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Tutorial 5 - Set systems II

Exercise 1 (4 Points).

Let C ⊆ 2Ω. Show that C ⊆ σ(C)

Solution.
Let F be any σ-field that contains C. Since F is a σ-field and contains C, it must include
all the sets in C. For every A ∈ C, since A is in F (because F contains C), we have A ∈ F .
Since this holds for any σ-field F that contains C, we can conclude that:

A ∈
⋂

{F ⊇ C : F is a σ-field}

which is exactly the definition of σ(C). Thus, A ∈ σ(C). Since A is arbitrary, C ⊆ σ(C)

Exercise 2 (4 Points).

Show that λ(C) is a Dynkin-system.

Solution.
Let C ⊆ 2Ω, and recall that:

λ(C) :=
⋂

{D ⊇ C : Dynkin system}

We need to show that λ(C) satisfies the conditions in Definition 1.11:

(i) Containment of Ω: Since every Dynkin system D that contains C must contain Ω
(by property (i) of Dynkin systems), it follows that:

Ω ∈ D =⇒ Ω ∈ λ(C)

(ii) Set-Difference Stability: Let A,B ∈ λ(C) with A ⊆ B. Since A,B belong to λ(C),
they are in all Dynkin systems D that contain C. For any such Dynkin system D,
by the property of Dynkin systems, we have:

B \A ∈ D

Since this holds for all Dynkin systems containing C, it follows that:

B \A ∈ λ(C)

(iii) Closure under Countable Increasing Unions: Let A1,A2, . . . ∈ λ(C) such that A1 ⊆
A2 ⊆ A3 ⊆ . . .. Each An is in every Dynkin system D that contains C. By the prop-
erty of Dynkin systems, since (An) is an increasing sequence, we have:

⋃∞
n=1An ∈ D.

This holds for all Dynkin systems D containing C, thus:
⋃∞

n=1An ∈ λ(C)
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Exercise 3 (4 Points).

Let Ω = {1,...,n} for some even n ∈ N and D be the set of subsets of even cardinality.
Show that D is a Dynkin system, but it is not a σ-algebra.

Solution.
Since |Ω| is even, Ω ∈ D is even. If A,B ∈ D with A ⊂ B, then surely |B \A| = |B| − |A|
is even and therefore B \ A ∈ D. Finally, let A1,A2, . . . ∈ D be an ascending sequence.
Then, since |Ω| < ∞, it also holds that |

⋃
k≥1Ak| ≤ |Ω| < ∞. In particular, there exists

n such that
⋃

k≥1Ak =
⋃n

k=1Ak = An ∈ D. D is therefore a Dynkin system according to
Definition 1.11.

However, D cannot be ∩-stable and therefore cannot be a σ-algebra (see Table 1). This
is because, since |D| ≥ 2 we can find three different ω1, ω2 ,ω3 ∈ Ω. Then {ω1, ω2} ∈ D
and {ω2, ω3} ∈ D but not {ω1, ω2} ∩ {ω2, ω3} = {ω2}.

Exercise 4 (3+1= 4 Points).

(a) Prove that the intersection of rings is a ring and the intersection of σ-fields is a
σ-field. Does the same hold for semi-rings/topologies?

(b) Give a counterexample that shows that, in general, the union of two σ-fields is not
necessarily a σ-field.

Solution.

(ai) Let R1,R2, . . . be a collection of rings. We need to show that the intersection R =⋂
iRi is also a ring.

• Closure under Union: Let A,B ∈ R. Then A ∈ Ri and B ∈ Ri for all i.
Since each Ri is a ring, we have: A ∪B ∈ Ri for all i. Therefore, A ∪B ∈ R.

• Closure under Set Differences: Let A,B ∈ R. Then A,B ∈ Ri for all i.
Since each Ri is a ring, we have: A \B ∈ Ri for all i. Therefore, A \B ∈ R.

Thus, R is a ring.

(aii) Let F1,F2, . . . be a collection of σ-fields. We need to show that the intersection
F =

⋂
iFi is also a σ-field.

• Containment of Ω: Since Ω ∈ Fi for all i, we have Ω ∈ F .

• Closure under Complements: Let A ∈ F . Then A ∈ Fi for all i. Since
each Fi is a σ-field, we have Ac ∈ Fi for all i. Therefore, A

c ∈ F .

• Closure under Countable Unions: Let A1,A2, . . . ∈ F . Then An ∈ Fi for
all i and for all n. Since each Fi is a σ-field, we have:

⋃∞
n=1An ∈ Fi for all i.

Therefore,
⋃∞

n=1An ∈ F .

Thus, F is a σ-field. However, the intersection of semi-rings is not necessarily a
semi-ring. While semi-rings are closed under finite intersections and differences, the
intersection of two semi-rings may not satisfy the closure properties required for semi-
rings. For example, consider X := {1,2,3,4} and H1 := {∅,{1},{4},{2,3},{1,2,3,4}}
and H2 := {∅,{1},{2},{3,4},{1,2,3,4}}. H1 and H2 are obviously semi-rings. How-
ever,

H1 ∩H2 = {∅,{1},{1,2,3,4}}
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is not a semi-ring. Lastly, the intersection of topologies is not necessarily a topology.
A topology is closed under arbitrary unions and finite intersections, but the inter-
section of two topologies may not include all unions of sets from both topologies.
Formally, by definition A.1(3), let O1 and O2 be topologies on a set Ω. Define the
intersection of these topologies as:

O = O1 ∩ O2 = {A ∈ 2Ω | A ∈ O1 and A ∈ O2}

Since ∅,Ω ∈ O1 and O2, it follows that:

∅ ∈ O and Ω ∈ O

Let A,B ∈ O. Then A ∈ O1 and A ∈ T2, and similarly for B. Since both O1 and T2
are closed under finite intersections, we have:

A ∩B ∈ O1 and A ∩B ∈ O2

Let I be an arbitrary index set and Ai ∈ O for each i ∈ I. This means Ai ∈ O1 and
Ai ∈ O2 for all i. Since both O1 and O2 are closed under arbitrary unions, we have:⋃

i∈I
Ai ∈ O1 and

⋃
i∈I

Ai ∈ O2

Therefore,
⋃

i∈I Ai ∈ O. Since the intersection O = O1 ∩O2 satisfies all three prop-
erties of a topology, we conclude that the intersection of any collection of topologies
on a set is also a topology.

(b) Let X := {a,b,c} and F1 := {∅,{a},{b,c},{a,b,c}} and F2 = {∅,{b},{a,c},{a,b,c}}.
Then,

F1 ∪ F2 = {∅,{a},{b},{a,c},{b,c},{a,b,c}}

is not a σ-algebra since {a} ∪ {b} = {a,b} /∈ F1 ∪ F2.
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