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» Course in spring 2024 at the University of Freiburg
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Prerequisites:

» Goal:

» Interference:

» Next course:
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Measure theory

» Sample space Q; ACQ
> Assign some value p(A) € Ry to as many subsets of A as

possible, with a number of computation rules
= measure 4 defined on a o-algebra F C 29

> Make a weighted average of some f : 2 — R with respect to
the measure p.
= integral [ fdu
Study the structure of the space of functions with finite
integral

» All the same on product spaces 2 = X, §;
%

universitatfreiburg



Measure Theory for Probabilists

2. Semi-rings, rings and o-fields

Peter Pfaffelhuber

January 1, 2024

«CO» «Fr «E»



Definition of some set-systems

> C C2%
Co-field = Cring = C semi-ring.

» Definition 1.1: Q set, §) # H, R, F C 2%
> 7 N-stable, if (A, BeH=ANBecH).
> H o —N-stable, if (A1, A, ... € H =2, An € H).
> H U-stable, if (A,BeH =AUBecH).
> H o — U-stable, if (A1, Ay, ... € H = U2, An € H).
» 7H complement-stable, if A € H = A° € H.
» M set-difference-stable, if (A, B e H = B\ AcH).
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Definition of some set-systems

» We write AW B for AUBif ANB =10.
» Definition 1.1: Q set, § # H, R, F C 2.
> H is a semi-ring, if it is (i) N-stable and (ii)
VA, B € H3Cy,...,Cy € H with B\ A= ¥/, C.
> R is a ring, if it is U-stable and set-difference-stable.
» Fis a o-field, if Q € F, it is complement-stable and
o-U-stable. Then, (Q, F) is called measurable space.
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Connections between set-systems

C semi-ring | C ring | C o-field
C is N-stable ° o o
C is o-N-stable o
C is U-stable ° o
C is o-U-stable °
C is set-difference-stable ° )
C is complement-stable °
B\A=W",GC . o o
QecC .
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Examples

» Semi-ring: Let Q = R. Then,
H:={(a,b] : a,b € Q,a < b} is a semi-ring.

> o-algebras: Trivial examples are {(}, Q} and 2.
If 7/ is a o-field on ', and f : Q — Q'. Then,

o(f) = {fHA): A € F'} is a o-field on Q.

Indeed: If A, AL, AL, ... € o(f), then
(FAAY)E = FH((A)°) € o(F) and
Ut 1A = FH(Us A € o).
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Generated ring/c-algebra

> Let C C 29 Then,
R(C) := ﬂ {R OC: R ring},
(€)= {F SC:F a—field}

are the ring and o-algebra generated from C,

» Example 1.6: Let H := {[a,b),a < b,a,b € Q}. Then,

R(H):{L—ij(ak,bk]:al,...,a,,,bl,...,b,,e@,
k=1

ag < bg,k=1,...,nand ak<bk+1,k:1,...

is the ring generated from 7.

universitatfreiburg
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Generated ring

» Lemma 1.5: H semi-ring. Then,
H) = { H Ak A ..., Ay € H disjoint, n € N}

is the ring generated from H.

» Proof: R(H) is N-stable.
To show: R(H) set-difference-stable. Let A;,..., A, € H and
Bi,...,Bmn € H be disjoint. Then,

(k) (U ) = ()4 & < R0,
i=1 Jj=1 i=1j=1
To show: R(H) is U-stable:

AUB=(ANB)W(A\B)W(B\A) e R(H)
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Definitions from topology

> Q some set. A set system O C 29 is called topology if (i)
0,Q € O; (ii) if O is N-stable; (iii) if / is arbitrary and if
Ai € O,i €|, then J;c; Ai € O. The pair (Q,0) is called
topological space. lts members, i.e. every A € O, is called
open; any set A C Q with A€ € O is called closed.

» (€, r) be a metric space and B.(w) :={w' € Q: r(w,w') < &}
an open ball and

B :={B:(w):e>0,we Q}. (1)
Then,

OB) ={ACQ: YweAdBeB:we BCA}

-{JB:ccs}

BeC

is the topology generated by r.
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Definitions from topology

» ris called complete, if every Cauchy-sequence converges.

» If there is some countable Q' such that inf,cq/ r(x,x’) =0
for all x € Q, we call (2, r) separable. In this case,

B ={B,(W):w €, reQ.}

is countable and O(B') = O(B).

» The space (2,0) is called Polish, if it is separable and
completely metrizable.
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Borel's o-field

» Definition 1.7: (2, O) a topological space.
B(Q2) :=0(0)

is the Borel o-algebra on €. Sets in B(Q2) are also called
(Borel-)measurable sets.

» Lemma 1.8: Let (22, O) be a topological space with countable
basis C C O. Then, 0(0O) = o(C).

» Proof: To show O C o(C). Clear, since any A € O can be
represented as a countable union of sets from C.
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Borel o-field generated by interavls

» Lemma 1.9: The set system
Cl = {[—OO, b] b e Q}

generates B(R).

» Proof: Generate (a, b] from [—o0, b] \ [—0o0, a], then
(a,b) = UX (a, b — 1). These sets clearly generate B(R).
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Connections between set-systems

C semi-ring | C ring | C o-field
C is N-stable ° o o
C is o-N-stable o
C is U-stable ° o
C is o-U-stable °
C is set-difference-stable ° )
C is complement-stable °
B\A=W",GC . o o
QecC .
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Dynkin systems

> Let C C 2% It is often easy to show that C is a (semi-)ring.
However, it is hard to show that C is a o-algebra.

It is often easier to show that C is a Dynkin system:

» Definition 1.11: A set system D is called Dynkin system (on
Q) if (i) Q € D, (ii) it is set-difference-stable for subsets (i.e.
A,B €D and AC Bimply B\ A€ D and (iii)

A1,A2,... € Dand A; C A C A3 c... impIy UzozlAn e D.

» Goal is Theorem 1.13:

A N-stable Dynkin system is a o-algebra.

> Example 1.12:

F o-algebra = F Dynkin-system
F Dynkin system = F complement-stable
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Theorem 1.13:

» D Dynkin system, C C D is N-stable = o(C) C D.
» Proof: Set

AC) := ﬂ{D’ D C, D' Dynkin-system} 2 A\(C).

Claim: A(C) is a o-algebra (= o(C) C o(A(C)) = A(C) C D)
Suffices: A(C) is N-stable.

Then, AU B = (A° N B€)<, so \(C) is U-stable and for

A1, A, ... € )\(C), we find Uzozl A, = U(r)'pozl U7:1 A € A(C)
For B € C, set

Dg:={ACQ:AnBeXC)} DC.

Then Dg is a Dynkin system...
So, A\(C) € Dg. So, for an A € \(C),

Ba:={BCQ:ANB e XC)} D A(C) is Dynkin system.
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Compact sets

» JCrif JC I and Jis finite
» Definition A.7: (€2, r) metric space, K C Q.
1. K is compact if every open cover has a finite partial cover:
If O; € O,icland K CJ, O, then there is J Cr I with
K C UieJ Oi.
2. K is relatively compact if K is compact.
3. K is relatively sequentially compact if for every sequence in K
there is a convergent subsequence.
4. K C Q is totally bounded if for every € > 0 there is an N € N
and wy,...,wy € K such that K C U,Iyzl B.(wn).

> Lemma A.8:: K C Q compact = K is closed.
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Compact sets

» Proposition A.9: K C Q.

