable sets.

Lemma 1.8 (Countable base and Borel o-algebra). Let (©2,O) be a topological space with
countable basis C C O. Then, o(O) = o(C).

Proof. We only need to show that O C ¢(C). However, this is clear since A € O can be
represented as a countable union of sets from C. See Lemma A.5. O

Lemma 1.9 (Borel o-algebra is generated by intervals generated). Let
—o00,b] : b€ Q} or
]:a,beQ,a<b}
):a,beQ,a<b}

Cy ={la,b] : a,b € Q,a < b}.

b
b

Then o(C;) = BR), i =1,...,4.

Proof. The set system C3 is a countable basis of Euclidean topology on R. So, in this case,
the statement follows from Lemma 1.8.

We only show the statement for C; and Co, the statement for C4 follows analogously.
Firstly, Co := {A\ B : A,B € C1} = {(a,b] : a,b € Q,a < b} C 0(Cz) is the semi-ring
generated by C; from Example 1.3. Thus o(C;) = o(C2) and it is sufficient to show that
O'(CQ) = B(R)

Let O be as in Definition A.1.8 with = R. We show (i) that A € O implies A € o(Ca),
and (ii) A € Cp implies A € ¢(0O). It then follows that O C ¢(C2) C 0(0), i.e. 0(O) = o(Ca).
For (i) let A € O. We claim

A= U{(a, bl : [a,b] C A,a,be Q}, (1.2)

and note that the right-hand side is an element of o(C2). Here, D’ is clear. To see 'C’, we
choose x € A. Then, by definition of O, there is a € > 0 so that B.(x) C A. However, there
are also a,b € Q with a < b and x € (a,b] C B:(x). Thus 'C’ is shown and (i) follows.

For (ii) we proceed similarly; let A € C3. Then obviously

A= ﬁ (a,b+1).

n=1
Since (a,b+ 1) € O, then A € ¢(0O). O

Example 1.10 (Borel measurable sets). Of course, all countable intersections and unions of
intervals according to Lemma 1.9 in B(R). Let, for example

A =[0,3U[3,1],
Ay =1[0,5]U [, 3] U[S, SIUIS, 1],

1 2 3 6 T 8 9 18 197,720 217, 124 257, (26
A3 = 10,571 U35, 37] Ulgr, 271 U575 57] U g7, 571 U 157, 571 U (575 57 U 57, 1],



then A =(\,_, denotes Cantor’s discontinuum. This set is measurable as a countable inter-
section of finite unions of intervals. In Example 2.27 we will get to know an example of a
non-Borel-measurable set.

1.3 Dynkin systems

In measure theory, it is often necessary to show that a certain set system F is a o-algebra
and contains a semi-ring H. The Dynkin systems discussed in this section are very helpful
here. Because of Theorem 1.13 it is sufficient to show that F is a N-stable Dynkin system
with H C F. This is often easier than showing directly that F is a o-algebra.

Definition 1.11 (Dynkin system). 1. A set system D is called Dynkin system (on Q) if
(i) Q € D, (i1) it is set-difference-stable for subsets (i.e. A;B € D and A C B imply
B\AED and (ZZZ) Al,AQ,... eD andA1 QA2 gAg C ... implyU;.LozlAn e D.

2. For C C 29, we set
AC) = m{D D C Dynkin-system}.

Example 1.12 (o-algebras are Dynkin systems). 1. Every o-algebra is a Dynkin system:
Let F be a o-algebra. Then A, B € F imply A° € F and therefore Q = AU A® € F and
B\A=BnNA°eF.

2. A Dynkin system D is complement-stable, since
A°=Q\AeD

Theorem 1.13 (N-stable Dynkin systems). Let D be a Dynkin system and C C D be N-stable.
Then o(C) C D. In particular, every N-stable Dynkin system is a o-algebra.

Proof. Let A(C) be the Dynkin system generated by C (see Definition 1.11). So, we find
A(C) € D. We will show that A(C) is a o-algebra, because then o(C) C o(A(C)) = A(C) C D.
For showing that A(C) is a o-algebra, it suffices to show that A(C) is N-stable. Then, since
A(C) is complement-stable, writing AU B = (A° N B°)¢, we see that A\(C) is U-stable. Hence,
for Ay, As, ... € M(C), we find o2, A = U2, Ui, Ai € A(C).

So, it remains to show that A, B € A(C) imply AN B € \(C): If A, B € C, this is clear due
to the N-stability of C. For B € C we set

Dp:={ACQ:AnBe ()} DC.

Then Dp is a Dynkin system since (i) Q € Dp, (ii) for A,C C Dp we have ANB,CNB € \(C)
and if A C C we find ANB C CNB, thus (C\A)NB=(CNB)\(ANB) € A(C) and (iii)
for Ay, Asg,... € Dp we have A1 N B, A2 N B,... € A(C) and with A; C Ay C --- we have
ANBC ANBC -, thus (Ufj;lAn) nNB= (Uf;lAnt) e \(0).

Since C C Dp and Dp is a Dynkin system, we find that A(C) C Dp. This means that
A e XC) and B € C imply AN B € A(C). We now set for an A € A\(C)

By:={BCQ:ANnBeXC)}.

As above, we show that B4 is a Dynkin system with C C B4. Therefore, A(C) C Ba. In
particular, for A, B € A(C), we find AN B € A(C), i.e. A(C) is N-stable. This concludes the
proof of the first assertion. The second assertion follows from setting C := D. O



1.4 Compact systems

In topology, compact subsets of an underlying set play an important role; see Appendix A.
Here, we introduce an important connection between compact sets and measure theory. The
resulting compact systems play an important role in the proof of Theorem 2.10. Here it is
shown that the o-additivity of the set function follows from the additivity of a set function
and an approximation property with respect to a compact system.

Definition 1.14 (Compact system). A N-stable set system K is called compact system (on
Q) if o2 Kn =0 with K1, K»,... € K implies that there is a N € N with ﬂﬁ;l K, =

Example 1.15 (Compact sets). Compact sets form a compact system: Let (£2,7) be a metric
space and O the topology generated by r. Then every N-stable K C {K C Q : K compact} is
a compact system.

Indeed: let ﬂzozl K, = 0. Then both Ky and L,, := K1 N K,, C K are closed forn=1,2,...
according to Lemma A.8 and because of the compactness of K1 there is an N with ﬂfj:l K,=10
according to Proposition A.9.

Lemma 1.16 (Extension of compact systems). Let K be a compact system. Then
n
Ku Z:{UKi:Kl,...,KnEK,HGN}
i=1

s also a compact system.
Proof. 1t is clear that Ky is N-stable. Let Ly = U;nzll K},Lg = U;njl KJQ, € Ky with
ﬂfyzl L, # 0 for all N € N. We have to show that ()72, L, # (. For this, we use induction

over N to show the following:

For every N € N there are sets K1,...,Ky € K with K, C L,, n=1,...,N,
such that for all k € Ny we have K1 N---N Ky N Lyy1 N---N Lyyg # 0.

Let N =1 and k € Ny arbitrary. Since 24 L, = Uiy (K} N LR Ln) # 0, there is a

n=1
j € {1,...,m1} such that K]l N ﬂ:;]i L, #0. Set Ky := K]l, and the assertion is shown for
N =1.
For the induction step, assume the assertion holds for N — 1 and any k € Ny. Recall that
Ly = U;n:]\{ KJN for K{V, .. ,K,],\{N € K. Thus, according to the induction hypothesis,

my
Km~--mKN_m(UK}V)DLN+1H---QLN+k
j=1
my
:UKlﬂ---ﬂKN_lﬁKJJ-VﬂLN+1ﬂ-~-ﬂLN+k#Q).

7j=1
Thus there is a j, so that K1 N--- N Ky_1 ﬂK]NﬂLNHﬂ~--ﬂLN+k # () for all k € N. Set
Ky =K JN , which completes the induction step.

If we set k = 0 in the above assertion, we see that there are K1, Ko,... € K and K,, C L,
n € N with ﬂf:;l K, # 0 for all N € N. Since K is a compact system,

0# () En C () Ln
n=1 n=1

and the assertion is shown. ]



2 Set functions

By a set function, we mean a function m : A C 2% — R. The idea is that m(A) for A € A
describes the volume of A. Here, volume might be an actual volume in space, or something
more abstract. In probability theory we think of m(A) as the probability that A occurs.
(Mostly, we write P for the set function.) For any such set function, some requirements
seem natural, irrespective of the meaning of volume. For example, the empty set (no spatial
volume, or an event that never occurs) should be assigned wvolume 0, or m should behave
countably additive, see (2.1). In probability theory, {2 consists of all possible outcomes of an
experiment, so a natural requirement is m(€2) = 1. In other words, the probability that there
is any outcome of the experiment is 1.

The concept of the probability measure is central to probability theory. As it turns out,
measures must be defined on o-algebras (so usually, A is a o-algebra) so that the requirement
of countable additivity can be met. In this section we give the most important steps to
construct such measures. In Analysis 3, the Lebesgue measure was not introduced, which
follows along the same lines. However, note that large parts of Analysis are dealing with
Q) C R%. In probability theory, however, outcomes of experiments might be elements of much
larger spaces. When observing a randomly changing quantity (e.g. the position of a particle
in space, or a stock price), we might need a probability measure in C(]0, 00),RY) (the set of
continuous functions X : [0,00) — R).

2.1 Measures and outer measures

We will now consider functions p : C — R, if C is a semi-ring, ring or c-algebra. Most
important for probability theory is certainly the concept of a probability measure, which
describes the special case p(2) = 1.

Definition 2.1 (Measure and outer measure). For some F C 2, we call any u: F — Ry a
set function.

1. The set function p is called finitely additive if for disjoint Ay, ..., Ay, € F with\4;_; Ax €
F,

M( G‘J Ak) = Zn:M(Ak)' (2.1)

It is called sub-additive if for (any, not necessarily disjoint) Ai,..., A, € F with
UZ:I Ak € .7:,

n

u( U Ak) <> u(Ag). (2.2)
k=1 k=1

2. A mapping i : F — Ry is called o-additive if (2.1) also holds for n = co. It is called o-
sub-additive if (2.2) also applies for n = oo. It is called monotonic if for any A, B € F
with A C B we find pu(A) < p(B).

3. If u(Q) < oo, then u is called finite. If there is a sequence Q1,$Qs,... € F with
U2, Q= Q and () < 0o for alln=1,2,..., then p is called o-finite.

10



4. Let F be a o-algebra and p : F — Ry. If p is o-additive, then p is a measure (on F)
and (2, F,p) is a measure space. If u(€2) < oo, then p is called finite measure and if
w(Q) =1, then p is called a probability measure or a probability distribution or simply
a distribution. Furthermore, (Q, F, 1) is then called a probability space.

5. Let (2,0) be a topological space and p a measure on B(O) (the Borel o-algebra, see
Definition 1.7). Then the smallest closed set F with u(F¢) = 0 is called the support of

1.

6. A o-subadditive, monotone mapping p* : 2% — R, is called outer measure if u*(0)) = 0.
A set A C Q is called p*-measurable if

u(E) = p(ENA)+ p(En A% (2.3)
for all E C Q.

7. Let F be N-stable and IC C F a compact system. Then p is called inner K—regular if
forall Ae K
p(A) = sup p(K).
KsKCA

Example 2.2 (Examples of set functions). 1. We will often deal with set functions on
H = {(a,b] : a,b € Q,a < b} from Ezample 1.3. For example, u((a,b]) = b —a
defines an additive, o-finite set function on H. We will extend this function uniquely to
the Borel o-algebra B(R) = o(H) (see lemma 1.9), which will give the Lebesgue measure,
see corollary 2.18.

2. Another frequently used example is the Dirac measures. If w' € ), then

b {29 ~ {01

14 — 1{w’€A}
is a (probability) measure.
8. If g = 6w, 1 € 1, then p:= ), 1 0w, is called a counting measure.

4. 1If pi,i € I are measures on a o-algebra F. Then for a; € Ry,i € I, Y, aju; is also
a measure. Fxamples of this are well known from the lecture Elementary probability
theory. There, for example, with F = 2N and &, as in 2.

o

Ak
HPpoi(y) = Z € ’YE - O
k=0

the Poisson distribution on 2N0 with parameter ~,

o0

Hgeo(p) *= Z(l - p)k_lp -0k
k=1

3We will see later that this smallest set indeed exists uniquely.

11



the geometric distribution with success parameter p and

n

n _
LBnp) =D (k>p’“(1 —p)"* 5,

k=0
the binomial distribution B(n,p).

Remark 2.3 (Contents and premeasures). Finite additive set functions are often called con-
tent, o-additive set functions that are not defined on o-algebras are often called premeasures.
The measures defined on a Borel o-algebra that are reqular with respect to the compact sets
from the inside are called Radon measures. We will not use these terms.

Lemma 2.4 (Unions written as disjoint unions). Let H be a semi-ring, and A, Ay, ..., A, € H.
Then, there are m € N and B, ..., By, € H pairwise disjoint and A\, A; =, B

Proof. We proceed by induction on n. If n = 1, the assertion is true by the definition of a
semi-ring. Assume the assertion holds for some n, i.e. there is m € N and By, ..., B, with
A\UL, Ai = WL, Bj. Then, we can write B; \ Apt1 = Hi”zl Cy for CY, ..., C,]Cj € H. Then,

write

n+1 m kj
A\ UA - (A\UA) \ Apig = UB]-\A”H =y cl.
=1 j=1k=1
This concludes the proof, since the latter disjoint union is over a finite set. O

Lemma 2.5 (Set-functions on semi-rings). Let H be a semi-ring and p : H — [0, 00| additive.
Then, m is monotone and sub-additive. In addition, u is o-additive iff it is o-sub-additive.

Proof. We start by monotonicity. Let A,B € H with A C B and C,...,Cy € H with
B\ A= Lﬂle C;. Therefore, we can write pu(A) < p(A4) + Zle w(C;) = u(B).

Next, we claim that for A € H and Ay, ..., A, € H disjoint with ;.7 A; C A, we have
> i1 #(A;) < m(A). For this, write A\ W, 4; = ;. B; as in Lemma 2.4. Then,

=u<L+JAiL+JL+JBj)=Zu +Zu >Zu (2.4)
i=1 j=1 i=1

For sub-additivity, let Aq,...,A, € H with |J;_, A; € H. We need to show M(U?:1 Ai) <
Zz 1 wu(A;). For i =2,...,n, we write

Q SICVENE

with C} as in Lemma 2.4. So, since L-lj],?:l Ci C A eH,

ki
+ Ci
1k=1

||C:
E:

7

k;

M( U Ai) =Y ) w(Ch) <D (4.
i=1 k=1k i=1

=1k=1

Now, we show that p is o-additive <= it is o-sub-additive.

