universitätfreiburg

Measure theory for probabilists Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024WS_measure_theory.html <https://www.stochastik.uni-freiburg.de/>

Tutorial 5 - Set systems II

Exercise 1 (4 Points). Let $\mathcal{C} \subseteq 2^{\Omega}$. Show that $\mathcal{C} \subseteq \sigma(\mathcal{C})$

Solution.

Let F be any σ -field that contains C. Since F is a σ -field and contains C, it must include all the sets in C. For every $A \in \mathcal{C}$, since A is in F (because F contains C), we have $A \in \mathcal{F}$. Since this holds for any σ -field F that contains C, we can conclude that:

$$
A \in \bigcap \{ \mathcal{F} \supseteq \mathcal{C} : \mathcal{F} \text{ is a } \sigma\text{-field} \}
$$

which is exactly the definition of $\sigma(\mathcal{C})$. Thus, $A \in \sigma(\mathcal{C})$. Since A is arbitrary, $\mathcal{C} \subset \sigma(\mathcal{C})$

Exercise 2 (4 Points). Show that $\lambda(\mathcal{C})$ is a Dynkin-system.

Solution. Let $\mathcal{C} \subseteq 2^{\Omega}$, and recall that:

$$
\lambda(\mathcal{C}) := \bigcap \{ \mathcal{D} \supseteq \mathcal{C} : \text{ Dynkin system} \}
$$

We need to show that $\lambda(\mathcal{C})$ satisfies the conditions in Definition 1.11:

(i) Containment of Ω : Since every Dynkin system $\mathcal D$ that contains $\mathcal C$ must contain Ω (by property (i) of Dynkin systems), it follows that:

$$
\Omega \in \mathcal{D} \implies \Omega \in \lambda(\mathcal{C})
$$

(ii) Set-Difference Stability: Let $A, B \in \lambda(\mathcal{C})$ with $A \subseteq B$. Since A, B belong to $\lambda(\mathcal{C})$, they are in all Dynkin systems D that contain C . For any such Dynkin system D , by the property of Dynkin systems, we have:

 $B \setminus A \in \mathcal{D}$

Since this holds for all Dynkin systems containing \mathcal{C} , it follows that:

$$
B \setminus A \in \lambda(\mathcal{C})
$$

(iii) Closure under Countable Increasing Unions: Let $A_1, A_2, \ldots \in \lambda(\mathcal{C})$ such that $A_1 \subseteq$ $A_2 \subseteq A_3 \subseteq \ldots$ Each A_n is in every Dynkin system D that contains C . By the property of Dynkin systems, since (A_n) is an increasing sequence, we have: $\bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$. This holds for all Dynkin systems D containing C, thus: $\bigcup_{n=1}^{\infty} A_n \in \lambda(C)$

Exercise 3 (4 Points).

Let $\Omega = \{1,...,n\}$ for some even $n \in \mathbb{N}$ and \mathcal{D} be the set of subsets of even cardinality. Show that $\mathcal D$ is a Dynkin system, but it is not a σ -algebra.

Solution.

Since $|\Omega|$ is even, $\Omega \in \mathcal{D}$ is even. If $A, B \in \mathcal{D}$ with $A \subset B$, then surely $|B \setminus A| = |B| - |A|$ is even and therefore $B \setminus A \in \mathcal{D}$. Finally, let $A_1, A_2, \ldots \in \mathcal{D}$ be an ascending sequence. Then, since $|\Omega| < \infty$, it also holds that $|\bigcup_{k\geq 1} A_k| \leq |\Omega| < \infty$. In particular, there exists *n* such that $\bigcup_{k\geq 1} A_k = \bigcup_{k=1}^n A_k = A_n \in \mathcal{D}$. $\overline{\mathcal{D}}$ is therefore a Dynkin system according to Definition 1.11.

However, $\mathcal D$ cannot be \cap -stable and therefore cannot be a σ -algebra (see Table 1). This is because, since $|\mathcal{D}| \geq 2$ we can find three different $\omega_1, \omega_2, \omega_3 \in \Omega$. Then $\{\omega_1, \omega_2\} \in \mathcal{D}$ and $\{\omega_2, \omega_3\} \in \mathcal{D}$ but not $\{\omega_1, \omega_2\} \cap \{\omega_2, \omega_3\} = \{\omega_2\}.$

Exercise 4 $(3+1=4 \text{ Points}).$

- (a) Prove that the intersection of rings is a ring and the intersection of σ -fields is a σ -field. Does the same hold for semi-rings/topologies?
- (b) Give a counterexample that shows that, in general, the union of two σ -fields is not necessarily a σ -field.

Solution.