1. K is relatively compact.

2. If F; C Kis closed, i € I, and (;, F; = 0, then there is

J Cr | with ﬂ,.EJF,-:@.
3. K is relatively sequentially compact.
4. K is totally bounded.
Then
4 =1 = 2.=3.

Furthermore, 3. = 2. also holds if (€2, O) is separable and
4. = 3. if (2, r) is complete.
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Compact systems

» Definition 1.14: K N-stable is compact system if ()72, K, =0
with K1, K, ... € K implies that there is a N € N with
NV, K, =0.

» Example 1.15: £ C {K C Q: K compact} N-stable is
compact system.
Indeed: Let ()2, K, = 0. Then, K1 and L, := K1 N K, C K1
are compact and (because of the compactness of Kj) there is
an N with N_; K, = 0 due to Proposition A.9.
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Compact systems

» Lemma 1.16: C compact system. Then,
n
o ;:{UK,- K. Ky e/c,neN}
i=1

is also a compact system.

» Proof: I is N-stable. Let
Ly =UM KL L=UM K2, ... € Ky with () Ly # 0 for
all N € N. To show: (172 L, # (. Use induction over N for:
For every N € N there are sets Ky,...,Ky € K with
K, C L, n=1,... N, such that for all k € Ng we have

Klﬁ-“mKNﬂLNJrlﬂ-“ﬂLNJrk#@.
Then, use k = 0. So we see that there are K1, K»,... € K and
Kn C Lo, n€ N with NV, K, # 0 for all N € N. Hence,

0 # Moz Kn € Moz Ln
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Definition 2.1

> For F C 29, we call u: F — R, a set function.
» . is finitely additive if

n n
M( ) Ak) = u(Ax).
k=1 k=1

for disjoint Ay,..., A, € F.
> 1 F — Ry is o-additive if the same holds for n = cc.

> If F is a o-algebra, and p is o-additive, u is a measure and
(Q, F, p) is a measure space.

> If 4(Q2) < oo, then p is a finite measure; if u(Q) =1, pis a
probability measure. Then, (2, F, 1) is a probability space.
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Definition 2.1

» u is called sub-additive if

M( O Ak) < Zn:M(Ak)-
k=1 k=1

for any Ay,..., A, € F.
» 1 F — Ry is o-sub-additive if the same holds for n = cc.
» u is monotone if (A C B = p(A) < u(B))

> A o-subadditive, monotone y* : 2% — R with p*(0) =0 is
an outer measure.

> Aset AC Qis called u*-measurable if

w(E) = p(E NA)+ p(ENAS), ECQ.
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Definition 2.1

> If there is Q1,Qo,... € F with [J72; 2, = Q and u(Q2,) < oo
forall n=1,2,..., then u is o-finite.

> F N-stable. p is inner KC—regular if for all A e F

u(A) = sup pu(K).
K>KCA

> (Q,0) topological space, i measure on B(O). The smallest
closed set F with u(F€) =0 is called the support of p.
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Examples
» Let H ={(a,b]:a,beQ,a<b}. Then, u((a,b]) :=b—a
defines an additive, o-finite set function.
> Let w' € Q. Then, §,/(A) := 1y,cay is a probability measure.
» 1= ic; 0w, IS a counting measure.
» uj,i € | measures and a; € Ry,7 € /. Then, Ziel ajui is also
a measure, e.g. the Poisson distribution on 2MNo,

HPoi(y) Z € 'y <Ok,

the geometric distribution
oo

Hgeo(p) "= Z(l - p)kilp < Ok,
k=1

the binomial distribution
n

n _
LB(np) = D (k) p(1—p)" " by

universitatfreiburg k=0



Unions and disjoint unions

» Lemma 2.4: H semi-ring, A, A1,...,A, € H. Then, there are
B, ..., Bm € H pairwise disjoint and A\ U_; Ai = WL, B;.
» Proof: Induction on n. If n =1, clear. Assume the assertion
holds for some n, i.e. there is By, ..., B, with
A\UL, A = W7, By Then, write Bj \ A1 = Wy, Cf for
a, .. Cij € H. Then,

n+1

n m m Kk .
A\ UlA,-: (A\UlA,-)\AnH:trJlBj\A,,H:@ H c.
1= 1= =

j=1k=1
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Set-functions on semi-rings

| 2

>

Lemma 2.5: H semi-ring, 1 : H — [0, oc] additive.
Then, m is monotone and sub-additive.
Proof: Monotonicity for A, B € H with A C B and
Ci,..., Cx € H with B\ A =*_; C;. Write
k
p(A) < p(A) + 22 i(G) = 1(B).
Claim: |H,c7 Ai C A= >0, u(Ai) < m(A).
Write A\ WJ/_; A = W, B;. Then,

Sub-additivity: To show N<U7:1 A,-) < S0 n(Aj). Write

ki

“(,QA") :u(i@( ,\UA)) =35 u(c) < i;u(A;).

]

k=1 k=1
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Set-functions on semi-rings

> Lemma 2.5: p is o-additive iff u is o-sub-additive.

» Proof: '=": Copy the proof of sub-additivity using n = co.
=" Let A=W, A € H.
Then, > 1 u(Ai) < u(A) by monotonicity and

ZM(A;) = sug}Z,u(A;) < u(A) < ZM(AI)
i=1 nel =1 i=1

by o-sub-additivity.
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Extension of set-functions on semi-rings

» Lemma 2.6: H semi-ring, R ring generated by H, i additive

on H. Then,
ﬁ( ¥ Ai) =Y u(A)
i=1 i=1
1 is the only additive extension of p on R that coincides with

won H.

» Proof: Suffices to show that 1 is well-defined. Let
Wil A= Lﬂle B;. Since

n m
A,':L-le,'ﬂBj, Bj:t'-JAimBja
j=1 i—1
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Inclusion exclusion principle

» Proposition 2.7: p be additive set function on ring R and /
finite. Then for A; € R, i € [, it holds that

o(UA) = S0 (4)

icl JCli jeJ
In particular, if I = {1,2},
(A1 U A2) = (A1) + p(A2) — (A1 N Az).

» Proof for “| =2 AAUA =AY (A2 \ Al) and
(A2 \ Al) () (Al N Az) = As.
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Proposition 2.8
> 1 is o-additive iff

M( @ An) = iH(An)'
n=1 n=1

» 1 is o-sub-additive iff

M( U An) < ZN(An)'
n=1 n=1
» 1 is continuous from below, if for A, A1, Ap,... and
Ap C A C ... with A=J;2; An,
u(A) = Tim (A,

» 1 is continuous from above (in the (), if for
A(: @),Al,Az, e, ,u(Al) < ooand A; 2 Ay D ... with
A =21 An,
(0 =)u(A) = lim u(An).

universitatfreiburg n—o0



Proposition 2.8

» Let R be aring and p: R — Ry be additive and u(A) < oo
for all A € R. Then, the following are equivalent:
1. p is o-additive;
2. w is o-subadditive;
3. w is continuous from below;
4. p is continuous from above in ;
5. p is continuous from above.
» Proof: 1.&2., 5.=4.: clear.
1.=3.: With Ag=0, A=H2; An \ At
3.=1.: Set Ay = L—ij,’yzl B,,
4.=5.: With B, := A, \ Al 0,
n—oo
N(An) = M(Bn) + N(A) B N(A)
3.=4.: Set B, := A1\ A, 1 A1. Then,
(A1) = limpoo 1(Bn) = (A1) — limnoo 11(An).
4.=3. Set B, := A\ A, | 0. Then,
0 = limp—o0 (Bn) = u(A) — limp_oo p(An).
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Inner regularity of measures on Polish spaces
» Lemma 2.9: (22, O) Polish, p finite, ¢ > 0.
There exists K C Q compact with u(Q\ K) < e.
» Proof: Thereis {w1,ws,...} C Q dense, so
Q = UpZ1 Bi/n(wk). p is continuous from above =

[e's) N
0=n(2\ U Bun(wi) = Jim u(2\ | Bun(wi))-
k=1 k=1
Take N, € N with M(Q UM, Bl/,,(w;)) < /2" and
A=, UL";l By /n(wk) totally bounded, hence relatively
compact with

u(@\A) < @\ A) < (| (20 U Bijn(w)))
n=1 k=1

<> u(e\ [IJ Bi/n(wk)) < e.
n=1

universitatfreiburg k=1



Inner regularity and o-additivity

» Theorem 2.10: H semi-ring, p: H — R finite, finitely
additive and inner X C H-regular. Then p is o-additive.