12



’=>": Here, just copy the proof of sub-additivity, but using n = oo. For <=’ let A, Ao, ... € H
be pairwise disjoint with A = 472, A; € H. Since p is monotone and for any n € N, we have

Wiy A © A (hence 3 i, p(A;i) < u(A) by (2.4)),

> n(A) = SupZu u(A) < (A
i=1 neN— i=1
by o-sub-additivity. So, o-additivity follows. O

Lemma 2.6 (Extension of set functions on semi-rings). Let H be a semi-ring, R the ring
generated by H from Lemma 1.5 and p an additive function on H. Define i on R by

Al 4) =3 w4
=1 i=1

for A1,..., A, € H disjoint. Then p is the only additive extension of u on R that coincides
with p on H. Moreover, i is o-additive if and only if u is o-additive.

Proof. We only need to show that ji is well-defined. All other properties follow by definition
of fi. So, let Ay,..., Ay, By,...,B, € H with {"; A; = L+J;.L:1 B;. Since

n m
:L-ﬂAiﬂBj, Bj:L-_I-JAiﬂBj,

j=1 i=1
we write using additivity of n
m m n n m n
S ) = 30 S M4 B = 33 i1 By) = Y (B,
i=1 i=1 j=1 j=1i=1 j=1

Proposition 2.7 (Inclusion-exclusion principle). Let u be an additive set function on a ring
R and I be finite. Then for A; € R, i € I, it holds that

n(Ua) = (0 4)

i€l JCI j€d
In particular, if I ={1,2},
p(Ar U Ag) = p(Ar) + p(Az2) — p(A1 N Ag)
and if I ={1,2,3},

(A1 U Ap U Ag) = p(Ar) + p(Az2) + p(As)
— [L(Al N Ag) — ,u(Al N Ag) — ,LL(AQ N Ag) + ,u(Al NAs N Ag)
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Proof. We use induction over |I|. For |I| = 2 the assertion is clear because A; U Ay =
A1 W (A2 \ A1) and (A2 \ A1) W (A N Az) = Ay. Assume it applies to all I with |I| = n, and
consider some I with |I| = n + 1. Without loss of gnerality,we write [ = {1,...,n+ 1}. By
additivity of u

n+1

o(Ua) = p(JA:0 An)

=1

_ Z (—1)WI+ (A AU 4) )
0#£JC{1,....n} jeJ

= (DM (i) + () 49)) = () 450 Anin)))
0£JC{1,...,n} jeJ jeJ

=)+ > CO () 49) e (450 4ni)))

0AJC{1,...,n } jeJ jeJ

_ Z 1)1+ (ﬂA ) O

Jg{1,...,n+1} jeJ

2.2 o-additivity

The finite additivity of set functions is a requirement that can often be verified. The situation
is different with o-additivity. We will now look at alternative formulations for o-additivity.

Proposition 2.8 (Continuity of from below and from above). Let R be a ring and p: R —
R, be additive. Consider the following properties:

1. p is o-additive;
2. p is o-subadditive;

3. p is continuous from below, i.e. for A, A1, Aa,--- € R and Ay C Ay C ... with A =
UnZ | Ay we have p(A) = limy, o0 (Ay);

4. W is continuous from above in (), i.e. for Ay, Ag,--- € R, u(A1) < 0o and Ay 2 Ay D
with (2 An = 0 we have lim,_,o pu(A,) = 0.

5. 1 is continuous from above, i.e. for A, Ay, Ag, -+ € R, u(A1) < oo and Ay 2 Az D
with A = (), A, we have p(A) = limy, o0 1(Ay).

Then,
l. <<= 2. «<—= 3. —= 4. <— b.

Furthermore, 4. = 3. holds if p(A) < oo for all A € R.

Proof. 1.<<2. follows from Lemma 2.6, since R is a semi-ring.

1.=3.: Let u be o-additive and A, Ay, Ay, -- € R as in 3. Then, with Ag = 0,

ZMA \Ap-1) = lim ZMA \Ano1) = lim p(Ay).

n=1

14



3.=1.: Let By, By, -+ € R be pairwise disjoint and B = ¥~ B, € R. Then, for Ay =
65:1 Bn,
p(B) = lim u(Ay) = Zu

N—oo

4.=5.: Let A, Ay, Ag,--- € R be as assumed in 5. Further, let B,, := A, \ A. Then By, By, ...
n—oo

fulfills the conditions of 4., so ju(By) ——= 0, i.e. u(An) = pu(Bn) + u(A) 2225 pu(A).
5.=4.: is clear.

3.=4.: Let Ay, Ay,--- € R be as assumed in 4. Set B, := A; \ A,,n € N. Then B =
A1, By, B, --- € R fulfills the conditions of 3, and thus pu(A;) = limy, e u(Bp) = (A1) —
limy, 00 14( A7), from which 4. follows.

4.=3. if u(A) < oo for all A € R. Let A, A1, Ag,--- € R be as assumed in 3. Set B,
A\ A, € R,n € N. Then ;2 B, =0, i.e. 0 = limy_y00 u(Bp) = p(A4) — limy 00 M(A
from which 3. follows. Here, the last equality uses the condition that p(A) < oco.

O

We now want to take a closer look at set functions which are inner regular with respect to
a compact system. For measures, inner regularity with respect to the system of all compact
sets (which is a compact system due to Example 1.15) is fulfilled on Polish spaces, as the
next result shows. This will play an important role in the theory of weak convergence, an
important concept in any course on probability theory.

Lemma 2.9. If (Q,0) is Polish and p is a finite measure on B(O), then for every e > 0
there exists a compact set K C Q with u(Q\ K) < e.

Proof. First, note that compact sets are closed according to Lemma A.8, so all compact sets
are in B(O) and thus (2 \ K) is well-defined.

Let € > 0. Since 2 is separable (see Definition A.1), there is a countable set {wy,wa, ...} C
Q which is dense. In particular, for all n, we find Q = (2, By, (wg). Since p is continuous
from above (Proposition 2.8),

= (@) U Bijn(wr)) = Jim (92 G By ju(wr)).
k=1 k=1

Thus there is an N,, € N with ,LL(Q \ U]kvﬁl Bl/n(wg)> < ¢/2". Now, consider

oo Np

A= ﬂ U By jn(wk)-

n=1k=1

By definition, this set is totally bounded (i.e. for all radii ¢ > 0. it can be covered by a
finite number of balls of radius € > 0. Hence, according to Lemma A.9, A is relatively
compact. Furthermore, (recall that A is the closure of A, which is compact according to
Proposition A.9),

n n

u@\ ) < @\ 4) < U (24 U Butn)) < 3 (@) U Bunlen)) <=

n=1 k=1 n=1 k=1
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This proves the assertion. ]

Theorem 2.10 (Inner regular additive set functions are o-additive). Let H be a semi-ring
and i : H — Ry finite, finitely additive and inner regular with respect to a compact system
K CH. Then u is o-additive.

Proof. As in Lemma 2.6, the set function p can be uniquely extended to the ring R(H)
generated by H (see Lemma 1.5). Furthermore, according to Lemma 1.16, the system K C
R(H), which consists of unions of sets in K, is also compact. Choose ¢ > 0 and A =
Ui, Ai € R(H) with Ay,..., A, € H, then there are compact sets K1, ..., K, € K C H with
(A;) < p(K;) + £ for i = 1,...,n. This means that the extension of p to the ring R(H) is
inner regular with respect to Iy, since

,u(iQAi)zg,u( <Z,u )+5— (ng)jLs

This means that p is Ky-regular from the inside. o, without loss of generality, we assume
that H is a ring and K is U-stable. We now show that p is continuous from above in §.
This is sufficient according to Proposition 2.8 because of the finiteness of y on H. Let
Ay, Ag,--- € H with A} D Ay D -+ and (), Ay, =0 and € > 0. Choose K1, Ky, - € K
with K, C A,,n € N and

(An) < p(Ky) +e277

Then, (o2, Kn € (oo, An = 0, which means that there is a N € N with ﬂivzl K,, = () since
K is a compact system. From this,

N N N
Av=ayvn (U Ks) = UJAav\ Ko € | 40\ Ko
n=1 n=1 n=1

Due to the subadditivity and the monotonicity of u for all m > N, it follows that

w(Ap) < p(An) < Z,UA\K <EZ2”<6
This shows the assertion, since € > 0 was arbitrary. O

2.3 Uniqueness and extension of set functions

Suppose an additive set function p : H — Ry is given, where H is a semi-ring. We are
concerned with the extension of p to a measure (i.e. an o-additive set function) to o(#). The
aim is to establish conditions when the measure is already uniquely given by p. The result is
summarised in Theorem 2.16. See also Table 2 for an overview of how the results of previous
chapters relate to this.

Proposition 2.11 (Uniqueness of measures). Let F be a o-algebra and p,v : F — Ry
measures. Let H be a N-stable set system such that o(H) = F and ply,v|y are o-finite.
Then p = v if and only if u(A) = v(A) holds for all A € H.

Corollary 2.12 (Uniqueness of probability measures). Let F be a o-algebra and p,v : F —
[0, 1] be probability measures. Let H be a N-stable set system with o(H) = F. Then u = v if
and only if p(A) = v(A) holds for all A € H.

16



Lemma 2.5 | Theorem 2.10 | Theorem 2.16

w additive o o

1 finite )

u o-finite o

u defined on semi-ring o o o

w o-additive o/e ° o

w o-subadditive e/o

w inner regular wrt a compact system o

w extends uniquely to o(H) °

Table 2: Lemma 2.5 and theorem 2.10 play significant roles in the application of
Carathéodory’s extension theorem. In the table, the o’s represent the assumptions of the
theorem and e the conclusions. As can easily be seen, Carathéodory’s extension theorem
applies, for example, if p is finite and inner regular with respect to a compact system.

Proof. Wlog, 2 € H, since p(2) = v(2) = 1. This means that p and v are in particular
o-finite and the statement follows from Proposition 2.11. O

Proof of Proposition 2.11. The ’only if’ direction is clear. For the ’if’ direction, we set for
A e H with u(A) =v(4) <

Dy:={BeF:u(AnB)=v(ANB)} D H.

We show that D4 is a Dynkin system. It is clear that 2 € D 4. Furthermore, if B,C € D4 and
B C C,then u((C\B)NA) =pu(CNA)—u(BNA) =v(CNA)—v(BNA)=v((C\B)NA),
i.e. C\B € Dy. If B1,By,--- € Dwith By C By CB3C---€Dyand B = Uzolen e F,
then because of Proposition 2.8,

w(BNA)= ILm uw(B,NA)= ILm v(B,NA)=v(BnA),

which implies B € D4. This means that D4 is a Dynkin system for all A € H with u(A4) < oo
and thus, due to Theorem 1.13, F = o(H) C Dy. Let Q1,Q9,--- € H with Q,, T Q and
w(2y), v(Qy) < o0o,m=1,2,... Then for alln =1,2,... it holds that u(BN¢,) = v(BNQ,)
for all B € F. This implies B € F, since y and v are continuous from below, thus

w(B) = lim u(BNQy,) = lim v(BNQ,) =rv(B),

n—o0 n—oo
ie. u=w. 0

The following theorem explains why the notion of a o-algebra is so important.
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Theorem 2.13 (u*-measurable sets are a o-algebra). Let u* be an outer measure on 2 and
F* the set of p*-measurable sets; recall from (2.3). Then F* is a o-algebra and p := p*|z+ is
a measure. Furthermore, N := {N C Q: u*(N) =0} C F*.

Remark 2.14 (Null-sets and properties almost everywhere). Sets N C Q with u(N) =0 are
called (p-)null sets. We further say that A C Q (u)-almost everywhere holds if A€ N. If u
s a probability measure, we say almost surely instead of ’almost everywhere’.

Proof of Theorem 2.13. We first show that F* is a g-algebra. It is clear that
p(E) = p*(0) + p*(E) = p*(EN Q) + p*(ENQ),

ie. ) € F*. It is also clear that A¢ € F* follows from A € F*. Next, let us show that F* is
N-stable. For A, B, E C Q, note that (ENANB°)W (ENA°) = EN(ANB)°. So, using the
sub-additivity of u*, for A, B € F*,
p(E)=p"(ENA) +p*(ENA) =p*(ENA)NDB)+u*((ENA)NB°) + u* (EN A
> (EN(ANB)) +p (EN(ANB)Y) > p'(E),
and we have shown AN B € F*. Now let A, As,--- € F* be disjoint and B, = ¥;_; A
and B = o2 By, = 5o Ak. Since F* is N- and complement stable, it is also U-stable, so

By, By, ... € F*. We further show that p*(E N By,) =Y ,_, #*(E N Ag) applies to all E C Q.
For n =1 this is clear, and if it applies to n, it follows that

n+1
= (ENBy)+p* (ENApyr) Z“ (ENA).

Therefore, since p* is sub-additive and monotone,
oo
(ENB) <Y p(ENA) = Tim Z/‘ (EN4y) = lim p*(ENB,) < u*(ENB),
k=1

thus

p(ENB)= lim p*(ENB,) = D pr(ENA). (2.5)
k=1

Next, we show that B € F*, which implies that F* is a o-algebra. For any E C (), since
Bi,Bo, ... € F*, (25) holds,

pH(E) = lim p*(ENBy) + p" (BN By) > p*(EN B) + p*(EN BY) > p*(E).

So, B € F* follows. Furthermore, it follows from (2.5) that p* is o-additive, i.e. p = p*|z« is
a measure.
Now let N C Q be such that p*(N) = 0 and E C Q. Then, due to the monotonicity of
p(ENN)=0,ie.

p(EONS) +p (ENN) 2 p*(E) 2 p(ENN) = p*(ENN®) + p*(ENN)

and therefore N € F*. O
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Proposition 2.15 (Outer measure generated by finite additive set function). Let H be a
semi-ring and i : H — Ry additive. For A C Q) let

*(A) ;== inf GQ),
SRR

where
U(A) :={G CH at most countable, A C U G}
Geg

is the set of at most countable covers of A and p*(A) = oo if U(A) = 0. Then p* is an outer
measure.

Proof. The mapping p* is monotone (by definition) with p*(#) = 0 (note that ) € H and,
using finite additivity of u(0) = (@) + w(0), from which u(@) = 0 follows). To check the
o-sub-additivity of u*, we choose A1, As,--- C Q. Forn =1,2,... and € > 0 there are sets
Gur € H, k € K,, at most countable with

An g U Gnka
ke,

pr(An) = > (Grg) — 27"
kekn

Since Un—; 4n € Un=1 Urek, Gnk, and by the monotonicity of u* and the definition of 1%,
oo oo oo
w(UA) D03 wlGu) <o+ 3 1 (An).
n=1 n=1kek, n=1
With € — 0 the o-sub-additivity of p* follows, i.e. u* is an outer measure. O

Theorem 2.16 (Extension of a g-additive set function). Let H be a semi-ring and p: H —
Ry o-finite and o-additive. Furthermore, let i = p*|z« with p* from Proposition 2.15 and
F* from Theorem 2.13. Then o(H) C F* and fi|s(3) is the only measure that agrees with p
on H.

