universitätfreiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024WS_measure_theory.html https://www.stochastik.uni-freiburg.de/

Tutorial 5 - Set systems II

Exercise 1 (4 Points). Let $\mathcal{C} \subseteq 2^{\Omega}$. Show that $\mathcal{C} \subseteq \sigma(\mathcal{C})$

Exercise 2 (4 Points). Show that $\lambda(\mathcal{C})$ is a Dynkin-system.

Exercise 3 (4 Points).

Let $\Omega = \{1,...,n\}$ for some even $n \in \mathbb{N}$ and \mathcal{D} be the set of subsets of even cardinality. Show that \mathcal{D} is a Dynkin system, but it is not a σ -algebra.

Exercise 4 (3+1=4 Points).

- (a) Prove that the intersection of rings is a ring and the intersection of σ -fields is a σ -field. Does the same hold for semi-rings/topologies?
- (b) Give a counterexample that shows that, in general, the union of two σ -fields is not necessarily a σ -field.