» Proof:Wlog, H is ring and K = IC
To show: u is continuous from above in (). Let A, Ap,--- € H
with A1 D A> D --- and ﬂf,o:IA,,:(Z)and e >0.
Choose Ki, Ks,--- € I with K, C A,,n € N and

w(An) < u(Ky) +e27".

Then, ﬂroyozl Kn © ﬂ;’il A, =0, so there is N € N with
ﬂ,,Nzl K, = 0. From this,

N N N
A,\,:A,\,m(UK;>: U Av\ Kn € | An\ Kn-
n=1 n=1

n=1
By subadditivity and monotonicity of u, for m > N,
N N
H(Am) < p(An) < S u(An\ Ko) <3277 <.
n=1

universitatfreiburg n=1
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Question

» When does an additive set-function 1 on H uniquely extend
to a measure H on o(H)?

» Uniqueness: Proposition 2.11: Let C C 2% be N-stable, and
i, v be o-finite measures on o(C). Then,

p=v — ple = vle.

» Existence: See Carathéodory's Extension Theorem 2.13:
Let u4* be an outer measure. Then, F* the set of
w*-measurable sets is a o-algebra and p := p*|£- is a
measure.
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Theorem 2.16

Lemma 2.5 | Theorem 2.10 | Theorem 2.16

1 additive o o

w finite o

wu o-finite o

w defined on semi-ring ) o o

hline u o-additive o/e . o

hline p o-subadditive e/o

w1 inner KC-regular o

u extends uniquely to o(H) .
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Proposition 2.11

> Let C C 2% be N-stable, and p, v be o-finite measures on
o(C). Then,

p=v — ple = vle.

» Proof for finite u, v with 1(Q) = v(Q): =: clear
«: Let
D:={BecF:ulA)=v(A)} DH.

)=
To show: D is Dynkin. = o(#H) € D by Theorem 1.13.
> B,CeD,BC C= u(C\B)=u(C)— u(B) =
v(C)—v(B)=v(C\B) ie C\BeD.
» By,By,---€Dwith By CB, CB3C---€Dand
B =U,2; B, € F, then from continuity from below,

u(B) = n[}ng(},u(B,,) = nli)moo v(B,)=v(B) = BeD.
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Theorem 2.13

> A o-subadditive, monotone u* : 22 — R with z*()) = 0 is
an outer measure.
> Aset AC Qis called p*-measurable if

p(E) = p(E N A) + p(E N A9), ECQ.

» Theorem 2.13: Let u* be an outer measure. Then, F* the set
of p*-measurable sets is a o-algebra and p := p*| 7 is a
measure. Furthermore, N :={N C Q: u*(N) =0} C F*.
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Theorem 2.13

> Let u* be an outer measure. Then, F* the set of
w*-measurable sets is a o-algebra and p = p*|£- is a
measure.
» Proof: Show:
> () € F*, since u*(E) = p*(ENO) + u*(ENQ).
> Ac F* = A ¢ F*
> A Be F*= ANB e F*, since

p(E) = p*(ENA) + p*(ENA%)
=u ((ENA)YNB)+ u*((ENA)N B) + p*(E N A°)
> 1*(EN (AN B)) + 1" (E N (AN B)) > (),
> Ay, Ag, - € F* disjoint, B, = Wj_, A € F*, B, 1 B.
Show p*(E N B,) = >"}_, u*(E N Ax) by induction on n:
w(ENBpi1) = W (ENByy1 N By) + p*(EN Bpy1 N BY)
n+1
= (ENB,) + u*(ENAnt1) Z“ E N A).
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Theorem 2.13

> Let u* be an outer measure. Then, F* the set of
w*-measurable sets is a o-algebra and p = p*|£- is a
measure.

» Then, p*(ENB) =72, p (ENAk) = limpoo p*(EN By)
since

“(EN B) Zu(EﬁAk = lim Z” ENA)
= n';mmu (ENBs) <p (Eﬁ B),
> B e F* since By, B, ... € F*, so
p(E) = lim p*(ENBy) + p*(EN By)
= p(ENB)+ p*(ENB) = u(E).

» So, F* is a g-algebra and p* is o-additive on F*, i.e.
université.t'fljéibﬁrgi*‘}‘* iS @ measure.



Theorem 2.13

> N:={NCQ:p*(N)=0} CF*

> N € N are called (u*-)null sets.
If A© e N, we say that A holds (u)-almost everywhere or
almost surely.

» Proof: For N € N, by monotonicity u*(E N N) =0, so

p(ENNS) +p(ENN) = p(E) > p*(ENNE)
p(ENNS)+ p*(ENN).
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/weite Folie

» Test
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/weite Folie

» Test
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Proposition 2.8
> 1 is o-additive iff

M( @ An) = iH(An)'
n=1 n=1

» 1 is o-sub-additive iff

M( U An) < ZN(An)'
n=1 n=1
» 1 is continuous from below, if for A, A1, Ap,... and
Ap C A C ... with A=J;2; An,
u(A) = Tim (A,

» 1 is continuous from above (in the (), if for
A(: @),Al,Az, e, ,u(Al) < ooand A; 2 Ay D ... with
A =21 An,
(0 =)u(A) = lim u(An).
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Proposition 2.8

» Let R be aring and p: R — Ry be additive and u(A) < oo
for all A € R. Then, the following are equivalent:
1. p is o-additive;
2. w is o-subadditive;
3. w is continuous from below;
4. p is continuous from above in ;
5. p is continuous from above.
» Proof: 1.&2., 5.=4.: clear.
1.=3.: With Ag=0, A=H2; An \ At
3.=1.: Set Ay = L—ij,’yzl B,,
4.=5.: With B, := A, \ Al 0,
n—oo
N(An) = M(Bn) + N(A) B N(A)
3.=4.: Set B, := A1\ A, 1 A1. Then,
(A1) = limpoo 1(Bn) = (A1) — limnoo 11(An).
4.=3. Set B, := A\ A, | 0. Then,
0 = limp—o0 (Bn) = u(A) — limp_oo p(An).
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Inner regularity of measures on Polish spaces
» Lemma 2.9: (22, O) Polish, p finite, ¢ > 0.
There exists K C Q compact with u(Q\ K) < e.
» Proof: Thereis {w1,ws,...} C Q dense, so
Q = UpZ1 Bi/n(wk). p is continuous from above =

[e's) N
0=n(2\ U Bun(wi) = Jim u(2\ | Bun(wi))-
k=1 k=1
Take N, € N with M(Q UM, Bl/,,(w;)) < /2" and
A=, UL";l By /n(wk) totally bounded, hence relatively
compact with

u(@\A) < @\ A) < (| (20 U Bijn(w)))
n=1 k=1

<> u(e\ [IJ Bi/n(wk)) < e.
n=1
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Inner regularity and o-additivity

» Theorem 2.10: H semi-ring, p: H — R finite, finitely
additive and inner X C H-regular. Then p is o-additive.