Proof. First we note that y is both finitely additive and o-subadditive according to Lemma 2.5.
According to Proposition 2.15, p* is an outer measure and according to Theorem 2.13, F* is
a o-algebra.

Step 1: p* coincides with p on H: Let H € H. Choose K at most countable and Hy € H,
ke K with H C Uke,C Hj, and

pr(H) > p(Hy) — e

kek

Then, because of H = Jcx Hr N H and the o-sub-additivity of p

pH(H) < p(H) <Y p(HyNH) < p(Hy) < pf(H) + ¢,
kel ke
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where we have used the o-additivity of u in the second '<’. With ¢ — 0, we find p*(H) =
pu(H).

Step 2: o(H) C F*: Let £ C Q,H € H and ¢ > 0. Choose K at most countable and
Hy e H,k € K with E C e Hr and p*(E) > >, cx #(Hy) — €. Then, due to o-additivity
of u

p(E) +e = S p(Hy) = S p(He 0V H) + 3 p(Hy 0 HS) > 105(B O H) + (B 0 HE).
kel kel kel
With ¢ — 0 and the o-sub-additivity of p*, p*(E) = p*(ENH) + pu*(E N H®), i.e. H is
p*-measurable and therefore H C F*. Since F* is a o-algebra according to Theorem 2.13,
o(H) C F~.

Step 3: Uniqueness: According to Theorem 2.13, 11 is a measure. Since g coincides with p
on H, which in turn coincides with p* on H, we find fi|,(3) = p*|5(0). Let v : o(H) — Ry
another measure that is equal to  on H. Since p = [i|3 was assumed to be o-finite, v|y is also
o-finite. With Proposition 2.11 it follows that i = v applies to o(H) due to the N-stability
of H.

Now all assertions are proven. O
The above theorem only makes it clear that o(#H) C F*. The next result shows how sets in

F* differ from sets in o(H).

Proposition 2.17 (Characterisation of F* from Proposition 2.15). Let H be a semi-ring,
i H — Ry o-finite and o-additive, u* as in Proposition 2.15 and F*,N as in Theorem 2.13.
Then

F*={A\N:Ae€o(H),N e N}.

In particular, the right-hand side is a o-algebra.

Proof. 2’ On the one hand we have o(#H) C F* according to theorem 2.16, on the other
hand, there is N’ C F* from Theorem 2.13. This implies 'D’, since F* is complement stable.

'C’: Let B € F*. Further, let Qq,Qg, -+ € H with u(Q2,) <oo,n=1,2,... and Q = [J,2; Q.
Let e1,e9,--- > 0 with ¢; | 0. For B, := BN, and i = 1,2, ..., we choose K,; at most
countable, A,z € H,n e N, k € K,;, B, C Ukelcm- A and

:UJ*(Bn) > Z M(Anik) — 27",
kElCm

Clearly, A; == U2, Urek,, Ani € 0(H), B C A;foralli = 1,2,...and A;\B = U2, Urex,, Anir\
B,,. This means that

pr(AN\B) <Y 27 =¢.
n=1
Set A==, Ai € 0(H). Then BC A, N:=A\BCA,\Bforaln=1,2,.. and
p*(N) = p*(A\ B) < limsup p*(A4; \ B) < limsupe; = 0.

1—00 1— 00

Thus the assertion follows, since B = A\ N. O]
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2.4 Measures on B(R)

From the lecture Stochastik 1 you already know probability distributions with density. These
are measures on B(R), the Borel o-algebra on R (recall from Definition 1.7). We will apply
the general theory developed in the last chapters to characterise such measures.

Proposition 2.18 (Lebesgue measure on R). There is exactly one measure A on (R, B(R))
with

AM(a,b)) =b—a (2.6)
for a,b € Q with a <b.

Proof. Consider H = {(a,b],[a,b), (a,b),[a,b] : a,b € Q,a < b}, which is a semi-ring with
o(H) = B(R). We define A on H by

A(a,b]) = A([a, b)) = Al(a, b)) = A([a,b]) = b —a.

(Note that X is the only monotone extension of A to H.) Then, X is clearly o-finite. It is
K ={la,b] :a,b€ Q,a <b} C H a compact system according to Example 1.3. Furthermore,
A is inner K-regular and thus o-additive according to Theorem 2.10. Hence, Theorem 2.16
gives the only extension of A to o(H) = B(R). O

Proposition 2.19 (Characterisation of o-finite measures on R). A function p : B(R) — R
is a o-finite measure if and only if there is a non-decreasing and right-continuous function
G :R — R with

u((a,8]) = G(b) - Gla) (2.7)

Jor a,b € Q with a <b. If G :R — R is another right-continuous function satisfying (2.7),
then G = G + ¢ for some c € R.

Corollary 2.20 (Characterisation of probability measures on R). A function p : B(R) —
[0,1] is a probability measure if and only if there is a non-decreasing and right-continuous
function F': R — [0, 1] with lim,—,_~ F(a) =0, limy_,o, F'(b) =1 and

((a,b]) = F(b) — F(a) (2.8)
for a,b € Q with a <b. In this case, F is uniquely defined by p.

Proof. The assertion follows directly from Proposition 2.19, since the limit condition uniquely
defines c. n

Proof of Proposition 2.19. '=": Let p be a o-finite measure on B(R). Define G(0) := 0, and
G(z) := p((0,z]) for x > 0 and G(z) := —u((x,0]) for x < 0. Then G is right-continuous,
non-decreasing, and (for example for 0 < a < b) p((a,b]) = u((0,5]) — u((0,a]) = G(b) — G(a).

'«<=": The proof is similar to the proof of Proposition 2.18. Let H = {(a,b] : a,b € Q,a < b}
be the semi-ring of half-open intervals with ends in rational numbers. We show that (2.7)
defines a o-additive set function g on H. Then, using Theorem 2.16, we see that p can
be uniquely extended to a o-finite measure on o(H) = B(R). Let aj,as,... be such that
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UnZ i (ant1,an] = (a,b] € H. Without loss of generality, a; > a2 > ... Then b = a; and
an ~=>% a. Due to the right continuity of G,

p(a,b) = G(b) = G(a) = G(a) — lim G(ay) = Gan) = Glant1) Eyb%m%
n=1

and we have shown the o-additivity of p.
Now, let G be another function for which (2.7) applies. Then for all a € R,

G(b) = G(a) + p((a,b]) = G(b) + G(a) - G(a),
and the assertion follows with ¢ = G(a) — G(a). O

Definition 2.21 (Lebesgue measure and distribution functions). 1. The uniquely defined
measure A from Corollary 2.18 is called one-dimensional Lebesgue measure.

2. For a probability measure p on B(R), the function F from Corollary 2.20 is called
distribution function.

Example 2.22 (Some distribution functions). Let f : R — R be piecewise continuous, and*
ffooo f(x)dx = 1. As known from the lecture Stochastik 1, such a function is called a density.
On the one hand, such density functions define a distribution function by means of

_ /_ g; f(a)da

On the other hand, each of these distribution functions defines a probability measure in a
unique way due to Corollary 2.20. We will look at distributions with densities in more detail
in the Radon-Nikodym theorem (see section 4.4).

As already known,

. 0, x<0,
Foon(@) = [ lpglada={z o<wsl, (2.9)
- 1, z>1

is the distribution function of the uniform distribution on [0,1]. Further, for x >0

Feppn (7) = / 110,00) (a)he Mda=1—e (2.10)

—00

18 the distribution function of the exponential distribution with parameter A. Furthermore,

(a — p)?
F —_— =& 2.11
N(W,g)(x \/ﬁ/ exp 52 )da (x) ( )

is the distribution function of the normal distribution N(u,c?) with the expected value p and

the variance o2.

“We assume here that the Riemann integral fab f(x)dx is known. (See also definition 3.22.) We will get to
know another integral term, the Lebesgue integral, in Chapter 3.

22



2.5 Image measures

Let u be a measure on some c-algebra F. If we transform the base space by means of a
function f : Q — €, you can define a measure corresponding to the transformation on €,
the so-called image measure. Let Q :=[0,1], F = B([0,1]) and f : u — —logu. We will then
see that the image measure of g (o) under fis pexp(1)- We first recall the situation from
example 1.3.2 and define the image measure.

Definition 2.23 (Image measure). If (2, F, u) is a measure space, (¥, F') is a measurable
space and f : Q — Q' such that o(f) C F for o(f) from (1.1). Then we define a set function
fapp: FF =Ry by

fep(A) = p(fHA)) =u(fed), AeF.

Here f.p is also called image measure of p under f.
If 1 is a probability measure, then fyu is also called distribution of f (under p).

Remark 2.24 (Measurable functions). If o(f) C F as in the definition above, we say that
[ is measurable (with respect to F/F') . This concept will be discussed further in the next
section.

Proposition 2.25 (Image measure is a measure). Let (2, F,u), (', F), f:Q — Q and
f«p as in Definition 2.23. Then, f.u is a measure on F'.

Proof. 1f A}, A, ... € F' are disjoint, then
far( W 4) = (1 (W 4)) = (W) = 3w ) = 3 fo )
n=1 n=1 n=1 n=1 n=1

This means that f,u is o-additive and the assertion is shown. O

Example 2.26 (Some transformations). 1. For Q = [0,1], {[0,b) : 0 < b < 1} is a N-
stable generating system of B([0,1]). Let u = pyo,) be the uniform distribution on
[0, 1] with distribution function Fyy(o1y from (2.9) and f :u— 1 —wu. Then fuu = p,
because
fen([0,0)) = M(ffl([oa b)) = p([l =b,1]) = FU(O,l)(l) - FU(O,l)(1 —b)=0.

Thus, p and f.p agree on a N-stable generator and the statement follows with Proposi-
tion 2.11.

2. Let Q =R, fy:x— x+y for ay € R and X the Lebesgue measure from Corollary 2.18.
Then (fy)«A = A, because

(fy) (@, 8]) = A(fy([a,0])) = M[a = y,b—y]) = b —a.
We say that the Lebesgue measure is translation invariant.

3. Let Q = [0,1],Q = Ry, each equipped with Borel’s o-algebra. Further, let p = Hu(0,1)
with distribution function Fy o1y from (2.9) and f : x —% log(x) for a A > 0. Then
feblt = Hexp(r), where pepn) has the distribution function Fopy) from (2.10). This is
because for x > 0

Fon([0,2]) = (£ ([0,2])) = ple 1)) = 1 — e,
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Example 2.27 (Example of a non Borel-measurable set (Vitali’s set)).

So far, there has not yet been an example of a set that is not in B(R). We will now construct
such a set. It is known as Vitali’s set. For this purpose, we define an equivalence relation on
Rbyx~y < y—x € Q. With respect to this equivalence relation, R decomposes into
equivalence classes of the form {x + q : ¢ € Q}. We select a number from [0,1] from each
equivalence class, and put all such numbers into the set V. (It should be noted here that this
selection is made using the axiom of choice and is therefore not a trivial step). Further, now
forqe Qn[-1,1]

Voi={z+q:2 eV}

Then [07 1] - Lﬂqe(@ﬁ[fl,l} VZI < [_172]

Assume that the quantity V' is measurable. Then the quantities V, would also be measurable
and, due to the translation invariance of the Lebesgue measure from Ezample 2.26.2, A\(Vy)
would not depend on q. So let A\(V;) =: a > 0. Furthermore, due to the monotonicity of the

Lebesgue measure
1< > AVy)= Y ac<3.
qeQN[—1,1] qeQN[—1,1]

Howewver, this is not possible, neither for a = 0 nor for a > 0. Because of this contradiction,
V ¢ B(R) must therefore apply.
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3 Measurable functions and the integral

In this chapter, let (Q, F, 1) be a measure space. We can now use the measure p to measure
the content of sets of F. The aim of introducing the integral is to weight the elements of Q2
differently in such a measurement. This weighting is carried out with a function f : Q2 —
R. Such functions must fulfil the minimal requirement of measurability. The result of this
weighting leads to the concept of the integral.

3.1 Measurable functions

We already know what a measurable set (with respect to the o-algebra F) is, i.e. A C Q is
(F—)measurable iff A € F. We will extend this notion to functions f : @ — @' (for some
measurable space (2, F'). Note that for A € F, there is the indicator function w — 14(w),
which is the simplest form of a measurable function in Definition 3.3. We will call the linear
combination of such indicator functions a simple function, which will be measurable as well.
These are of particular importance due to Theorem 3.9, which shows that every non-negative
measurable function — see below — can be approximated from below (in the sense of pointwise
convergence) by simple functions.

Remark 3.1 (Notation). Let Q. be sets, f:Q — Q' and I be arbitrary.

1. We write f(A) :== {f(w) : w € A} for A C Q and f~1(A") = {f7H) : ' € A’} for
A C Q. We note that the following rules apply to A', A, C Q' ieI:

FAy) =@y s (N4) =Nt s (UJa) =Us
icl iel el el
However, some caution is required, since for A, A; € Qi € I only f(U;e;r An) =

Uicr f(A:), in general, however, f(A°) # (f(A))¢ and f((;er Ai) # Nicr f(Ai).

2. For C C 2% we write analogously
F7HE) = (A A e e,

Lemma 3.2 (Pre-image of o-algebras). Let ) be a set and ( ’) a measurable space,
f:Q—Q and ' C F with o(C") = F'. Then o(f~4(C")) = f~Yo(C")). In particular,
f~YF") is a o-algebra on Q.

Proof. *C’: From Remark 3.1, it is clear that f~!(c(C’)) is a o-algebra. This means that
o(f7HC) Ca(fHa(C)) = fH(a(C)).
’D’: We define ~

F={Aea): [THA) ea(f7HC))} Ca(C).
Then, again due to Remark 3.1, F” is a g-algebra and ¢’ C F' C ¢(C’). Thus, F' = o(C’). For
A’ € o(C'), we find f1(A") € o(f71(C")), which is equivalent to f~1(a(C’)) C o(f~1(C")). O
Definition 3.3 (Measurable functions). Let (2, F) and (¥, F') be measurable spaces and
Fi0-Q.

1. The function f is called F/JF -measurable if f~1(F') C F. The o-algebra f~1(F")
(recall from Lemma 3.2 that this is in fact a o-algebra) is called the o-algebra (on )
generated by f and is denoted o(f).
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2.

If (2, F,P) is a probability space and X : Q — Q' measurable, then X is called an
Q/-valued random variable. The image measure X, P from Definition 2.23 is called the
distribution of X.

3. If (U, F) = (R,B(R)), then f is called a real-valued function. If f is measurable

/.

according to F/B(R), we say that the function f is (Borel-)measurable.

IfQY =R and f = 14 for A CQ, then f is called indicator function. If f = > 7_, ckla,
forci,...,cn € R pairwise different and A1, ..., A, C Q, then f is called simple.

Example 3.4. Let (2, F) be a measurable space.

1.

The vast magjority of functions f : @ — R that one can imagine are (Borel-)measurable.
For example, the identity f : w > w is measurable, since f~1(F) = F.