- (ai) Let $\mathcal{R}_1,\mathcal{R}_2,\ldots$ be a collection of rings. We need to show that the intersection $\mathcal{R} =$ $\bigcap_i \mathcal{R}_i$ is also a ring.
	- Closure under Union: Let $A,B \in \mathcal{R}$. Then $A \in \mathcal{R}_i$ and $B \in \mathcal{R}_i$ for all i. Since each \mathcal{R}_i is a ring, we have: $A \cup B \in \mathcal{R}_i$ for all i. Therefore, $A \cup B \in \mathcal{R}$.
	- Closure under Set Differences: Let $A, B \in \mathcal{R}$. Then $A, B \in \mathcal{R}_i$ for all i. Since each \mathcal{R}_i is a ring, we have: $A \setminus B \in \mathcal{R}_i$ for all i. Therefore, $A \setminus B \in \mathcal{R}$.

Thus, $\mathcal R$ is a ring.

- (aii) Let $\mathcal{F}_1,\mathcal{F}_2,\ldots$ be a collection of σ -fields. We need to show that the intersection $\mathcal{F} = \bigcap_i \mathcal{F}_i$ is also a σ -field.
	- Containment of Ω : Since $\Omega \in \mathcal{F}_i$ for all *i*, we have $\Omega \in \mathcal{F}$.
	- Closure under Complements: Let $A \in \mathcal{F}$. Then $A \in \mathcal{F}_i$ for all i. Since each \mathcal{F}_i is a σ -field, we have $A^c \in \mathcal{F}_i$ for all *i*. Therefore, $A^c \in \mathcal{F}$.
	- Closure under Countable Unions: Let $A_1, A_2, \ldots \in \mathcal{F}$. Then $A_n \in \mathcal{F}_i$ for all i and for all n. Since each \mathcal{F}_i is a σ -field, we have: $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_i$ for all i. Therefore, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Thus, $\mathcal F$ is a σ -field. However, the intersection of semi-rings is not necessarily a semi-ring. While semi-rings are closed under finite intersections and differences, the intersection of two semi-rings may not satisfy the closure properties required for semirings. For example, consider $X := \{1,2,3,4\}$ and $\mathcal{H}_1 := \{\emptyset, \{1\}, \{4\}, \{2,3\}, \{1,2,3,4\}\}\$ and $\mathcal{H}_2 := \{\emptyset, \{1\}, \{2\}, \{3,4\}, \{1,2,3,4\}\}\$. \mathcal{H}_1 and \mathcal{H}_2 are obviously semi-rings. However,

$$
\mathcal{H}_1 \cap \mathcal{H}_2 = \{ \emptyset, \{1\}, \{1,2,3,4\} \}
$$

is not a semi-ring. Lastly, the intersection of topologies is not necessarily a topology. A topology is closed under arbitrary unions and finite intersections, but the intersection of two topologies may not include all unions of sets from both topologies. Formally, by definition A.1(3), let \mathcal{O}_1 and \mathcal{O}_2 be topologies on a set Ω . Define the intersection of these topologies as:

$$
\mathcal{O} = \mathcal{O}_1 \cap \mathcal{O}_2 = \{ A \in 2^{\Omega} \mid A \in \mathcal{O}_1 \text{ and } A \in \mathcal{O}_2 \}
$$

Since $\emptyset, \Omega \in \mathcal{O}_1$ and \mathcal{O}_2 , it follows that:

$$
\emptyset \in \mathcal{O} \quad \text{and} \quad \Omega \in \mathcal{O}
$$

Let $A, B \in \mathcal{O}$. Then $A \in \mathcal{O}_1$ and $A \in \mathcal{T}_2$, and similarly for B. Since both \mathcal{O}_1 and \mathcal{T}_2 are closed under finite intersections, we have:

$$
A \cap B \in \mathcal{O}_1 \quad \text{and} \quad A \cap B \in \mathcal{O}_2
$$

Let I be an arbitrary index set and $A_i \in \mathcal{O}$ for each $i \in I$. This means $A_i \in \mathcal{O}_1$ and $A_i \in \mathcal{O}_2$ for all i. Since both \mathcal{O}_1 and \mathcal{O}_2 are closed under arbitrary unions, we have:

$$
\bigcup_{i \in I} A_i \in \mathcal{O}_1 \quad \text{and} \quad \bigcup_{i \in I} A_i \in \mathcal{O}_2
$$

Therefore, $\bigcup_{i\in I} A_i \in \mathcal{O}$. Since the intersection $\mathcal{O} = \mathcal{O}_1 \cap \mathcal{O}_2$ satisfies all three properties of a topology, we conclude that the intersection of any collection of topologies on a set is also a topology.

(b) Let $X := \{a,b,c\}$ and $\mathcal{F}_1 := \{\emptyset, \{a\}, \{b,c\}, \{a,b,c\}\}\$ and $\mathcal{F}_2 = \{\emptyset, \{b\}, \{a,c\}, \{a,b,c\}\}.$ Then,

 $\mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \{a\}, \{b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\$

is not a σ -algebra since $\{a\} \cup \{b\} = \{a,b\} \notin \mathcal{F}_1 \cup \mathcal{F}_2$.