» Proof:Wlog, H is ring and K = IC
To show: u is continuous from above in (). Let A, Ap,--- € H
with A1 D A> D --- and ﬂf,o:IA,,:(Z)and e >0.
Choose Ki, Ks,--- € I with K, C A,,n € N and

w(An) < u(Ky) +e27".

Then, ﬂroyozl Kn © ﬂ;’il A, =0, so there is N € N with
ﬂ,,Nzl K, = 0. From this,

N N N
A,\,:A,\,m(UK;>: U Av\ Kn € | An\ Kn-
n=1 n=1

n=1
By subadditivity and monotonicity of u, for m > N,
N N
H(Am) < p(An) < S u(An\ Ko) <3277 <.
n=1
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Lebesgue measure

» Proposition 2.18: There is exactly one measure A on
(R, B(R)) with

AM(a, b)) =b—a

for a, b € Q with a < b.

» Proof: H ={(a,b]:a,bec Q,a< b} is a semi-ring with
o(H) = B(R).
o-additivity: let aj, ap, ... be such that
Ur21(ant1,an] = (a,b] € H, i.e., b= a1 and a, | a. Then,

Aa, b] = b—a= al—Nll‘rlo an = Z an—ant1 = Z)\((anﬂ, an)).
n=1

n=1
Conclude with Theorem 2.16.
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o-finite measures on R

» Proposition 2.19: i : B(R) — R is a o-finite measure iff
there is G : R — R, non-decreasing and right-continuous with

u((a.b) = G(b)— G(a), abeQa<h (¥

If G also satisfies (), then G = G + ¢ for some ¢ € R.
» Proof: '=": Define G(0) =0 and
0 0
G(X) = M(( 7X])7 X > )
(. 0]), x <0,
'<=": Similar to the proof of Proposition 2.18.
Let G satisfy (x). Then, for a € R,

G(b) = G(a) + u((a, b)) = G(b) + G(a) — G(a),
and the assertion follows with ¢ = G(a) — G(a).
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Probability measures on R

» Corollary 2.20: u : B(R) — [0, 1] is probability measure iff
there is F : R — [0, 1] non-decreasing and right-continuous
with limp_, F(b) =1 and

wu((a, b]) = F(b) — F(a), a,beQ,a<b.

F is uniquely defined by p.
F is called the distribution function of pu.
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Examples

» Let f: R — Ry be a density (piecewise continuous with
S5 f(x)dx = 1). A densitiy defines a distribution function
via N

F(x) ::/ f(a)da,

therefore uniquely a probability measures.

N 0, x<0,
Fu,1)(x) = / Lpy(a)da=qx, 0<x<1,
- 1, x>1,

Fexp()\)(X) = / 1[0700)(3))\e_)“’da =1—e ™

Fr(u,o2)(x) = \/21? /_Xoo exp ( - (az_ag)z)da =: ®(x)
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Image measures
» If 7' is a o-fieldon @', and f: Q — Q'. Then,
o(f) = {fHA): A € F'} is a o-field on Q.
» Definition 2.23: (2, F, ;1) measure space, (', F') measurable
space, f : Q — Q' with o(f) C F. Then,
F oA fp(A) = u(fHA)) = w(f € A)

is the image measure of f under pu.

If P is a probability measure, we call X, the distribution of X
under P.

» Proposition 2.25: f,u is a measure on F'.
> Proof: A}, AS,--- € F' disjoint, then

o B) (7 ()

= WHAD) = S ulF T AY) = 3 fu(Ay).
n=1 n=1
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Examples

» For Q=1[0,1], H:={[0,b): 0 < b <1} has
o(M) = B([0, 1]).
B = pyu), f:u—1—u. Then fiu = p, because

fu([0, b)) = u(F([0,6))) = u([L — b,1]) =1 — (1~ b) = b.

» Q=R yeR, f,:x—=x+y
A Lebesgue measure. Then (f,).A = A, because

(£,):M([a, b1) = A(f, H([a, b)) = Mla —y, b~ y]) = b — a.

> Q=1[0,1,2 =Ry, f:x— —1log(x) for A >0
K= fy(o,1)- Then, fipt = fiexp(n), because for x >0

fen([0,x]) = p(FH([0,x])) = p([e ™, 1) =1 — ™.
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Image measures

» If 7' is a o-fieldon @, and f : Q — Q'. Then,
o(f) = {fHA): A € F'} is a o-field on Q.

» Definition 2.23: (2, F, ;1) measure space, (', F') measurable
space, f : Q — Q' with o(f) C F. Then,

F o3 A = fu(A) = pu(fHA)) = u(f € A)

is the image measure of f under p.

If P is a probability measure, we call X, the distribution of X
under P.

» Proposition 2.25: f,u is a measure on F'.
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Lemma 3.2

» (', F') measurable space, f : Q — ', C' C F' with
o(C') = F'. Then o(f~1(C")) = f~1(a(C")).
» Proof: 'C': f~1(o(C")) is a o-algebra. So,

a(FH(C") S a(fH(a(C))) = FH(a(C))
'D": define
F ={A ea(@): FYA)ea(f 1))} Ca(C).

Again, Flisa o-algebra and C’' C F C o(C"). Thus,
F''=0o(C"). For A’ € o(C'), we find

FHA) € o(F7H(C),
which is equivalent to f~1(a(C’)) C o(f71(C")).
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Definition 3.3

> (Q,F), (,F') measurable spaces and f : Q — .

1.

2.

f is F/F'-measurable if f~1(F') C F. We define

o(f) := f~1(F’) the o-algebra generated by f.

If (, F,P) is a probability space and X : Q — ' measurable,
then X is called an Q'-valued random variable. The image

measure X, P from Definition 2.23 is called the distribution of
X.

(Y, F') = (R,B(R)), and f is F/F'-measurable, we say

that f is (Borel-)measurable.

CIf F =14 for AC Q, then f is called indicator function. If

f= 22:1 ckla, forci,...,ch € R pairwise different and
Ai,..., A, CQ, then f is called simple.
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Examples

» f:w+ w is measurable, since f~1(F) = F.

> (2,0) and (2.0) topological spaces, f : Q — Q'
continuous. Then f is measurable.
Indeed: Since f~1(O') C O. From Lemma 3.2,

FHB(Q)) = F~(a(0") = o(FH(O') € 0(0) = B(Q).

» A function f : Q — {0,1} is measurable if and only if
FH({1}) € F. Then, o(f) = {0, F1({1}), (F*({1}))<, 2}

» For a non-measurable set/function, see Example 2.27 in the
manuscript.
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Examples for random variables

» (E, r) metric space, X an E-valued random variable on some
probability space, Y an E-valued random variable on another
probability space. If X,P = Y,Q, X and Y are identically
distributed and we write X ~ Y.

» Let (Xi)ies family of random variables on a probability space.
The distribution of ((X;)ic/)«P is called the joint distribution
of (Xi)ier
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Lemma 3.6

> If ¢’ C F' with 7' = o(C’), then f : Q — Q' is
F/F'-measurable if and only if f~1(C") C F.