Let (2,0) and (22.0") be topological spaces and f : Q — Q' continuous. Then f is
B(Q)/B(Y)-measurable.
Indeed, by continuity we have that f~1(O") C O. Therefore, using Lemma 3.2,

FHBEY) = fH(0(0) = o(f7H(O) C 0(0) = B(Y).

It is important to see that for many measurable functions f it is true that o(f) C F,

=

see for example the next example.

. A function f : Q — {0,1} is measurable if and only if f~1({1}) € F. In this case,

o(f) ={0, {1}, (FH({1})e, 3

Let F = B(R). To specify a non F-measurable function, you have to make the same
effort as to construct a non Borel-measurable set. For example, the function 1y is not
measurable for the Vitali set V' from Example 2.27.

Example 3.5 (Random variables). Let (E,r) be some metric space (equipped with the Borel
o-algebra).

1.

Let X be an E-valued random wvariable on a probability space (Q, F,P), and Y an
E-valued random variable on (', A, Q). If X.P = Y.Q, we say that X and Y are
identically distributed and write X ~ Y. Note, however, since X and Y need not be
defined on the same probability space, it does not make sense to write something like
X =Y. If u is a measure on B(E) and X,P = u, we write X ~ p.

Let (X;)icr be a family of random variables on a probability space (2, F,P). Then, the
distribution of ((X;)ier)«P is called the joint distribution of (X;);es.

Lemma 3.6 (Properties of measurability). Let (2, F), (', F") and (2", F") be measurable
spaces.

1.

2.

If ¢ C F with F' = o(C'), then f : Q — Q is F/F -measurable if and only if
fHe) CF.

If f:Q — Q is F/F -measurable and g : Q' — Q" is F'/F"-measurable, then go f :
Q0 — Q" is F/F"-measuarble.
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3. Let (Q,0) and (2, 0") be topological spaces, f: Q — Q' continuous and F = o(O) and
F' = o(0') the Borel o-algebras. Then f is F/F'-measurable.

4. A real-valued function f (i.e. f:Q — R) is measurable (with respect to F/B(R)) if and
only if {w: f(w) <z} €F foralzeQ.

5. A simple function f =, cxla, with pairwise differentcy, ..., ¢, € Rand Ay, ..., A, C
Q is measurable if and only if A1,..., A, € F.

Proof. 1. the ’only if’ direction is clear. For the ’if” direction, we use Lemma 3.2 and obtain
fYF) = fYo(C)) = a(f~HC)) C o(F) = F. This means that f is F/F'-measurable.

2. We write directly (go f)"YF") = f~Yg 1 (F")) C f~F') C F, which already shows the
assertion.

3. By definition of Borel’s o-algebra, O’ is a generator for B({)). Since f is continuous
(ie. f7HO) C0O), f7HO') C O C o(0) = B(Q) follows. According to 1. f is therefore
B(2)/B(2')-measurable.

4. We use 1 with C = {(—o0, 2] : x € Q}: If Q' = R, then according to Lemma 3.2, B(€') is
generated by C. Therefore, a f is measurable if f~1(C') = {{w: f(w) <z} : 2 € R} C F.

5. Let A := (LJk:1 Ak) € F. Then f~ (B(R)) = {A UUjes A5 Uses Ay T S {1, ,n}},
from which the assertion follows. O

Lemma 3.7 (Algebraic structure of measurability). Let (2, F) be a measurable space.

1. Let f,g:Q — R be measurable. Then fg, as well as af+bg for a,b € R are measurable.
In addition, f/g is measurable if g(w) # 0 for all w € .

2. Let fi, fa, -+ : Q — R be measurable. Then,

sup fn, inf f,, limsup f,, liminf f,
neN neN n—00 n—00

are measurable as well. If it exists, lim,, .o fn 1S also measurable.

Proof. 1. Consider v :  — R2, defined by (w) = (f(w),g(w)). It is easy to see that 1
is F/B(R?)-measurable. Furthermore, (x,y) +— ax + by and (z,y) + zy are continuous on
R and (z,y) — x/y on R x (R\ {0}), i.e. measurable according to Lemma 3.6.3. Thus the
assertions according to Lemma 3.6.2 follow.

2. We only show the measurability of sup,,cy fn. The other statements then follow using

inf f, = —sup(—fn), limsup f,, = inf sup fx, liminf f,, = sup inf fj.
neN neN n—00 neN k>n n—00 neN k2>n

We write, for x € R, according to Lemma 3.6.4

{w:supfn(w) §x} = ﬁ {w : fn(w) Sx} eF

neN

and the assertion is shown. O

Corollary 3.8 (Measurability of positive and negative part). Let (2, F) be a measurable
space and f : Q — R. Then f is measurable if and only if fT := fV 0 and f~ := (—f) VO
are measurable. Then |f| is also measurable.
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Proof. Note that f = f* — f~ and |f| = f* + f~. Thus the assertion follows from

Lemma 3.7.2. 0
Theorem 3.9 (Approximation with measurable functions). Let (2, F) be a measurable space
and f: Q — Ry measurable. Then there is a sequence fi, fa,---: Q — R of simple functions
with® f, T f.

Proof. We write for® w € Q,n € N
fa(w) =nA27"2" f(w)],

and note that f, 1 f holds by construction. Furthermore, w +— [2"f(w)] is measurable
according to Lemma 3.6.4 if f. O

3.2 Definition

The construction of the integral of a function f according to a measure will take place in
several steps. Let (2, F, 1) be a measure space. For the integral of f :  — R with respect
to p we use different synonymous notations, namely

ulf] = / fu = / F () (). (3.1)

The integral is first defined for simple functions fand then (see Theorem 3.9) by approximation
for general non-negative measurable functions. The integral for (not necessarily non-negative)
measurable functions is then defined by the integral of the positive and negative parts; see
Definition 3.17.

The application in probability theory is as follows: Recall the notion of a probability space
(Q, F,P) from Definition 2.1. Here, any measurable X : Q@ — R is called a random variable
(recall from Definition def:measurable). Then, we use the notation

E[X] = P[X],
where P[X] is defined as in (3.1) and denote this by the ezpectation of X (with respect to P).

Definition 3.10 (Integral of simple functions). Let (2, F, ) be a measure space and f =
Yo ckla, a simple function with ci,...,¢pm > 0,41, ..., Ay € F. Then,

plf] = /fdu = cpi(An)
k=1

is the integral of f with respect to pu.

Remark 3.11 (Integral is well-defined). We must make sure that the above integral is
well-defined. Let f = Y ", di1p, be another representation of f with dy,...,d, > 0 and
Bi,...,B, € F. Then,

Ri(Ar) =D ) erp(ArNB) =Y > dip(AxNBy) =Y dip(By),
=1

k=1 k=1 [l=1 k=11=1

so the integral of simple functions is well-defined.

5Anadog;ously to ’}’, we write for x,z1,22,--- € R that z, T z if z;1 < z2 < ... and z, 7%, 2. For
functions f, f1, f2, - : Q@ = R, fn T f means that f,(w) 1 f(w) for all w € Q.
Shere [z] for € R is the largest integer smaller than z, so [x] := sup{n € Z: n < z}.
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Lemma 3.12 (Simple properties). Let f,g be non-negative, simple functions and o > 0.
Then”

plaf +bgl = ap[fl +bplgl, < g= plf] < plgl-
Proof. Clear. O

Example 3.13 (The integral of indicator functions and the Riemann integral). Let (2, F, u)
be a measure space and A € F. Then f =14 is a simple function and the following applies

according to definition 3.10. It should be noted that the function f =14 no longer has to be
piecewise continuous. (Let A = Q or A be the Cantor continuum considered in Example 1.10).
Therefore, it is not clear that the function 14 is integrable in the sense of Riemann.

Definition 3.14 (The integral of measurable, non-negative functions). Let (2, F,u) be a
measue space and f : Q) — Ry measurable. The integral of f with respect to p is given by

wlf] == /f(w),u(dw) = /fdu = sup{ulg] : g simple, non-negative, g < f}. (3.2)

Remark 3.15 (The integral as an extension). From Lemma 3.12 it is clear that the definition
of plf] for simple, non-negative functions f from Definition 3.10 and Definition 3.1/ is the
same. The above definition is therefore an extension of u[f] to the space of non-negative,
measurable functions.

It is also important to note that, according to Theorem 3.9, each of the functions occurring
in Definition 3.14 can be approximated (pointwise) by simple functions. In particular, the
supremum is in (3.2) is over simple functions g which are arbitrarily close to f.

Proposition 3.16 (Properties of the integral). Let (2, F, ) be a measure space and f, g, f1, fo, -+ :

Q) — R, measurable. Then the following applies:

1. If f < g, then p[f] < plg].

2. If
ot f, then plfa] T ulf].

We say that the integral obeys monotone convergence.
8. If a,b >0, then plaf + bg] = ap[f] + bulg].

Proof. 1. is clear from the definition of the integral. 2. From 1., it is clear that u[fi], u[fe], -..
is increasing. In particular, lim, o p[fn] exists. We need to show lim, oo p[fn] < p[f] as
well as p[f] < limp o0 p[fn]. First, since f1, fo,... < f,

lim p[fn] = sup p[fn] < plf].

Second, it is sufficient to show that

nlgl < sup 1l fn] (3.3)

"For f,g:Q — R, we write f < g if f(w) < g(w) holds for all w € Q.
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for all simple functions g < f. Let g = > ;- cxla, < f for disjoint sets Ay,..., A, and
Cly...y6m >0. Fore >0andn=1,2,... let B :={f, > (1—¢)g}. Since f, T fand g < f,
U,—, BS, = Q for all € > 0. Therefore

plfn] > pl(1 —e)glp:] = Z (1 —e)epu(Ar N B;)
k=1

m

%N (1= )kl Ar) = (1= 2)plg).
k=1

Since € > 0 was arbitrary, (3.3) follows.
For 3., let f1, 91, f2, 92, ... besimple functions with f, T f and g, T g. Then, af,+bg, 1 af+bg
and it follows

plaf +bgl = lim plafn +bgn] = lim ap[fa] + bplga] = ap[f] + bulg]
from 2. because of Lemma 3.12. O

We can now define the integral for measurable functions. First, we note that f T f7 < |f| for
any f:Q — R. In particular, if f is measurable with u[|f|] < oo, then p[f™], u[f~] < oco.

Definition 3.17 (Integral of measurable functions). Let (£, F, ) be a measure space and
f:Q — R measurable. Then f is said to be p-integrable if u[|f|] < co and we define

1= [ sntdo) = [ faui=uls*) = uls ) (3.4)
We also set B

L) = {f: Q=R pllfl] < oo}
For A € F we also write

ulf, Al == /Afdu: [ f1a].

Remark 3.18 (Extension of the integral and LP-spaces). 1. If at most one of the two terms
plfT] or plf~] is infinite, we continue to define the integral u[f] using (3.4). In other
cases, the integral remains undefined.

2. The function spaces LP(u) := {f Q—R:ul|flF] < oo} p > 0, will play a special role
i Section 4.

3.3 Properties of the integral

We first establish some properties of the integral. These are, for example, monotonicity and
linearity. We will also see that the integral of a function does not change if it is modified on
a null-set; see Proposition 3.21.

Proposition 3.19 (Simple properties of the integral). Let (€2, F, u) be a measure space and
f,g € LY(1). Then, the following holds:

1. The integral is monotone, i.e.

f < g almost everywhere = wlf] < ulgl.
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2. As a special case of 1., since —f, f <|f],
[l f1] < wll f1)-
3. The integral is linear, so if a,b € R, then af +bg € L (i) and
plaf + byl = ap[f] + bulgl.

Proof. All properties follow from Proposition 3.16.1 and 3, and the definition of the integral
for measurable functions. O

Proposition 3.20 (Substitution theorem). Let (2, F, 1) be a measure space, (', F') a mea-
surable space, f : Q — Q' measurable and f.p the image measure of f from Definition 2.23.
Then for g € LY(fop) it is true that go f € LY(n) and

plg o f1 = fenlgl.

Proof. 1t is sufficient to show the assertion for simple, non-negative functions g. The general
case then follows by means of approximation by simple functions. Let g = > | ¢l AL with
A e F'. Thengo f=>", cklyea, and

plgo f1 = axn(f € Ay) =D cnfup(Ay) = foplg):
k=1 k=1

O]

Proposition 3.21 (Integrals and properties almost everywhere). Let (2, F, 1) be a measure
space and f : Q — Ry measurable.

1. Itis f =0 almost everywhere iff u[f] = 0.
2. If ulf] < oo, then f < oo almost everywhere.

Proof. 1. Let N :={f > 0} € F. '=": Since u(N) = 0, we find f < oo - 1y, so because of
Proposition 3.16.2,
0 < p[f] < ploo, Nl = lim p[n, N]=0.
n—oo

For <’ let Ny, :={f > 1/n} and thus N,, T N and nf > 1y, i.e.
0= ulf] = Lu(N,).

This means that pu(N,) = 0 and therefore u(N) = pu(UJ,~; Nn) = 0 by o-sub-additivity of p.
For 2., let A :={f = oo}. Since flf>, > nlfsy,

n—o0

#(A) = plla] < pllysn] < Gulfilpsn] < ulf] — 0.
This means that pu(f = c0) =0, i.e. f < oo almost everywhere; see Remark 2.14. O

To conclude this section, we show the relationship between the (Lebesgue) integral and the
Riemann integral.
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Definition 3.22 (Piece-wise constant function and Riemann integral). Let f : R — R be a
piece-wise constant function, i.e.

o0

f(z) = Z aj]‘[xjfl,itj)(x) (3.5)

j=—o00

with vj_1 < xj,j € Z, where a; € R,j € Z. Some f : [a,b] = R (with a < b) is called
Riemann-integrable if \[| f|] < oo and there are piece-wise constant functions fit, fi, fo s f5 5
with f;7 < f < ff and \[f; — f7] =22 0. The Riemann integral of f is then defined by
Mf]. (In particular, the Riemann integral and Lebesgue integral then coincide.

A function f : R — R is called Riemann-integrable if flx is Riemann-integrable for all
compact intervals K C R and \[f1[_, )] converges. This limit is then the Riemann integral
of f with respect to A.

Proposition 3.23 (Riemann integrability). Let f : [0,00) — R have a discrete set of jump
points. Then f is integrable, Riemann-integrable, and

)\ = lim Zf ynk xnk T, k— 1) (36)

n—o0

. —
forO=x,0 < ... <z, =t withmaxy [T, — Ty p—1] 7% 0 and any Trk—1 < Ynk < Tn k-

Proof. 1t is sufficient to show the assertion for continuous f. Otherwise, f can be broken
down into the continuous pieces. It is also sufficient to show the assertion for f with compact
support K. Since f is uniformly continuous on K, first choose ¢, | 0 and z,0 < ... < 251,
such that K C [0, Znk,] and maxy, ,  <y<a,, [f(Znk—1) — f(y)| < en. Now it is easy to
find piecewise constant functions f,;7 and f, such that f, < f < fF and ||f,;F — [, ]| < en.
Integrability and Riemann-integrability follows. The formula (3.6) is valid due to the uniform
approximation of the function f. O

Example 3.24 (Differences between Riemann and Lebesgue integral). 1. We start with a
function that is Lebesgue-integrable but not Riemann-integrable. Let f = 1(g1jnq. Then
Loy < fT for every piece-wise constant function f+ > f and f~ < 0 for every piece-
wise constant function f~ < f. In particular, f is not Riemann-integrable.

