universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024WS_measure_theory.html https://www.stochastik.uni-freiburg.de/

Tutorial 4 - Set systems I

Exercise 1 (4 Points).

Let $\Omega = \{1, \ldots, 5\}$. Determine the generated σ -algebra of:

- (a) $\mathcal{E} := \{\{1,2,3,4\}\},\$
- (b) $\mathcal{F} := \{\{1,2,3\},\{4\}\},\$
- (c) $\mathcal{G} := \{1, 2, 3, 4\},\$
- (d) $\mathcal{H} := \emptyset$.

Exercise 2 (2+2=4 Points).

Let $f : X \to Y$ be a mapping and let $\mathcal{A} \subset \mathcal{P}(X)$, $\mathcal{B} \subset \mathcal{P}(Y)$. Decide (with reasons) whether the following statements are correct:

- (a) If \mathcal{A} is a σ -algebra, then $\{B \subset Y \mid f^{-1}(B) \in \mathcal{A}\}$ is also a σ -algebra.
- (b) If \mathcal{B} is a σ -algebra, then $f^{-1}(\mathcal{B}) := \{f^{-1}(B) \mid B \in \mathcal{B}\}$ is also a σ -algebra.

Exercise 3 (4 Points).

Let Ω be an uncountable set and

 $\mathcal{A} = \{ A \subset \Omega \mid A \text{ or } A^c \text{ is countable} \}.$

Show that \mathcal{A} is a σ -algebra.

Exercise 4 (4 Points).

Find an example of a Dynkin system that is not a semiring.