> If f:Q — Q' is measurable and g : Q" — Q" is measurable,
then gof : Q — Q" is measuarble.

» A real-valued function f (i.e. f : Q — R) is measurable (with
respect to F/B(R)) if and only if {w : f(w) < x} € F for all

x € Q.

> A simple function f = >~} _; cx1a, with pairwise different
Ci,...,cp € Rand Aq,..., A, C Q is measurable if and only if
Ai,...,Ap e F.

» Proof of 1.:

f~YF") = fYo(C)) = o(F1(C") C o(F) = F. This
means that f is F/F’-measurable.
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Algebraic structures of measurability

» Lemma 3.7: Let f, g, fi,f,... be measurable. Then, the

following are measurable: fg, af + bg for a,b € R, f/g if
g(w) #0 for all w € Q,

sup fy, inf f,, limsupf,, liminff,.
neN neN n—o0 n—o0

» In particular, f*,f~, |f| are measurable.

» Proof: Consider 1)(w) := (f(w), g(w)) measruable. Then,
(x,y) — ax + by, (x,y) — xy, (x,y) — x/y are continuous,
hence measurbale.

2. for measurability of sup,cy f,. Write, for x € R,

{w s sup fp(w) < x} = ﬁ {w C fa(w) < x} cF.

neN

n=1

eF
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Approximation by simple functions

» Theorem 3.9: f : Q — R, measurable. Then there is
fi, fa, -+ : Q — R of simple functions with f, 1 f.

» Proof: Write
fo(w)=nA27"2"f(w)] T

by construction. Furthermore, w +— [2"f(w)] is measurable
according to Lemma 3.6.
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Outline

» Goal: For a measure u, define for many functions f : Q — R

i) = [ = [ Feu(de).
» Initial step: For f = 14 for some A € F, define

ulf] = u(A).
» Definition 3.10: For f = ;" ; ckla, with
Cly...3Cm>0,A1,..., A, € F, define

plf] = Z cit(Ai)-

> Final step: f measurbale: use approximating sequence of
simple functions.
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Simple properties

> Lemma 3.12: f, g non-negative, simple functions and « > 0.
Then,

plaf + bg] = au[f] + bulg], f <g=plf] < ulgl

> If f =14 for A€ F, note that f is in general not piecewise
continuous. In particular, [ f(x)dx does not exist in the sense
of Riemann.
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Integral of non-negative measurable functions

» Definition 3.14: (Q, F, 1) measue space, f : Q — R
measurable. Define

)= [ = [ Fua)
:=sup{ulg] : g simple, non-negative, g < f}.

» Definition 3.17: f : Q — R measurable. Then f is said to be
p-integrable if u[|f|] < oo,

)= [ Fn(do) i= [ = ulf ']~ ulf )
» For A € F we also write

plf, Al == /A fdu = pf[fla).
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Proposition 3.16
> f,g,fi,f,---: Q — R, measurable. Then,
L. If f < g, then p[f] < plg].
2. If
fot £, then p[f] T plf].
3. If a,b >0, then plaf + bg] = au[f] + bulg].
» Proof: 1. clear.
2. Since fi, fp, ... < f, limy_o0 plfn] = sup,en plfa] < pff].
For the reverse it suffices to show

gl < sup plfn)

for all simple functions g = 3" ; ckla, < f. Let
B :={f,>(1—¢)g}. Since f, 1 fand g <f, U2 ;B; =9
m

plfa]l = pl(1 —e)glp:] = Z(l — &)ckp(Ax N By)
k=1

T2 (1 — @) ckp(Ak) = (1 - )ulgl.
k=1
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Some properties
» Define B
LHu) = {f Q= R:pllf]f] < oo}

> Let f,g € LY(u1). Then

1. The integral is monotone, i.e.

f < g almost everywhere = ulf] < plgl-
In particular,
Wl < plIf1]-
2. The integral is linear, so if a, b € R, then af + bg € £(11) and
plaf + bg] = ap[f] + bulg].
3. g € LYf.p), then go f € LY(1) and
plg o f] = foplgl-
» Proof: 4. for simple, non-negative functions g. Note
gof=3"1cklrca, hence

plgo f1 = cu(f € Ay) = ckfup(AL) = fupulg].

universitatfreiburg
k=1 k=1



Properties almost everywhere

» f:Q — R, measurable.

1. f =0 almost everywhere iff u[f] = 0.
2. If p[f] < oo, then f < oo almost everywhere.

» Proof: 1. Let N:={f >0} € F.
=" u(N) =0, so

0 < ulf] = plf,N] = lim pfn A £.N] < lim pufn, N] = 0.
'<'Let N, :={f >1/n}, so N, T N and nf > 1y,, i.e.

0= ulf] > Lu(Nn).

This means that p(N,) = 0 and therefore

w(N) = u(UsZ; Na) = 0 by o-sub-additivity of .

2. Let A:={f = oo}. Since flf>p > nlfsp,

1(A) = pl1a] < pllesn] < 2ulf, 1rsn] < Lulf] == 0.
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Lebesgue and Riemann integral

> f:R — R be a piece-wise constant function, i.e.

[e.9]

f(X): Z ajl[xj-_hxj)(x)

j=—o0

f : [a, b] — R is Riemann-integrable if \[|f|] < oo and there
are piece-wise constant functions f, < f < f,F and
A[fit = £,7] 2222 0. Then, the Riemann integral and
Lebesgue integral then coincide.

> f:R — Ris called Riemann-integrable if f1ly is
Riemann-integrable for all compact intervals K C R and

A[f1[—p,n] converges.
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Riemann integrability

» Proposition 3.23: f : [0, t] — R piecewise continuous. Then f
is integrable, Riemann-integrable, and

)‘[f] = nll_U;o kz: f()’n,k)(xn,k - Xn,k—l)
=1

for 0 = x50 < ... < Xpk, = t with
maxy |Xnk — Xnk—1] ———> 0 and any xp k-1 < Yok < Xo k-

» Proof for continuous f. Choose €, | 0 and x,0 < ... < Xp 4,
such that K C [x,0, Xn,] and
MaXy, , <y<x |F(Xnk—1) — F(¥)| < &n. Then, find piecewise
constant f,", £, with £, < f < £, and ||f,;F — f, || < ep
Integrability and Riemann-integrability follows. The formula
follows from uniform approximation of the function f.
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Lebesgue and Riemann integral

» f =1[p,1jng is not Riemann-integrable.
_ (=phi=

> f(t) fr— Then
2n
—1)kt1 1 1 1
k=1
"1 1 n 1
_sz—l_ﬂ_z(zk—mk
k=1 k=1

So, f is Riemann-integrable. However

Il = Z% ~ .
k=1

So, |f| is not integrable, hence f is not Lebesgue-integrable.
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Outline

» Theorem 3.25 for Riemann integral:
f,f,fy,...: [a,b] = R be piecewise continuous with

f, I F uniformly. Then

b b
/ fio(x)dx =22 f(x)dx.
a

a

» Theorem 3.26, monotone convergence:
fi, fa,--- € LY(u) and f : Q — R measurable with f, 1 f
almost everywhere. Then,

Jim_p[fa] = plf].