2. As can be seen from the definition of the Riemann integral, every piece-wise constant
function is simple, so every Riemann-integrable function is also Lebesgue-integrable.

The situation is different for functions on unbounded domains. Let f be given by f(t) =
(=yrea+t

R Then
2n n n
(—1)k+1 1 1 1 1 1 1
Al Lo 2nl ; k 23 1" kz_l 2k —1 2k ; (2k — 1)2k

and we see that the limit is finite, thus f is Riemann-integrable. However, the following
applies

= 1
Al = Z o=
So, according to Definition 3.14, f is not Lebesgue-integrable.
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3.4 Convergence results

You may ask whether it is really so important that you can integrate more functions with
respect to the Lebesgue integral than with respect to the Riemann integral. After all, most
applications involve Riemann-integrable functions. However, there is another advantage of
the Lebesgue integral, which we will now discuss. In calculus, the following convergence result
for the Riemann integral is frequently given:

Theorem 3.25 (Riemann integral convergence result). Leta,b € R witha < b, and f, f1, fa, ... :
[a,b] = R be piecewise continuous. If f,, ~——» f uniformly, then (using | for the Riemann
integral)

/: folz)de =25 /abf(x)d:c.

As you see, this result is concerning the interchange of limits limits and integrals, which
requires a uniform convergence in this case. For convergence results with respect to the
Lebesgue integral, however, we need much weaker conditions for the exchange of integral and
limit. The most important of these are the theorem of monotone convergence and the theorem
of dominated convergence.

Theorem 3.26 (Monotone convergence). Let (§2, F, 1) be a measure space, fi, fo,-- € L (1)
and f: Q — R measurable with f, T f almost everywhere. Then,

Jim p[f] = plf],
where both sides can take the value co.

Proof. Let N € F be such that u(N) = 0 and f,(w) T f(w) for w ¢ N. Set g, := (fn —
f1)1ne > 0. This means that g, T (f—f1)1ne =: g and with Proposition 3.19, Proposition 3.21
and Proposition 3.16.2,

pulfn] = nlfi] + plon] === ulf1] + ulg] = plf)-

O]

Theorem 3.27 (Lemma of Fatou). Let (2, F, ) be a measure space and fi, fa,---: Q — Ry
measurable. Then,

lim inf p[f] > p[lim inf f,].
Proof. For all k > n, fi > infy>, f; and thus, for all n,
inf > plinf
inf plfi] = plinf fol
by Proposition 3.16.1 Therefore, with n — oo
lim inf o[ f] = sup inf ulfil = i‘;}g“[ggi fi] = pllim inf f,]

by monotone convergence, Theorem 3.26, since infy>,, fi T sup,cy infi>y, fi = liminf,, o fn.
O
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Theorem 3.28 (Dominated convergence). Let (£, F, 1) be a measure space and f, g, f1, fa,- -+ :

Q — R measurable with |f,| < g almost everywhere, lim, o fn, = f almost everywhere, and
g € LY(i). Then,

lim pulfu] = plf]-
Proof. Without loss of generality, |f,| < g and lim,,_,~ f = f holds everywhere. (Otherwise,
restrict to a set of full measure.) We use Fatou’s lemma and g — f,,,g + f > 0, i.e.
plg + f1 < Timinf plg + fo] = plg] + liminf p[f,],
plg — f] <liminf plg — fo] = plg] — limsup p[f,].

n—oo

After subtracting u[g],

plf) < Timinf pf,] <Timsup p(fo] < p(f].

n—oo

Example 3.29. 1. Fatou’s lemma does not require that any of the f, is integrable. We
now give an example to show that in Fatou’s lemma "<’ rather than =’ holds in general.

Let A be the Lebesgue measure and f, = 1/n (i.e. in particular, f, constant), n =
1,2,.... Then f, 10, but

liminf po[f] = 00 > 0 = p[0] = pfliminf f,].

2. In the theorem of dominated convergence, the condition that |f,| < g and g € L () is
necessary. For example, let \ be the Lebesgue measure on [0,1] and f, = n - Lio,1/m)-

Then sup,ey fn(z) =sup{n:z < 1/n} = [%}8. So there is no g € LY(\) with f, < g.
Moreover, lim,_~ fr, = 0 almost everywhere (since {0} is a null-set) and
nlgglo ,U/[fn] =1#0= ﬂ[nlg{}o fn]
The situation is different for fr, =n-1jg1/,2). Here,
sup fn(z) = sup{n : x < 1/n*} = [i} <L—' (x)
D Jn = sup MRS = \/5 < \/E =g .

neN

On the one hand, g € LY()\), so dominated convergence applies. On the other hand,
limy,, oo frn = 0 almost everywhere and

Jim plfp] = lim 5= 0= p[0] = p limf,].

8With [z] := sup{n € Z : n < x} we denote the rounding function.
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4 LP-spaces

Throughout the following section, let (€2, F, 1) be a measure space. We will now deal with the
set of measurable functions f :  — R satisfying u[|f|P] < co. We will recognise the resulting
function spaces £P(u) as normed, complete spaces (Proposition 4.8 and Remark 4.4), which
also leads to a new concept of convergence. Furthermore, the space £2(u) will play a special
role. It is equipped with a scalar product (namely (f, g) := u[fg]), so general statements are
available here, such as the Riesz-Fréchet’s theorem (Proposition 4.11). We will use this to
characterise o-finite measures with density by the Radon-Nikodym Theorem (Corollary 4.17).

4.1 Basics

We have already mentioned the spaces £P(u) in Remark 3.18. By defining the integral in the
last section, we can now take a closer look at them. In particular, we show the important
Holder and Minkowski inequalities; see Proposition 4.2. Note that the notation ||.|| in (4.1) is
reminiscent of a norm. As we will discuss in Remark 4.4, it is almost true that £P, equipped
with |[|.||, for p > 1, is a normed space.

Definition 4.1 (LP(p)-spaces). Let 0 < p < co. We set

LP = LP(n) == {f : @ = R measurable with || f||, < oo}

1£1lp = (ullFPDY?, 0 <p<oo (4.1)

and

[ flloo := Inf{K = u([f| > K) = 0}.

On the spaces LP, p > 1 we now show a triangle inequality, the Minkowski inequality. It
should also be noted that the Holder inequality in the special case p = ¢ = 2 is also called
the Cauchy-Schwartz inequality.

Proposition 4.2 (Hélder’s and Minkowski’s inequality). Let f, g be measurable.

1. Let 0 < p,q,r < 0o such that%+%: L Then,

T

Fallr <Ifllpllglly — (Holder inequality) (4.2)

2. For1 <p < o0,

F+gllp < fllp +l9llp- (Minkowski inequality) (4.3)

Proof. We start with the proof of Holder’s inequality. In the case p = oo or ¢ = oo, the
statement is clear, so let p,q < oo. If either ||f||, =0, ||f||, = oo, ||gllq = 0 or ||g]|q = o0,
the statement is clear as well. Let f,g > 0 and 0 < ||f]|p, ||lg]||; < oo and
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Then, we have to show that ||f§]|, < 1. Due to the convexity of the exponential function

r_ T T TP T4
(zy)" = exp (Fplogz + Lqlogy) < TaP + Ty,

and thus
17311 = ul(F3)"] < Zulf?) + Tulg?) = 1
and the assertion follows.
To prove Minkowski’s inequality, we first note that in the cases p = 1 and p = oo the

assertion is clear. In the case 1 <p < oo, ¢=p/(p—1) and r =1/p+1/q =1 with Holder’s
inequality

1+ glly < ullf1-1f + 9P~ + ullgl - |f + 9P~
< 1£1lp - [1CF + 9~ Hlg + llallp - 11(f + )P lg
= (1f1lp +llgllp) - [1f + gl

since [|(f + 9)7lg = I(f + 9)? @ DIL* = [|(f + 9P lIP" = || + gllp™". Dividing by
| f + 9||£71 gives the result. 0

Proposition 4.3 (Relationship between L£" and L£9). Let u be finite and 1 < r < q < 0.
Then L) C L™ (w).

Proof. The assertion is clear for ¢ = 0o. So let ¢ < co. We use Holder’s inequality. It applies
to f € L4, since ||1||, < oo due to the finiteness of 1,

A1l =1L fle < A - 11 llg < o0 (4.4)

for = = % — 2 > 0, from which the assertion immediately follows. O

1
q
Remark 4.4 (LP(p) as a normed space). For every p > 0, we have ||af|l, = |a| - [|f]lp
for a € R. Together with Minkowski’s inequality (which we have only shown for 1 < p <
o0), this means that LP(u) is a real vector space. It is crucial to note that the mapping
f = |Ifllp is a pseudo-norm, but not a full norm.® Indeed, because ||f||, = 0 according to
Proposition 3.21 only implies that u(f # 0) = 0, but not that f = 0, we have f # 0 with
I|fllp = 0. In the following, we will therefore identify functions f and g if f = g applies p
almost everywhere. (More precisely, we introduce equivalence classes, where for f € LP, the
set {g € LP : f = g almost everywhere} is the equivalence class of f.) According to the above,
({ equivalence class of f: f € LP},||-||p) is a normalised space. We will show below that ||-||,
is complete (Proposition 4.8), so (LP,||-||p) is even a Banach space for every 1 < p < oo.
However, we will not make the distinction between f € LP(u) and its equivalence class in the
sequel.

Remark 4.5 (Counterexample for o-finite p). We stress that Proposition 4.3 does not hold
if p is not finite. For example, let A be the one-dimensional Lebesgue measure and f : x
%-1x>1. Then f € L2(N), but f ¢ L1(N).

9Tf V is a real vector space, a mapping || - || : V — R is called norm if (i) ||z|| = 0 iff z = 0, (ii)
lla - z|| = |a| - ||z|| for all « € R and @ € V, and (iii) ||z + y|| < ||z|| + ||ly|| for all z,y € V. Then the pair
(V|| - |]) is called a normed space. If (z) fails, || - || is called pseudo-norm.
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4.2 LP-convergence

We have seen in the theorem of dominated convergence (Theorem 3.28) that for a sequence
of functions that converges almost everywhere, their integrals often converge as well. The
LP-convergence considered here now assumes convergence of integrals. We will see that the
resulting notion of convergence means that every Cauchy sequence (with respect to ||.||,), see
Definition 4.1) converges (Proposition 4.8).

Definition 4.6 (Convergence in the p-th mean). A sequence fi, fo,... in LP(u) converges
to f € LP(u) iff
ﬁ
1fa = fllp == 0.

We then also write f, D20 e f-

Proposition 4.7 (Convergence in £P and in £?). Let u(Q) < oo, 1 < r < ¢ < oo and
Fofisfar e € LU f fo "0 f, then also fr, “—5pr f.

Proof. The assertion is clear for ¢ = 00, so let ¢ < co. From (4.4) we have ||f—gl|, < ||f—gllq,
from which the assertion already follows. O

Proposition 4.8 (Completeness of £P). Let p > 1 and fi, fo,... be a Cauchy sequence in
LP. (That is, for every e > 0 there is N € N such that ||fn, — fmllp < € for all m,n > N.)

n—oo

Then there is an f € LP with ||f, — f||[, —— 0.

Proof. Let €1,e2,... be summable, e.g. &, := 27". Since f1, fa2,... is a Cauchy sequence,
there is an index ny, for each k with ||f,, — fullp < e for all m,n > nj;. In particular, the

following applies
o o
S s = Fullp < e < 00,
k=1 k=1

With monotone convergence and Minkowski’s inequality,

H i ‘fnk+l - fnk’
k=1

In particular > 77 |fn,,, — fu,| < 0o almost everywhere, i.e. for almost all w € €, the

sequence fp, (w), fny(w),... is Cauchy in R. Thus, there is a measurable mapping f with

frn koo, f almost everywhere. According to Fatou’s lemma

0o
< Z ank+1 - fnka < o0.
k=1

,

n—oo

1o = Fllp < ind | g = fally < S0 (L = fallp “2%% 0

e fo 2 f. O

4.3 The space L?

Recall from Remark 4.4, that £P(u) is in fact a Banach space for all p > 1. Let us consider
the special case p = 2. We define a mapping £2 x £2 — R by

(f,9) = ulfgl.
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Then (-,-) is obviously linear, symmetric and positive semi-definite, i.e. a scalar product!®

Consequently, we write f L ¢ if and only if u[fg] = 0. Using

I£11 = (1 fll2 = (f, £)?

in this section, (L2, (-,-)) is therefore a Hilbert space.

Lemma 4.9 (Parallelogram identity). Let be f,g € £2. Then

1f +gll? +11f = gll* = 211 11> + 2l|g]>.

Proof. From the definition of || - || and the symmetry and bilinearity of (-, ),

Wf+glP+If—glP=(f+a.f+a)+{f—ag.f—g) =2, f) +2g,9) =2[|f]* +2|g*
0

Proposition 4.10 (Decomposition of f € £2). Let M be a closed, linear subspace of L2.
Then every function f € L2 has an almost everywhere unique decomposition f = g + h with
geEM,h L M.

Proof. For f € £2, we define
ds := inf — .
! glél,‘ ,{Hf glll}

n—o0

Choose g1, g2, ... with ||f — gn|| —— df. According to the parallelogram identity

n—
4d?‘+||gm_gn”2 < ||2f_gm_gn”2+|’gm_gn”2 = 2Hf_gm||2+2||f_gn|’2 m)Zld?‘

Thus ||gm —gn||? LELREN 0,i.e. g1, g2,... is a Cauchy sequence. According to Proposition 4.8,
there is some g € £2 with ||g, — g|| ——= 0. Since M is closed, we find g € M as well as

|h|| = df for h:= f —g. So, for all t > 0,1 € M, due to the definition of dy,
d} < |[|h+tl|]> = d} + 2t(h, 1) + ¢*[|1]|*.

Since this applies to all ¢, (h,l) =0, ie. h L M.

To prove uniqueness, let ¢’ +h’ be a further decomposition of f. Then, due to the linearity
of M, on the one hand g—g¢’ € M, on the other hand, almost everywhere, g—¢' = h—h' 1. M,
ie. g—¢ L g—¢g'. Thismeans ||g—¢'|| = (9—9¢,9—¢') =0, i.e. g = ¢  almost everywhere. []

Proposition 4.11 (Riesz-Fréchet). A mapping F : L2 — R is continuous and linear if and
only if there exists some h € L2 with

F(f)=(fh),  fer’

Then, h € L£? is almost everywhere uniquely determined.