» Theorem 3.28, dominated convergence:
f,g, fi,fh, - : Q— R measurable with |f,| < g almost
everywhere, lim,_, f, = f almost everywhere, and
g € LY(p). Then,

Jim pulfo] = plf].
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Monotone Convergence

» Theorem 3.26, monotone convergence:
fi,f2,--- € LY(u) and f : Q — R measurable with f, 1 f
almost everywhere. Then,

Jim_ p[fa] = plf].

» Proof: N € F be such that u(N) =0 and f,(w) 1 f(w) for
wée N. Set g, :== (fy — f1)1ye > 0. This means that
gn T (f — f1)1ne =: g and with Proposition 3.16.2,

n—oo

plfn] = plh] + plgn) —— plf] + ulg] = plf].
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Lemma von Fatou

» Theorem 3.27: f1,f, - : Q — @+ measurable. Then,
Illm)&fu[fn] > u[llnrllorlf fn].
» Proof: For all k > n, fi > inf;>, f; and thus, for all n,
. < .
inf nlfi] = uinf £l
So,
o _ . S . R
lim inf pu[f;] sup inf ulfil = sup plinf fi] = plliminf f,]

by monotone convergence.
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Dominated convergence

» Theorem 3.28: f,g,f,f,---: Q — R measurable with
|fa| < g almost everywhere, lim,_,o f, = f almost
everywhere, and g € £1(x). Then,

Jim pulfo] = plf].

» Proof: Wlog, |f,| < g and lim,_, f, = f everywhere. Use
Fatou's lemma and g — f,,g +f >0, i.e.

plg + f] < liminf ulg + fo] = plg] + lim inf u[fy],
wulg — ] < liminf u[g — ] = wnlg] — limsup u[f].
n—oo n—o0o
After subtracting p[g],
plf] < liminf p[f,] < limsup p[fa] < p[f].
n—oo n—o00
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Example

» \: Lebesgue measure, f, =1/n. Then f, | 0, but

liminf u[fs] = 00 >0 = p[0] = pliminf f,].

universitatfreiburg



Example

|fa] < g € LY(p) is necessary (here for \ Lebesgue measure)
> fo=n-1j1/n 27 50 - 1g. There is no g € £L1()\) with
f, < g and

lim ulfp] =1#0=py[ lim f].
n—oo n—oo
> fo=n-1j1/2 —— 00 1lo. Thereis f, < g € L1()) with

sup fr(x) =sup{n:x < 1/n’} = [—} < — =:g(x),
neN

and

lim plfy] = lim & =0=u[0] = p[ lim f,].

n—oo
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Definition of an LP-space

> For 0 < p < oo, set
LP:= LP(u) := {f : Q@ — R measurable with ||f]|, < oo}
for
1fllp = (ullFIPDP, 0<p<oo (1)

and
[f]loo == inf{K : u(|f| > K) = 0}.

universitatfreiburg



Holder's inequality

» Proposition 4.2.1: f, g be measurable, 0 < p, g, r < oo such
that £ + 2 = 7. Then,

Ifell- < lIfllpllglly ~ (Holder inequality)

> Proof: p= oo or [[f|[, =0, ||[f]l, = o0, [|gllqg = 0 or
llg|lqg = oo: ok, so assume any other case and define

Fof  s_ &

fi=—, g = .
1l llell 4

To show ||fg]|, < 1. Convexity of the exponential function:
(xy)" = exp (Lplogx + Lqlogy) < £xP+ Ly9,

and thus

17EI = nl(7E)] < £ulF?] + Sule = 1.
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Minkowski's inequality

» Proposition 4.2.2: For 1 < p < o0,

I +gllp < lIfllp + llgllp-

» Proof: p=1, p= oo clear. Else, let g = p/(p — 1) and
r=1/p+1/q =1, so Holder's inequality gives
If + gl < ullfl-|f +glP~ 1]+ ullgl - |f +glP~"]
<|Ifllp - 1I(F +&)PHlq + llgllo - 1I(F + )P lq
= (IIfllo +llgllo) - IIf + g5,

since

_ _ 1 —1
1(F + &)P M lq = [|(F + g)9P D19 = ||(F + g)P) P/
—||f + g5

universitaﬁrlé)ib\l/}%ng by ||f + g||p ~ gives the result.



p — LP is decreasing

» 4 finite, 1 < r < q <oo. Then L9(u) C L (p).

» Counterexample for p infinite: \ Lebesgue measure,
fix L 1,9, Then f € L2(N), but f ¢ LY(N).

» Proof: g = oo clear; otherwise since ||1||, < oo,

Il = 1L ] < [[2]p - |[F]lg < 00

1 _ 1 1
for5—7—5>0
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LP-convergence

» Definition 4.6: f,f,... in LP(u) converges to f € LP(u) iff
o — Fllp =22 0.

We write f;, 2222, f.

» Proposition 4.7: u be finite, 1 < r < g < oo and
Fof, o, € L9 IF £, Z22% 0o f, then also f, Z—5 0 f.

» Proof: clear since ||f —gl|, < ||f — gl|q-
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Completeness of LP

» Proposition 4.8: p > 1,f1,f,... be a Cauchy sequence in LP.
Then there is f € LP with ||f,, — ||, —— 0.

» Proof: €1,e5,... summable. There is nj for each k with
||fm — fallp < ek for all m,n > ny. In particular,

o0 o0
ZankH - fnka < Zﬁk < 00.
k=1

k=1
Monotone convergence and Minkowski give

H Z ‘fnkJrl - fnk’
k=1

In particular Y07 |fp,,, — fa,| < 0o almost everywhere, i.e.
for almost all w € Q, the sequence fp, (w), fn,(w), ... is
Cauchy in R, hence converges to some f. Fatou gives

o — Fllp < liminf ||fo, — follp < sup ||fm — ful [, —— 0,
k—o0 m>n

o0
‘ SZank+1_fnkHP<oo'
Pok=1

universitat-frieourg n—oo, oo f.
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A scalar product

» Apparently, (,.,): £2 x £? — R, given by

(f.g) = plfegl,

is bi-linear, symmetric and positive semi-definite.

» Complete normed spaces with a scalar product are called
Hilbert spaces. So, £? is a Hilbert space.

» Write f L g iff u[fg] =0
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Parallelogram identity

» Lemma 4.9: For f,g € £?,
I + gl + IIf — gl> = 2|71 +2lg|*.
» Proof:

I +gll? +IIf gl =(f+g,f+g)+(f—gf—g)
= 2(f,f) +2(g,g) = 2/If||* +2l|g|>

universitatfreiburg



Decomposition

» Proposition 4.10: M closed, linear subspace of £2 and f € £2.
Then, there is an almost everywhere unique decomposition
f=g+hwithge M h 1l M.

> Proof: For f € L2, define dr := infzem{||f — gl||}. Choose

n—o0

81,82, .- with [|f — gn|| —— df. Then

4d12+ Hgm_gnH2 < |’2f—gm_gn|‘2+ Hgm_gnH2

=2/|f —gml® +2If — &l == 4d}.
Thus ||gm — &nl|? =220, ie. ||gn — g|| === 0 for some

g € M with ||f —g|| =df. For t >0,/ € M,
df <||f — g+l = df +2t(f — g, ) + £[/]|*.

Since this applies to all t, (f — g,/) =0, ie. f—g L M.

Uniqueness: Let f =g+ h=g' + H. Then, g — g’ € M as

wellasg—g'=h—H L M,ie g—g' 1L g—g'. This
universitatfineans ||g — g’'|| = (e —g’,g —g') =0, ie. g=g'



Theorem of Riesz-Fréchet

» Proposition 4.11: F : £2 — R is continuous and linear iff
there exists some h € £2 with

F(f) = (f, h), fer?

Then, he L2 is unique.
» Proof: '« linearity clear. Continuity:

[(If =1, B[ < [If = 1| - |||

For uniqueness, let (f, hy — hp) =0 for all f € £2:in
particular, with f = hy — hy

||h1 — ha|? = (hy — hp, by — h2) =0,

thus h; = hy p-almost everywhere.
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Theorem of Riesz-Fréchet
» Proposition 4.11: F : £2 — R is continuous and linear iff
there exists some h € £2 with
F(f) = (f,h), fe L’
Then, he L2 is unique.
» Proof: '=": For F =0 choose h = 0. For F # 0,
M = F~1{0} is closed and linear, so for f' € £2\ M, write
=g+ Hh with g € Mand ¥ L M and
F(h)=F(f')— F(g') = F(f') #0. Set h" = ( 7. so that
A" L M and F(h") =1 and for f € £?
F(f — F(f)h') = F(f) — F(f)F(h") = 0.
ie. f—F(f)W € M, in particular < (F)N', h")y = (f,h") and
F(f) = ||h1H2 : <F(f)h,/7 h/,> = Hh//HQ <f h/,> = <fa ﬁ)

Now, the assertion follows with h := H:/l/,ll2
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Theorem of Radon-Nikodym

» Corollary 4.17: p, v be o-finite measures. Then, v has a
density with respect to u if and only if v < pu.

» Theorem 4.16 (Lebesgue decomposition theorem): 1, v be
o-finite measures. Then v can be written uniquely as

V=1U;+Us with Vg < Vs L .

The measure v, has a density with respect to u that is
pu-almost everywhere finite.
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Absolute continuity

» Definition 4.13: v has a density f with respect to p if for all
Ac F,
V(A) = plf: Al
We write f:g—Zand v=f-pu.
» v is absolutely continuous with respect to i if all u-zero sets

are also v-zero sets. We write v < . If both v < v and
u << v, then u and v are called equivalent.

» 1 and v are called singular if there is an A € F with u(A) =0
and v(A°) = 0. We write p1 L v.

universitatfreiburg



Chain rule

» Lemma 4.14: Let 1 be a measure on F.
1. Let v be a o-finite measure. If gy and g are densities of v
with respect to u, then gy = g», u-almost everywhere.
2. Let f: Q— R, and g : Q — R be measurable. Then,

(f - w)lg] = nlfel,

if one of the two sides exists.

» Proof for finite u: 1. Set A:= {g1 > g»}. Since both g1 and
g» are densities of v with respect to p,

0 =v(A) —v(A) = nler — &2 Al.

Since only g1 > g» is possible on A, g1 = g» is 1apu-almost
everywhere.
2. For g = 15 with A € F, write

(f - p)lgl = (f - w)(A) = plf, Al = plfla] = plfegl.

universitatfréihiggextends up to the general case.



Examples
> For p € R, 02 € Ry
1 (x — p)?
fN(,u,UQ)(X) = W exp ( — 7)
and X is the one-dimensional Lebesgue measure. Then,

fN(u,02) - A is @ normal distribution.
» For v >0, let

fexp('y)(X) = Lo+ ye .

Then, fop(y) - A is called exponential distribution with
parameter vy. From the chain rule,

. R 1
E[X] = ft-exp('y) : )\[|d] = /0 ve T Xxdx = ... = ;

> Let u be the counting measure on Ny and
’Yk
f(k):e’VF, k=0,1,2,....

Then f - i is the Poisson distribution for the parameter ~.
universitatfreiburg



Theorem 4.16

> Let u,v be o-finite measures. Then v can be written uniquely
as
V=1U;+Us with Vg < Vs L .

The measure v, has a density with respect to u that is
pu-almost everywhere finite.
» Proof for finite u,v. The map

{Ez(u +v) —R)

f — v[f]

is continuous. By Riesz-Frechet, there is h € £?(u + v) with
v[f] = (1 + v)[fh], v[f(1 — h)] = ulfh], feLlL(u+v).
For f = 1(p<0y and f = 1yp>1), we find

0<v{h<0}=(p+v)[hh<0] <O,
0<u[h;{h>1}]=v[l—h{h>1}<0.
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Theorem 4.16

> Let u,v be o-finite measures. Then v can be written uniquely
as

V=1U;+Us with Vg < Whyvs L .

The measure v, has a density with respect to u that is
p-almost everywhere finite.

» Proof: Let E := h_l{l}, and f = 1g. Then,
W(E) = pulh; E] = v[1 — h; E] = 0.
Define v = v, + vs and vs L p using
va(A) =v(A\ E), vs(A) =v(ANE),
To show: v, < p, so choose A € F with u(A) =0, so
V[1— h; A\ E] = u[h; A\ E] = 0.

universitatfidige h < 1 on A\ E, v,(A) =v(A\ E) =0, i.e. v, < p.



Theorem 4.16

» Let u, v be o-finite measures. Then v can be written uniquely
as
V=1U;+ Vs with vy L Vs Lo

The measure v, has a density with respect to u that is
pu-almost everywhere finite.

» Proof: Define v = v, + vs and vs L i using
va(A) =v(A\ E), vs(A) =v(ANE),

To show: g := ﬁlQ\E is the density of v, with respect to u:

nlg: Al = u[%:/\\ E} =v(A\ E) = v,(A).

Uniqueness: let v = v, + vs = V5 + s Choose A,AN € A with
vs(A) = u(A°) = vs(A) = pu(A°) = 0. Then,

Va=1lp gz Va=1lyz V=17 Va="ra

universitatfreiburg



Corollary 4.17

» Let u, v be o-finite measures. Then, v has a density with
respect to w if and only if v < pu.

» Proof: '=": clear. '<=": Lebesgue decomposition Theorem,
there is a unique decomposition v = v, + vs with
vy < Vs L . Since v < p, vs = 0 must apply and
therefore v = v,. In particular, the density of v exists with
respect to u.

universitatfreiburg
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Product spaces

» For an index set | and a family of sets (£2;);c/, define the
product space

Q= XQ; = {(wi)ier : wi € Qi}

iel
For H C J C I, define projections

T X Qi = X Q;,
ied ieH

and Ty = 7r,f_, and m; := Ty, | € l.
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Topology on product spaces

» Definition 5.1: Let (€2, O;)jc; be a family of topologcal
spaces. Then,

0:=0(C), C:= {A,- x X QielAe (9,-}
JElj#i
is called the product topology on Q.

» All 7;,i € | are continuous with respect to the product
topology.
Indeed, for A; € O,

T HA)=Aix X QecCCoO.
13j#i

universitatfreiburg



The product o-algebra

» Definition 5.3: Let (Q;, F;)ic/ be a family of measurable
spaces. Then,

RFi=0(E), €= {A,- x X QiielAe f,-}
i€l JELjF#i
is the product-c-algebra on Q.
We denote the Borel o-algebra of O by B(Q).
» Projections are measurable.
» Lemma 5.5: Let F; = B(;). For arbitrary /, we have
Xic; B(Q2i) € B(Q2). If I'is countable and (Q;, O;)jc; are
separable metric spaces, then B(Q2) = @;c, B(£2;).
» Proof: Clearly, C C O(C), C C € and £ C o(C). So,

Q) B(Q:) = 0(€) = o(C) € a(O(C)) = B(Q).

icl
If I is countable and all spaces are separable, every A € O(C)
is a countable union of sets in C, so O(C) C ¢(C). Hence,

universitatfreiburg U(O(C)) C U(U(C)) = U(C)



Products of generators

» Lemma 5.7: Let (§2;, ;) be measurable spaces and
=X, i
1. [ finite, H; semi-ring with o(H;) = F;. Then

H::{XA,-:A,-GH,-,/EI}

iel

is semi-ring with o(H) = &), Fi-
2. [ arbitrary, H; a N-stable generator of F;, i € I. Then

Ho={XAx X Q:JCrl,AieHicl}
ied iel\J

is N-stable generator of @), Fi.
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o-algebra on R

» Corollary 5.8: Let Q =R9. For a, b € R?, denote

(g,Q] = (al, bl] X -+ X (ad, bd].