107f V' is a real vector space. Then a mapping is called (-,-) : V x V — R is a scalar product if (i)
(z,ay + 2z) = afz,y) + (x,2) for all z,y,2z € V and a € R (linearity), (ii) (z,y) = (y,x) (symmetry) and (iii)
(z,x) > 0 for every x € V' \ {0} (positive definiteness). The norm ||z|| := (z,z)'/? on V is defined by a scalar
product. If (V,|| - ||) is complete, then (V, (-, -)) is called an Hilbert space.
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Proof. '<’: The linearity of f — (f, h) follows from the bilinearity of (-,-). The continuity
follows from the Cauchy-Schwartz inequality using

(If = £ LR < I1f = Il IRl

'=" If F =0, choose h = 0. If F #0, M = F~*{0} is (due to the continuity of F) a closed
and (due to the linearity of F') linear subspace of £2. Choose f’ € £2\ M with the (according
to Proposition 4.10 almost everywhere unique) orthogonal decomposition f' = ¢’ + h' with
g € M and b’ L M. Since f' ¢ M, we have h # 0, and F(h') = F(f') — F(¢') = F(f") # 0.

We set b = F?}/L,), so that h” 1. M and F(h") = 1 as well as, for all f € £?

F(f = F(f)h") =F(f) = F(f)F(h") =0.
ie. f—F(f)h" € M, in particular (F(f)h",h") = (f,h") and
PUP) = b - (PO = b (1) = (f, oo,

Now, the assertion follows with h := ﬁ

For uniqueness, let (f, hy — ho) = 0 for all f € £2; in particular, with f = hy — ha

||h1 — ha||* = (h1 — ha,h1 — ha) =0,
thus h; = ho p-almost everywhere. O

Remark 4.12 (Generality of the last statements). Lemma 4.9, as well as the propositions 4.10
and 4.11 also apply if L2 is replaced by any other Hilbert space.

4.4 Theorem of Radon-Nikodym

Probability measures with density are already known from the lecture Elementare probabil-
ity 1. This concept is now taken up and embedded in the context of integrals. Let v be another
measure on J. The aim is to specify conditions when the measure v can be represented by a
density. The answer can be found in the Radon-Nikodym theorem (Corollary 4.17). It is a
special case of Lebesgue’s decomposition theorem, Theorem 4.16. This shows that for every
two o-finite measures p, v, the measure v can be (additively) decomposed into two parts: one
absolute continuous with respect to p and one singular with respect to pu. The absolutely
continuous part has a density with respect to u. First we have to explain all terms.

Definition 4.13 (Absolutely continuous measures). 1. We say that v has a density f
with respect to w if for all A € F

v(A) = plf; Al
We then write f = g—z andv = f - pu.

2. The measure v is called absolutely continuous with respect to p if all p-zero sets are
also v-zero sets. We then write v < . If both v < p and p < v, then u and v are
called equivalent.

3. The measures p and v are called singular if there is an A € F with u(A) = 0 and
v(A°) =0. We then write p L v.
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Lemma 4.14 (Chain rule and uniqueness). Let u be a measure on F.

1. Let v be a o-finite measure. If g1 and go are densities of v with respect to p, then
g1 = g2, p-almost everywhere.

2. Let f:Q— Ry and g: Q — R be measurable. Then,

(f - w)lgl = pulfgl,

if one of the two sides exists.

Proof. 1. Let Q1,Qq, -+ € F be such that Q, T Q and v(Q,,) < co. Set A, := Q,N{g1 > g2}
Since both ¢g; and gy are densities of v with respect to p,

plgr — g2; An) = 0.

Since only g1 > g2 is possible on A,,, g1 = g2 is 14, u-almost everywhere. Furthermore,

p{g1 > go} = M( U An) = 0.

neN

Analogously, p{g1 < g2} = 0 and thus g1 = go p-almost everywhere.
2. The statement is clear for ¢ = 14 with A € F. This extends step by step to simple
functions, positive measurable functions and finally to the general case. O

Example 4.15 (Known densities). 1. Some density functions are already known from the
lecture Elementary probability 1. For example, let p € R,0? € R, be

1 (x — p)?

fN(u,O’Q)(x) = W €xp ( - T)

and A is the one-dimensional Lebesgue measure. Then the probability measure fn o2y A
is called normal distribution with expected value p and variance o2. We can compute
for some X ~ N, 2 and h: x+— (v —p)/o

ptxo
POHX) <2) =P <t a0)= [ Fguon )y

= / I, (2)dz,

which shows that (X — pu)/o ~ N 1y-
For~ >0, let
fexp(’y) ((l)) = la>o- ye ',

the probability measure fexp(y) A s called exponential distribution with parameter 7.
For example, you can now use Lemma 4.1/ to calculate for some X ~ exp(7)

oo oo o0 1
E[X] = foxp(y) - Alid] = / ye adxr = —e_wx‘o +/ e Vdr = =
0 0 Y

So, we have computed the expected value of the exponential distribution for the parameter
5.
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2. Of course, there are not only densities with respect to the Lebesque measure. Let, for

example
oo
-
n=0

be the counting measure on Ny (see Example 2.2) and f : Ng — R4, given for a v >0

by
k
7
—
f(k)=e Tk
Then f - u is the Poisson distribution for the parameter v on 2Y° according to Exam-
ple 2.2.

Theorem 4.16 (Lebesgue’s decomposition theorem). Let p1, v be o-finite measures on (Q, F).
Then v can be written uniquely as

V=1V4+ Vs with Vg < W, Vs L .
The measure v, has a density with respect to u that is p-almost everywhere finite.

Proof. Since p,v are o-finite, we find Qy,Q9,--- € F with Q,, T Q and v(Qy,), u(Q) < 0.
In particular, without loss of generality, we can assume that p, v are finite measures. With
Proposition 4.7. the linear mapping

{52(u+ v) —R)
f = v|f]

is continuous. According to Proposition 4.11, there is some h € £2(u + v) with
v[fI = (u+v)[fhl, (4.5)
thus
v[f(1 = h)] = plfh] (4.6)
for each f € L2(pu+ v). If one chooses f = 1g,<q in (4.5), we find
0<v{h<0}=(u+v)hh<0 <0,

i.e. h >0 (p+v)-almost everywhere. Similarly, f = 11,1y can be used to deduce from (4.6)
that
0 < plh;{h>1}=v[l—h;{h>1} <0,

so h <1 (u+v)-almost everywhere. Now, let f > 0 be measurable and f1, fa,--- € L2(u+v)
with f, T f. With monotone convergence,

AAF(L = 1)) = lim v{fu(l = W) = lm plfuh] = p(fh,

n—o0

i.e. (4.6) applies to all measurable f > 0.
Now let E := h~1{1}. From (4.6) it follows with f = 1p that

w(E) = plh; E] = v[1 — h; E] = 0.
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We define two measures v, and vg for A € F by
ve(A) =v(A\ E), vs(A) =v(ANE),

so that v = v, + vs and vs L p. To show that v, < p choose A € F with u(A) = 0. This
means that after (4.6)
v[l —h;A\ E] = plh; A\ E] = 0.
=v(A\E)=0,1ie vy, < .
o\r is the density of v, with respect to p. Indeed, using (4.6),

Since h < 1on A\ E, v,(A

)
We claim that g := &1

ploi Al = [ AV E] = w(4\ B) = wa(4)
To show the uniqueness of the decomposition, let v = v, + vs = vy + Us for v, vy < g,
vs, Vs L p. Choose A, A € A with vs(A) = pu(A°) = vg(A) = p(A€) = 0. Then,
Vs(ANA) = Di(AN A) = 1, (A°U A°) = 7,(A°U A%) = 0
and therefore

Vo =1l qg va=1ynz v=14n7 Va="Va,

Vs =V — Vg =V — Uy = Us.
O

Corollary 4.17 (Theorem of Radon-Nikodym). Let p and v be o-finite measures. Then, v
has a density with respect to p if and only if v < u.

Proof. ’=": clear.

'<<=’: According to Theorem 4.16, there is a unique decomposition v = v, + v; with v, <
w, Vs L p. Since v < pu, vs = 0 must apply and therefore v = v,. In particular, the density of
v exists with respect to u. O

Example 4.18. In Lebesque’s decomposition Theorem 4.16 and in the Theorem of Radon-
Nikodym 4.17, the condition that p and v are o-finite cannot be omitted, as the following
example shows:

Let (2, F) be a measure space with uncountable 2 and

F:={A: A or A® countable}.

Let 1 and v be infinite measures on (2, F), given by

0, A countable, Al, A finite,
v(A) = { wu(A) = {‘ |

oo, otherwise, oo,  otherwise.

Then obviously v < . Assume there is a F-measurable density of v with respect to p. Then,
for allw e Q

0=w{w} = plfi{w}] = flwp{w}) = f(w).
Thus f =0 and v = 0 would contradict the definition of v.
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5 Product spaces

Let (€;)icr be a family of sets. Then,
Q= X Qi = {(wi)ier 1 wi € Qs}

el
is the product space of (€2;);c;. We further define the projections for H C J C I

s X Q= X Qi

ieJ i€H

as well as my = 7T{q and m; := 7y, ¢ € I. In this chapter, we will apply all the concepts
in the context of measurability. Of particular importance is the theorem on projective limits

of probability measures, Theorem 5.24, which will play a fundamental role in the theory of
stochastic processes.

5.1 Topology

We start with the definition of a topology on product spaces. In short, this topology is made
such that projections are continuous.

Definition 5.1 (Product space and product topology). If (€2, O;)icr is a family of topological
spaces, then the topology O, generated by (recall from Definition A.1.7)1!

C::{AZ‘X X Qj;iEI,AZ‘EOi}
Jelj#i
is called the product topology on 2.
Remark 5.2 (Continuity of projections). All projections m;,i € I are continuous with respect
to the product topology.
Indeed, it is
A=A x X Q€CCO
I5j#i

for A; € O;. The projection is therefore continuous (see Definition A.1.10).

5.2 Semi-rings, rings and o-algebras

Analogous to topology, the product o-algebra is just such that projections are measurable
functions.

Definition 5.3 (Product-o-algebra). If (2, Fi)ier is a family of measurable spaces, the o-
algebra

QR Fi=0E), E={Aix X Q:icl AcF} (5.1)
icl JELj#i

is called the product-c-algebra on Q := X, ; Q. If (4, F;) = (Q, F),i € I, we set Fl =
Qicr 7
H'We write A Cs B if C B and A is finite.
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Remark 5.4 (Measurability of projections). Analogous to the product topology, the projec-
tions w; are measurable with respect to ®i€] Fi. This is because for A; € F;,

mH(A) =Aix X Qe F
13j#1 iel

Lemma 5.5 (Product-o-algebra for countable products). Let I be arbitrary and (2, O;)icr a
family of topological spaces, and (2, O) the product space, equipped with the product topology
from Definition 5.1. Then @,c; B(Qs) € B(Y). Moreover, if I is countable and (4, O;)icr
a family of separable metric spaces, then B(Q) = @,;c;B(Q:). In particular, B(RY) =

R, B(R).

Proof. Let C be as in Definition 5.1, O the product topology (i.e. ¢(O) = B(f2)), and € as in
Definition 5.3 with F; replaced by B(£2;). Clearly, C C O(C) as well as C C & by definition.
In addition, £ C ¢(C) by definition of B(£2;). This leads to

Q) B(s) = 0(€) S a(C) S a(0) = B().

el

In case of a countable union of separable spaces, every set in O(C) is a countable union of
sets in C (see Lemma 1.8), leading to

O(C) Co(0), so o(O(C)) Co(a(C)) =0a(C).
Hence, all assertions are shown. O

Remark 5.6. If I is uncountable, by using countable intersections and unions, @Q;c; B(£)
only contains sets which depends on a countable number of coordinates. In contrast, o(O(B))
contains sets which arise as uncountable intersections of closed sets, which in general depend
on an uncountable number of coordinates. This shows that for uncountable product spaces, in
general @, B() € B(Q2)).

Lemma 5.7 (Products of generators/semi-rings are generators/semi-rings). Let (€2;, F;) be
measurable spaces and ) = X, ;.

1. Let I be finite and H; a semi-ring with o(H;) = F;. Then

'H::{XAZ':A@'E'H“Z'EI} (5.2)
el

is a semi-ring with o(H) = @, Fi-
2. Let I be arbitrary and H; a N-stable generator of F;, i € I. Then

HZZ{XAiX >< QithfI,AiE/Hi,iEJ}
ieJ iel\J

is a N-stable generator of @, Fi-
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Proof. For 1., let I = {1,...,d} without loss of generality. It is clear that H is N-stable.
Property (ii) for semi-rings is shown by induction over d. The assertion is clear for d = 1,
since H; is a half-ring. If it holds to d — 1, then

(A1><‘--XAd)\(Bl><‘--XBd)
:(AlX--~><Ad,1><(Ad\Bd))LH((AlX--~><Ad,1)\(BlX--~><Bd,1)) X(AdﬁBd)

The first term of the last line can be represented as a disjoint union of sets from H, since Hgy
is a half-ring. The second term can be represented as a disjoint union, since by the induction
hypothesis, (A; x --- x Ag_1) \ (B1 X -+ X Bg_1) can be represented as a disjoint union of
sets of the form Hy x -+ x Hy 1 with H; € H;,i=1,...,d— 1.

For 2. it is again clear that H is N-stable. From (5.1) it immediately follows that H C
&), Fi, therefore o(H) C &), Fi- Conversely, it is clear that for A; € F;

A; % XQjEO’({AiX XQ]AZEHZ}> gO'(H),
J#i J#i

from which @),.; F; € o(H) and thus the assertion follows. O

Corollary 5.8 (Borel’'s o-algebra on R? is generated by cylinders). Let Q = RY. For a =
(a1,...,aq),b=(by,...,by) € R we set a <b if and only if a; < b;,i =1,...,d, and with

(a,b] = (a1,b1] x -+ x (ag, bq)
the half-open cylinder. Then,

H:={(a,b] :a,b€Q,a<b}
is a semi-ring with o(H) = B(RY).

Proof. According to Example 1.3.1 and Lemma 5.7.1, H is a semi-ring that generates ®§l:1 B(R) =
B(R%); see Lemma 5.5. O

5.3 Measures and integrals

Integrals in multi-dimensional spaces are already known from calculus. We now first define
measures on product spaces and the corresponding (multiple) integrals. Fubini’s theorem
(Theorem 5.13) can then be used to interpret and analyse integrals according to measures
on product spaces as multiple integrals. For this purpose, it is necessary that the integrands
appearing in the multiple integrals are measurable. This is ensured in Lemma 5.11. In order
to be able to define measures on product spaces in sufficient generality, we first need the
concept of the transition kernel.