Then,
H:={(ab]:2,bcQa<b}
is a semi-ring with o(H) = B(RY).
» Proof: H is a semi-ring that generates ®f‘l:1 B(R) = B(RY)

universitatfreiburg
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Definition 5.9

(Q, Fi), i = 1,2 measurable spaces.

> r: Q1 X Fp — Ry is a transition kernel from (1, F1) to
(2, F2) if
(i) for all wy € Q4, the map k(wi,.) is a measure on F, and
(ii) for all Ay € F» k(.,A2) is Fi-measurable.

P> A transition kernel is called o-finite if there is a sequence
Qo1,Q22, -+ € F2 with Qo 1 Q2 and sup,,, (w1, Q2n) < 00
foralln=1,2,...

» It is called stochastic kernel or Markov kernel if for all
w1 € Q3 the map k(w1,.) is a probability measure.

universitatfreiburg



Example: Markov chain

> Q= {wi,...,wy} finite and P = (pjj)i<ij<n with p; € [0,1]
and >, pj = 1. Then,

n
K(wi,.) = Zp,-j O
j=1

is a Markov kernel from (£2,2%) to (Q,29).

» P is the transition matrix of a homogeneous, Q-valued
Markov chain.

universitatfreiburg



» (Q;,Fi),i = 1,2 be measurable spaces, i a o-finite measure
on Fp, k a o-finite transition kernel from (Q1, F1) to (2, F2)

» Lemma 5.11: Let f: €3 x Q — R, be F1 ® F» measurable.
Then,

w1 — K(wi, . )[f] = /n(wl,dwz)f(wl,cm)

is F1-measurable.

» Theorem 5.12: There is exactly one o-finite measure © ® x on
(Ql X Qo, F1 ® Fz) with

(,u®/<c>(A>< B) :/Au(dw1)</8/<;(w1,dw2)>.
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Fubini's Theorem

» Theorem 5.13: (Q;, Fj), i, k and ;1 ® Kk as above. Let
f: Q1 — Q — R, measurable with respect to F1 ® F.
Then,

/fd(u®/~c) = /u(dw1)<//~c(w1,dwz)f(wl,w2)>-

Equality also applies if f: Q1 x Q» — R is measurable with
[1fld(p® k) < co.

» Corollary 5.14: Let Q = Q1 x Q, and H; C 2% be a semi-ring,
and pj : H; — R4 o-finite and, o-additive, i = 1,2. Then
there is exactly one measure p1 ® pp on o(H1) ® o(Hz) with

1 ® p2(Ar x A2) = pa(Ar) - p2(Az).

For f : 2 — R measurable, the value of the integral does
not depend on the order of integration.
universitatfreiburg



Definition and Example

> \®9 is d-dimensional Lebesgue measure. Let

Xy

o) = Gy

Then, for every x € R
[ M@ty <o,
since f(x,.) € £Y()\) and f(x,y) = —f(x, —y). Therefore,

iterated integrals are 0. However, |f| is not integrable because
f has a non-integrable pole in (0,0).

universitatfreiburg



Convolutions of measures 1

» Definition 5.17: Let 1, o be o-finite measures on B(R) and
(1 ® pp their product measure. Let S(x1, x2) := x1 + x2.
Then S,(p1 ® -+ ® uy) is the convolution of 1, pp and is
denoted by 1 * uo.

> 71,72 = 0, tpoi(yy) and fipoi(+,)- Then,

. Zl ) 2 s
HPoi(y1) * HPoi(72) m+n=k min! k

_ Ze (m+v) 102 g ’72 " P

m!(k — m)
() (1 12)* k\ 1™y
(1 "/2) 1 2 5 < > 1 2
e I — k
PA Z (71 + 72)*

= HPoi(y1+72)-

universitatfreiburg



Convolutions of measures 2

» Lemma 5.19: A measure on B(R), u=f,-Aand v =f, -\
Then,p* v = f4,, - A with

() = / F(s)E (£ — $)A(d5).

> fN(MLU%) and fN(“27U§). Let M= U1 —+ 2 and 0-2 = O’% + 0‘%.
Then, the density of N(u1,02) * N(u2,03) is

1 / (
x————— [ exp ( —
2my /0203 207 203

Yy - M1)2 (X—y—uz)z)dy

2
1 (y-26-pp 6-n?(5-3)
=— [exp ( - 2 — 2 2 )dy
2no 2072 202
1 _ 2
_ exp < _(x—) >
V2mo? 202
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Purpose

> Let X1, X5, ... be coin tosses, i.e. random variables with values
in {0,1}. What is the joint distribution of (X1, Xa,...)?

> Let (Xt)tec[0,00) S0me random process. What is its
distribution?

» — We need to consider probability measures on (uncountably)
infinite product spaces!!

> We will do this using our usual construction with outer
measures based on a projective family.

» Recall fur H C J the projection wﬁ Q) - ol
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Projective family and limit

> (Q, F) measurable space, / arbitrary.

» Definition 5.21: A family (P,),c,s, where P is a probability
measure on F7 := F®/ is called projective if

Py=(n#)Ps, HCJCrI.

If there exists a measure P; on F! := F®/ with
Py = (m)«Py, JCr
then we call Py its projective limit and write

P/ = lim P,.
JCel

universitatfreiburg



Uniqueness

» Remark 5.23: Projective limits are unique:

Indeed:
W ::{><A,- x X QA€ FiiecdCy /},
i€l iel\J
is a N-stable generator of F®!. If P, = I'@KH P,. and

A=Xic A X Xiep € H,

P/(A) = PJ<><A,~>.

ic)
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Existence

| 2

>

Theorem 5.24: Let Q be Polish and (P,),c,s a projective
family. Then, the projective limit I@ch/ P exists.
Proof: H’ semi-ring as above. For

A= XiEJ Ai X XiGI\JQ < H/, define
1(A) == P,(X Aj)

ied
and use the compact system
K:={XKix X Q:JC¢l, K; compact} C H.
jed icl\J
To show: p is inner regular with respect to K.
Then. According to Theorem 2.10, u is o-additive.
Furthermore, 1(Q') = 1, so  can be uniquely extended to a
measure P on o(H) = F' according to Theorem 2.16.
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Existence

» Theorem 5.24: Let Q be Polish and (P,),c,s a projective
family. Then, the projective limit I'mJCfI P exists.
» To show: u is inner regular with respect to K.

For e > 0 and j € J, there is K; C A; cp with P;(A; \ Kj) < ¢

Then,
n(( XA X @)\ (X kix X 9))
= (AN X R)) > X 2)
=P,((X A)\ (X K))
jed jed
<P,(UA\ k) x X Q)
jed i#j
<SPV K) % X Q) =SP4\ K) < e,
jed i#j jeJ
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