Definition 5.9 (Transition kernel). Let (Q;,F;),i = 1,2 be measurable spaces. A mapping
k1 x Fo — Ry is called a transition kernel from (21, F1) to (Q2, F2) if (i) for all wy € Qy,
the map K(w1,.) is a measure on Fa and (i) for all Az € Fa (., A2) is F1-measurable.

A transition kernel is called o-finite if there is a sequence a1, Qag, -+ € Fo with Qoy T o
and sup,,, K(w1,Q2,) < 00 for alln =1,2,... It is called stochastic kernel or Markov kernel
if for all w1 € Qq the map k(w1,.) is a probability measure.
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Example 5.10 (Markov chain). Let Q = {w1,...,wn} be finite and P = (pij)i<ij<n with
pij €10,1] and 377_, pij = 1. Then,

n
w(wi,.) = sz‘j “ O,
=1

is a Markov kernel from (€,2%) to (,2%). Here, P as a stochastic matriz is the transition
matriz of a homogeneous, Q2-valued Markov chain.

Lemma 5.11 (Measurability of integrable sections). Let (£, F;),i = 1,2 be measurable
spaces, k be a o-finite transition kernel from (1, F1) to (2, F2) and f: Q1 x Q2 — Ry to
F1 ® Fo measurable. Then

w1 = k(wr,)[f] = /fe(wl,dwg)f(wl,wg)

to F1-measurable.

Proof. We assume that x(w1,2) < oo for all w; € Q;. (The general case is then performed
using a sequence Qq1,Qq9, -+ € Fy with Qy,, 1 Q1.) Let

D:={Ac Fi®F:wi — k(wi,.)[14] is F1-measurable}.

Then it is easy to check that D is a N-stable Dynkin system. Furthermore, H C D, where H
is defined as in (5.2). Thus, according to Theorem 1.13, 71 ® Fo = o(H) € D C F1 ® Fo.
Therefore, w; — k(wi,.)[14] is measurable for all A € F; ® Fy with respect to Fj. This
statement can be extended immediately by using a simple function instead of 14. By mono-
tonic convergence, it then also follows that wy — k(ws,.)[f] is measurable for all measurable,
non-negative functions according to Fj. O

Theorem 5.12 (Theorem of lonescu-Tulcea). Let (Q;, F;),i =0, ...,n measurable spaces, p a
o-finite measure on Fo and k; a o-finite transition kernel of (X;;B Q, ®;;B ]—"j> to (Q4, Fi),

i =1,...,n. Then there is exactly one o-finite measure p@Q);_, ki on (X?:O 0, Qi Fi
with

n

(M®ﬁi)(z40><"'><z4n)=/ u(dwo)(/m(wo,dwl)---(/Amn(wo,...,wn1,dwn)>-~-).

i—1 Ao Ay n
(5.3)

Proof. We show the theorem only for n = 1, the general case is then done by induction.

The proof is an application of Theorem 2.16. First we establish that according to Lemma 5.7,
the set system # defined in (5.2) is a semi-ring on X['_; ;. We first show that the given
set function is o-finite on H. Namely, there is 1, 0, € F; with Q;, T Q;,¢ = 0,1 with
(Qon) < 00, k1(wo, n) < 00,m =1,2,...,wp € Qo and sup,, cq, k1(wo, 21n) =: Cp < 00.
This means that 1 ® k1 (Qop X Qin) < Cp - pu(Qon) < 00 and gy, X Qip T Qo X Q1. This means
that p ® k1 is also o-finite. If we define 1 on ‘H using (5.3), this is therefore a o-finite set
function.
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We now show that 11 is o-subadditive and finitely additive on H. For A1,..., A, € H and
A =2, A, € H, by o-subadditivity of k1 (wo,.) for all wy € Qg

i(A) = / (deo) / (w0, deor ) La (i, 1)

< Zl/,u,(dwo)/I<L1(w0,dw1)1An<w07W1> = Zlﬁ(An>

Similarly, finite additivity is shown. According to Lemma 2.5, p is therefore o-additive. From
Theorem 2.16 it now follows that there is exactly one extension of i to o(H) = Qi o(H;),
which is the one given in the theorem. O

We now deal with the measure defined in Theorem 5.12.

Theorem 5.13 (Fubini’s theorem). Let (4, F;), i, ki and p Qi ki be as in Theorem 5.12.
Further, let f : X?:o Q; — Ry be measurable with respect to Q.- Fi. Then,

/fd(,u@m) = /u(dw0)</m(w1,dwg) e <//<cn(wo, ey W1, dwy) f(wo, - - - ,wn)) )
i=0
(5.4)
This equality also applies if f : X?:o Qi — R is measurable with [ |f|d(,u R, Iii) < 00.

Proof. Consider the set function f on @, F;, given by

ﬁ:Ar—>/u(dw0)</lﬁ;1(w1,dw2)~~ (/lin(wo,...,wn_l,dwn)lA(wo,...,wn)>-~>.

You can see that f corresponds on H from (5.2) with u @), x;. Since H is N-stable, the
equality (5.4) for indicator functions follows due to Proposition 2.11. By means of linearity
of the integral, (5.4) is first extended to simple functions and then using monotonicity to
any non-negative, measurable function. Note that all occurring integrands are measurable
according to Lemma 5.11. O

Corollary 5.14 (Product measures). Let ) = X?:l Q; and H; C 2% be a semi-ring, © =
1,...,n, and p; : H; — Ry o-finite and, o-additive, i = 1,...,n. Then there is exactly one
measure (1 @ -+ @ f, on Q- o(H;) with

p1® - @ pin(Ar X - x Ap) = p1(Ar) - - pn(An). (5.5)

For a measurable function f : Q — Ry, the value of the integral does not depend on the order
of integration of the coordinates w, ...,wy, i.e. for every permutation ™ on {1,...,n},

/fdlh@"‘@ﬂn :/< (/f(wla---awn)ﬂw(l)(dwm)) "')Mw(n)(dww(n))-

This formula also applies to f: Q= R, if [|fldp @ -+ @ pp < 0.

Proof. The corollary follows directly from Theorem 5.12 and Theorem 5.13 if you set k;(wo, . . ., wi—1,.) =
wi(.) for all wo, ..., w;—1. O
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Definition 5.15 (Finite product measure). Consider the same situation as in Corollary 5.14.
Then, the unique measure 1 ® - - - ® py from Corollary 5.14 is called the product measure of

Wiy-eoy in. We also write
n

®Mi =P Q@ @ i
i=1

If (i, Hiy i) = (o, Hiy o), i =1,...,n, i.e. all spaces are equal, we also denote it by

Example 5.16 (multidimensional Lebesgue measure). 1. Let X be the one-dimenstonal Lebesgue
measure on B(R) from Proposition 2.18. Then A\®¢ is the d-dimensional Lebesgue mea-
sure.

2. Let f :R? = R be given by
Ly

f(%y):m-

Then, for every x € R

/kuwﬂawzm

since f(z,.) € LY(N) and f(z,y) = —f(x, —y). Therefore, in particular

[ ([ aansen) = [ ( [Adsey) <o

Howewver, |f| is not integrable with respect to A2 because f has a non-integrable pole in
(0,0). As this example shows, we have to be careful with multiple integrals. In particular,
it does not follow from the equality and finiteness of multiple integrals that the integrand
1s integrable.

5.4 Convolution of measures

We now consider a simple combination of product dimensions and image measure. To convolve
measures i, on B(R), we first consider the product measure p ® v. The image measure
under summation is then the convolution of u,r. We will later identify this convolution as
the distribution of X + Y if XY are independent random variables with distribution p and
v, respectively. Sometimes, for example with Poisson distributions and normal distributions,
the convolution is again a Poisson or normal distribution.

Definition 5.17 (Convolution of measures). Let 1, ..., i, be o-finite measures on B(R) and
U1 ® -+ @ Wy their product measure. Further, let S(x1,...,zp) := x1 + -+ + x,. Then the
image measure Sy(p1 @ -+ @ ) 18 called the convolution of the measures i1, ..., p, and is
denoted by p11 * -+ * by OT *_q ;.

Example 5.18 (Convolution of Poisson and geometric distributions). 1. For 71,72 > 0
let ppoi(y,) and ppoi(yy) be two Poisson distributions from Ezample 2.2. We calculate
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the convolution of the two distributions by

"2
HPoi(y1) * KPoi(y2) = Z Lin—re" (m+ry2) 112

min!
k m__k—m
_ Z o—(n+r2) 172 Ok
= m!(k —m)
k m
) (1 2 k\ s
€ Or Z %
k! =\m/) (71 +72)
= HPoi(y1+72)-

2. The geometric distribution for the parameter p € [0,1] is as well known from Ezxam-
ple 2.2. The convolution of two measures fLyeom(p) S given by

k—m—1

k
Hgeom(p) * Hgeom(p) = Z (1 - p)m_lp(l - p) p- Ok

m=2
= (k= 1)(1 = p)* % 6.
This is a negative binomial distribution for the parameters p and 2.

Lemma 5.19 (Convolution of distributions with densities). Let A be a measure on B(R),
p=fu-Aandv = f,- X for measurable densities f,, f, : R —Ry. Then uxv = f,. - X with

Fuent /fu )Fult — 5)A(ds).

Proof. The proof is a simple application of Fubini’s theorem, Theorem 5.13. O

Example 5.20 (Convolution of normal distributions). Let INGuo?) ond [, 02) be the

density functions of two normal distributions with expected value 1, po and variance o3 and

o3, respectively. Let further y := py+puz and 0? = o3+05. Then the density of the convolution
s given by

(y—p1)? (x—y—
eXp — 20_%

27‘(’\/0’102 / 201

v (y—p)o/(or0) 1 /e p< a3y ((ﬂi—ﬂ) —?J(Tla@)Q)d

2o 202 203

Mz)z)dy

2
1 o3y? + ((55_#)0%_0'1?/) ;
N m/exp(— 202 ) y
2( o2 o?
| (oy— 2@ -3 (@-w*(5-%)
= /exp(— 2 - : 2 )dy
202 202

T — 1)
:We"p(_(wu))

So, the convolution is again a normal distribution. This now has expected value i and variance

o2
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5.5 Projective families of probability measures

So far we have defined o-finite measures on finite product spaces. This is not sufficient for
the probability theory to be discussed later. To understand this, let us recall the infinite
coin toss, which was already considered in the lecture Elementary probability 1. Here, we
would say that Q = {head, tail}N and the corresponding probability measure is the product
measure P®® of P = %5head + %5taﬂ. However, this is an infinite (but still countable) product
measure whose existence we have not yet shown. More generally, a large part of the lecture
Stochastic Processes will contain such measures (even on uncountable product spaces). We
now give the general construction of probability measures on product measures, which goes
back to Kolmogorov (and Daniell). It should be mentioned here that in the resulting theorem
of Kolmogorov (theorem 5.24) the assumption is made that €2 is Polish.

Definition 5.21 (Projective limit). 1. Let (2, F) be a measurable space, I an arbitrary
index set and (QJ, .FJ)JgfI be a family of measurable product spaces, equipped with the
product o-algebra, as in Definition 5.3. A family of probability measures (PJ)Jgf[,
where Py is a probability measure on F’, is called a projective family if

Py = ()P

for all H C J Cy I. (In other words, projection of coordinates in J to coordinates in H
under P ; leads to Py.)

2. If for a projective family (PJ)JgfI of probability measures there exists a probability
measure Pr on F! with Py = (77),P1 for all J Cyr I, then Py is called the projective
limit of the projective family. We then write

P[ = lim PJ.

<_
JC,I

Example 5.22 (Projective limits and stochastic processes). Projective families play a major
role in at least two situations.

1. Let (Q,F,P) be a probability space and I an infinite index set. In Definition 5.15 we
have defined the product measure P27 on F’ for each J Cyr I. The family (P®J)Jgf]
is projective. If H C J Cy I, then for A; € F,i € H,

()P (X A;) = P ((xf)7H( X A;))
icH ieH

=P (X A x X Q)

i€eH ieJ\H

~TIr@)- ] P@

i€H i€\H
=[P4
i€H
~ PEH( X 4).
i€H
However, we have not yet shown that the projective limit of (P®J)Jgf] exists. We

would then call this the infinite product measure P®1. (In particular, this would give
the probability space for the infinite coin toss from the beginning of this section.)
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2. Let (2, F,P) be a probability space, I an arbitrary index set, ((~2, f) a measurable space
and X; 1 Q — SN),Z' € I a random variable (i.e. a function measurable with respect to
F/Fi). We will call the family X := (X;)icr a stochastic process. So X : Q@ — QI with
X(w) = (Xi(w))ier- One can now ask whether the distribution of X (i.e. the image
measure X P ) exists as a distribution on FI

It should be noted that f)J = ((Xj)jer)«P,J C¢ I is a projective family. If H C J Cy I
and A; € F,i € H, then
(wi) Py X Aj) = Py((x) ™ X 4))
jEH jeH
= PJ( >< Aj X X Q)
jEH jeEJ\H
P(X;€Aj,j€ H and X; €Q,j € J\ H)
=P(X;€A;,jeH)
5 -

—

As Theorem 5.24 below shows, the distribution X,P (which is then the projective limit
of (Py)ic,1) ewists at least if F is the Borel’s o-algebra of a Polish space.

Remark 5.23 (Uniqueness of the projective limit). For each projective family (P ;) c,1 there
is at most one projective limit: If P; and P are two projective limits, then for

’H’:Z{XAz'X X QhAini’iEJgfI}’
= icl\J

we see that H' generates F! (compare with H from Lemma 5.7), and is N-stable. Hence, for
A=Xiey Ai X Xiep Qi €M,

P;(A) :PJ< % AZ-) :f{](xAZ) — P;(A).

ieJ icJ

This means that Py and P; coincide on the N-stable generator and according to Proposi-
tion 2.11, Py = Py. The content of the next theorem is that there is exactly one projective
limit for Polish spaces.

Theorem 5.24 (Existence of processes, Kolmogorov). Let (2,0) be Polish, F = B(O) and
(Pr)ic 1 @ projective family of probability measures on F. Then there is the projective limit
e P

Proof. Let H' be as in Remark 5.23 and p be a finite additive set function on H’, defined by
the projective family using

M(xij X Q) ;:PJ<><Aj).

jeJ iel\J jeJ
According to Lemma 5.7, H is a semi-ring and pu is a well-defined content on H. Further,

K={XKjx X Q:JC;I K;compact} CH
jedJ ieI\J
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is a compact system.

We now show that p is inner regular with respect to K. Let & > 0, X, ; A; X Xiens QeH
for J Cy I and A; € F,i € J. Since P; is a measure for j € I, according to Lemma 2.9 there
are compact sets K; € F with K; C A; and Pj(A; \ K;) < e. This means that

(X Aix X QN\(XEKix X Q) =u(((XA4)\ (X EK))x X Q)

ied i€\J ieJ i€\J ieJ ieJ i€\J

=Py (( X A45)\ (X K;))

Jj€J J€J
< PJ( A\ Kj) x X Q)
jeJ i#j
< ZPJ((Aj \Kj) x X Q)
jeJ i#j
=) Pi(4;\ K))
JjeJ
< |Jle.
Since J was finite and € > 0 was arbitrary, we have shown inner regularity of p with respect
to K. According to Theorem 2.10, p is o-additive. Furthermore, u(Q!) = 1, so u can be

uniquely extended to a measure P on o(H') = F! according to Theorem 2.16. This must be
the projective limit of (P ) c,;. O
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A Some Topology

A topology is used in mathematics whenever a notion of convergence is introduced. Even if
topologies have only been treated as a sideline in most of your lectures so far, some concepts
of convergence are well known. There are also many connections between measure theory
and topology; see for example the notion of a Borel o-algebra in Definition 1.7. Therefore,
we repeat basic notions of topology here.

A.1 Basics

By a topology we understand a family of open subsets of a space .12 In metric spaces one
calls a set A open if for every w € A there is an open ball'® B.(w) C A for some £ > 0. This
case of metric spaces is in practice the most important.

In measure theory, the case of separable topologies, which are generated by complete
metrics, is of particular importance. Such spaces are called Polish.

Definition A.1 (Metric space, topological space). Let ) be some set.

1. A function r : Q x Q — Ry is called a metric if (i) r(w,w’) # 0 for w # &', (1)
r(w,w) = rW, w) for al w,w' € Q, and (iii) r(w,w") < r(w,w') + r(W',w") for all
w,w,w"” € Q. The pair (Q,r) is a metric space.

For w € Q and ¢ > 0, we denote by B:(w) := {W € Q: r(w,w') < €} the open ball
around w with radius €.

2. A metric r on ) is called complete if every Cauchy sequence converges. That is, if
wi,wa, ... € Q with

Ve>0 AN eN Vn,m > N: r(wp,wn) <,

then there is w € Q with 1(wWp,w) —— 0.

3. A set system O C 2% is called topology if (i) ,Q € O; (ii) if A, B € O, then ANB € O;
(iii) if I is arbitrary and if A; € O,i € I, then J;c; Ai € O. The pair (2, O) is called
topological space. Its members, i.e. every A € O, is called open; any set A C Q with
A € O is called closed.

4. Let (Q,0) be a topological space and A C Q. Then
A= Jfoca:0e0}
is called the interior of A and
Z::ﬂ{FQA:FCGO}
is called closure of A.

5. A topological space (Q,0) is called separable if there is a countable set ' C Q with
a=q.
12vWe will write 2% for the set of all subsets of Q.
B3We define Be(w) :=w': r(w,w’) < e}
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6. Let (2, O) be a topological space and B C O. Then B is called a base of O if
VAe O Ywe A dBeB:we BCA.
This is exactly the case if
O={ACQ: Ywe AJBeB:we BC A} (A.1)

or (equivalently)

O:{UB:CQB}. (A.2)

BeC

7. Let B C 22, Then, the right hand sides of (A.1) and (A.2) define the topology generated
by B, which we denote by O(B).

8. Let (2,7) be a metric space and
B:={B:(w):e>0,we N} (A.3)

Then O(B) is the topology generated by r. If specifically Q C R* and r is the Euclidean
distance, then the topology generated in (A.1) or (A.2) is called the euclidean topology.

9. The space (2,0) is called (completely) metrizable if there exists a (complete) metric r
on Q) such that (A.1) holds with B from (A.3). The space (2, O) is called Polish if it is
separable and completely metrizable.

10. Let (2,0) and (¥',0") be topological spaces. Then a mapping f : Q — Q' is called
continuous if f~1(A’") € O for all A’ € O'.

Example A.2 (The space R). We will often use functions with values in'4
R:=RU{-00,00} or Ry:=R;U{oo}

In order to be able to consider these spaces as topological spaces, we set

R —[-1,1],
. 2 arctan(z), z € R,
0
r =<1, T = o0,
-1, = —00
and define the metric -
Tﬁ(l‘ﬂ./) = ’90(]") - Sp(y)|7 T,y € R.

The topological space defined by rg(R,O) extends the Euclidean topology (R,O) to R in the
sense that {ANR : A € O} = O. This is true because ¢ is continuous on R with a continuous
inverse function. It further holds that (R, O) is separable and TR 18 a complete metric.

On R one can calculate as usual in calculus. For example, a-oo = oo for a > 0. However,
expressions like oo — oo and oo /oo are not defined.

The notation R suggests that the termination of R is meant here. This is not true, since the added elements
—00, 00 do not lie in R, but closures of sets always contain at most the elements of the basic space can contain.
Topologically, R is the two-point compactification of R
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Remark A.3 (Metric and topological spaces). Let (2, O) be a topological space and w,w1,wa, . .

Q. We define

n—o0

wp —w:i<s= (VO eO :we0=w,e O for almost all n € N). (A.4)

In particular, this gives any topology on ) a notion of convergence for sequences in ).

This notion of convergence agrees with the well-known notion on metric spaces: namely,
if v is a metric on Q, which generates O, then the right-hand side of (A.4) holds if and only
if for all e > 0, we have r(wy,w) < € for almost all n € N.

Using the notion of convergence from (A.4), we state the following well-known property:

Lemma A.4 (Closure of a metric space). Let (2,7) be a metric space and O be the topology
generated by r. For F C € the following are equivalent:

1. F is closed.
2. If wi,wa,... € F and w € Q) are such that wy, H—Oomu, then w € F.

In particular, for every A C € there exists the closure A consists exactly of the cluster points'®

of A.

Proof. ’1.=2.” Assume there is a sequence wi,ws, ... € F with w, D70 w e Fe. Then, since

F¢ e O, we find wy, € F¢ for almost all n. This is in contradiction with the assumption.

’2.=1.”: Suppose F' was not closed, i.e. F¢, is not open. Then there is w € F° such that for
all £ > 0 it holds that B.(w) € F¢. Choose €1,¢2,... > 0 with'® ¢, | 0 and w, € B, (w)NF.
Thenwl,wg,...erithwnn_)—oo>w, but w € F*°. ]

Lemma A.5 (Countable base and separable spaces). Let (2,7) be a separable metric space,
O be the topology generated by r, Q' countable with Q' = Q and

B:={B.(w):e€QqweQ}
Then B is countable and O(B) = O.

Proof. Clearly, B is countable and O(B) C O. Let B as in (A.3). Then for B.(w) € B

B.w)= |J B,
B>BCB.(w)

thus B C O(B) and thus O = O(B) C O(B). O

Example A.6 (Two Polish spaces). 1. Let O be the Euclidean topology on R, as given in
Definition A.1.9 by the Fuclidean metric. From your lecture Analysis 1, it is known that
this metric is complete. Further, Q% is countable and every w € R? is a cluster point of
a sequence in Q. Thus, in particular, Q4 = R?* by Lemma A.4, so R® is separable. So
overall, (R4, O) is Polish.

15 A cluster point of A is any limit of a convergent sequence wi,ws, ... € A.

n—r00

6We write €, J 0if e1 > €2 > ... and €, — 0
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2. Let K C R be compact (i.e. closed and bounded) and Q@ = Cr(K) be the set of continuous
functions w: K — R. On Q let

(w1, ws) := sup |wi(z) — wa(z)|
zeK
be the supremum distance. It is known from Analysis I1 that r is complete is complete.
Furthermore, every w € € can be calculated according to the Weierstrass’ approximation
theorem can be uniformly approzimated by polynomials by polynomials. Let € be the
countable set of polynomials with rational coefficients. Then it also holds that V' = .
Thus (2, O) is separable, i.e. Polish.

A.2 Compact sets

Topological spaces can be very large. Just think of the space R, in which there are sequences
that diverge. Now compact set are considered as smaller subsets of a topological space. In
such compact sets there are always convergent subsequences.

Definition A.7 (Relatively compact, compact, relatively sequenctially compact, totally re-
stricted). Let (2, 0) be a topological space and K C €.

1. The set K is called compact if every open cover has a finite partial cover. That is: If
O;€0,iel and K C J;c; Oi, then there is'T. J c I with K C Uics Oi-

2. The set K is called relatively compact if K is compact.

3. The set K is called relatively sequentially compact if for every sequence wy,wa,... € K
there is a convergent subsequence, i.e. there is an increasing sequence ki, ko, ... T 0o and
w € Q with wy, ~—25 w as in (A.4).

4. Let r be a metric that generates O. Then we call K C € totally bounded if for every
e > 0 there is an N € N and wy,...,wny € K such that K C Uévzl B.(wy). In other
words, for every radius € > 0, there is a finite number of balls with this radius covering
K.

Lemma A.8 (Compact sets are closed). . Let (Q,7) be a metric space and O the topology
generated by r. If K C Q) is compact, then K is also closed.

Proof. We show that K¢ is open. For this, let w € K¢ For all o' € K we choose &,
and e, such that Bj ,(w) N Be ,(w') = 0. Then obviously ¢ B, (w') 2 K, so there
is J Cf K with K C (U eyBe,(W). Set 0 := minyeydy > 0. Then Bs(w)is N K C
Bs(w) NUyyey B, (W) =0, ie. Bs(w) € K€ Since w € K¢ was arbitrary, K¢ is open, so K
is closed. O

The following theorem about compact sets gives a complete characterization of compact sets
in Polish spaces.

Proposition A.9 (Characterising relatively compact sets). . Let (2, ) be a metric space, O
be the topology generated by r and K C Q. Consider the following statements:

1. K is relatively compact.

"We write J Cy I if J C T and J is finite
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2. If F; C K is closed, i € I, and Nicr Fi = 0, then there is J Cy I with (\;c; F; = 0.
3. K 1is relatively sequentially compact.
4. K is totally bounded.

Then
4. <—=1. < 2. = 3.

Furthermore, 3. = 2. also holds if (2, O) is separable and 4. = 3. if (Q,r) is complete. In
particular, all four statements are equivalent, if (2, Q) is Polish.

Corollary A.10. Let (2,r) be a metric space, O the topology generated by r. Then closed
subsets of compact sets are compact.

Proof. Let K C Q) be compact and A C K closed. A closed set is compact if and only if it is
relatively compact. From Proposition A.9.2 one reads, because of the relative compactness of
K, that for Fj closed, i € I, with F; € A C K and (,c; F; = 0 a J C I exists with (", ; F; = 0.
Again with Proposition A.9.2 it follows that A is relatlvely compact, i.e. compact. O

Proof of Proposition A.9. '1.=4.” Let K be compact and £ > 0. Obviously, Uwer Be(w) 2 K
is an open covering. Thus, since K is compact, there is a finite subcover, i.e. there is wy, ..., wyn
with K C Uf:[:l B (wy,). Since € > 0 was arbitrary, the assertion follows.

'1.=2. Now let Fj,i € I be as stated. Then |, ; F¥ = (ﬂie] Fi)c =Q D K. Since K is

compact, there is J Cy I with K C |J;c; FF. Thus e, Fi = (UZGJ F¢) C K°. But since
F; C K was assumed, (;c; Fi = 0.

el

2.=1. Let O; € O,i € I be a covering of K, i.e. K C Uicr Oi- Set F; = Of N K, then
FfeOand g, Fi=KnN (UieIO)C = 0. So there is J Cy I with (,c; F; = 0. Therefore,

KU Uics Oi = Uies FY = Q50 Ui ; 0i 2 K. So we found a finite subcovering. In other
words, K is compact

'2,=3." Let wy,ws, ... € K. Weset F, = {wpn,wn11,...} C K. Suppose there is no convergent
subsequence of wi,ws, ... Then (2, F, = 0. From 2. it then follows that there is a N € N
with ) = .ﬂfj:l F, = Fy. This is a contradiction, since Fy is not empty by construction;
therefore there is a convergent subsequence.

'3.=1. if (Q,0) is separable. Let ' be countable with € = Q and B := {By/,(w) : w €
', n € N}. Then, B is a countable basis of O. We write B = {B1, Ba,...}.

Suppose K is not compact. That is, there is a cover A4; € O,i € I (for some infinite I)
with K C (J,; Ai and there is no finite subcover. We set for i € I

Ji:{jENingAi}gN

and J := Ue; Ji € N. Thus A; = {J;c;, Bj, and
i€l i€l jeJ; jedJ
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This shows that B; € O,j € J is a countable cover of K. Since there is no finite subcover
for A;,i € I, there can also be no finite finite subcover for B;,j € J. (If there would be a
finite subcover Bj,j € J, we could take A; O Bj,j € J and find a finite subcover A;,j € J,
contradiction.) We write J = {j1,j2,...}. For n € N we set w, € K \ JI-; Bj,. (Note that
this set is non-empty, otherwise a finite subcover would exist.) By assumption, the sequence
wi,ws,... € K has a cluster point w € K. Since K C UjeJBj7 there is £k € J C N with
w € Bg. So, on the one hand (since By is open) there are infinitely many of the w, in By,
on the other hand, w; ¢ By for all i > k by construction. This is a contradiction, so K is
compact.

'4.<’3. If (Q,r) is complete: Let wy,wo,... € K. We are going to construct a Cauchy subse-
quence. This converges since (2, r) is complete and K is found to be relatively sequentially
compact. In order to construct the subsequence, choose a sequence €1, ¢€9,... > 0 with &, | 0.
Since K is totally bounded, there are finitely many 1-balls covering K. At least one of these
balls must contain infinitely many of the w,. These have each at most distance 2¢;. Choose
wg, as one of these infinitely many points. Since this e;1-ball is covered by finitely many e-
balls, there is one of these e9-balls, which contains infinitely many of the w,,. These each have
at most distance 2e5. Choose wy, # wg, as one of these infinitely many points. By proceeding
further we obtain a sequence wg,,wg,, ... € K such that r(wg,,wk,,) < 26man. With other
words, as announced, we have found a Cauchy subsequence in K. O

Lemma A.11 (Compact metric spaces are Polish). . Let (£2,7) be a metric space and O be
the topology generated by r. If Q is compact, then (2, O) is Polish.

Proof. For the proof, we need to show both, completeness of (2, 7) and separability of (2, O).
For completeness, let wy,wo, ... € Q be a Cauchy sequence. Since K is relatively sequentially
compact according to Proposition A.9, there is w € Q and a subsequence wy, , wg,, . . . converg-
ing tow. Let ¢ > 0 and N € N be such that r(wy,,w,) < /2 form,n > N and r(wy,,,w) < /2
for k, > N. Then for m > N it holds that r(wm,w) < r(wm,ws, ) + 7(wg,,w) < e. It fol-
lows that w, ——s w. For separability of (Q,0), let 1,e9,... > 0 with &, | 0. Since K
is totally bounded, for all n € N there is a k, and wy1, ..., wnk, with K C Uﬁ’;l B., (wnk,, )-
Let Q' = wpr :n € Nk =1,...,k,}. Then € is countable and for each w € Q and each
n € N there is a k(w,n) € {1,...,k,} with 7(wi(wn),w) < en. Thus, (Wewn),w) 222 w. So
Q' =Q. O
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