universität freiburg

Measure theory for probabilists

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024WS_measure_theory.html https://www.stochastik.uni-freiburg.de/

Tutorial 2 - Review of topology and compactness

Exercise 1.

Let $X = \{a, b, c, d\}$. Which of the following are topologies for X?

- (i) $\{\emptyset, X, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}, \{a,b\}\}$
- (ii) $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}\}$
- (iii) $\{\emptyset, X, \{a, c, d\}, \{b, c, d\}\}$

Can you further give an example of two subsets A and B of \mathbb{R} such that

$$A \cap B = \emptyset, \quad \overline{A} \cap B \neq \emptyset, \quad A \cap \overline{B} \neq \emptyset.$$

Solution.

- (i) Yes. Easy to check!
- (ii) No! $\{a\} \cup \{b,d\} = \{a,b,d\}$ is in fact not included in the set.
- (iii) No! $\{a,c,d\} \cap \{b,c,d\} = \{c,d\}$ is not included in the set.

It holds that $\overline{\mathbb{Q}} = \overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$. Thus, $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$ works. Another example is $A = [0,1) \cup [2,3)$ and B = [1,2).

Exercise 2.

Prove that a subset of a topological space (Ω, \mathcal{O}) is open if and only if its compolement in Ω is closed.

Solution. Clear! Let $O \subseteq \Omega$. By definition, $\Omega \setminus O$ is closed if and only if $O = \Omega \setminus (\Omega \setminus O)$ is open.

Exercise 3 (4 Points).

Let A and B be compact subsets of a metric space (X,r). Show that $A \cap B$ and $A \cup B$ are also compact.

Solution.

It is clear that A and B are closed (See Lemma A.8). Furthermore, $A \cap B$ is closed because $A^c \cup B^c = (A \cap B)^c$ which is open. With Corollary A.10, we are done. (Closed subsets of compact sets are compact!). On the other hand, suppose $A \cup B \subseteq \bigcup_{i \in I} O_i$. That is, $O_i, i \in I$ is an open cover of $A \cup B$. Since A and B are compact, there exists finite $J_A \subset I$ and $J_B \subset I$ such that $A \subseteq \bigcup_{i \in J_A} O_i$ and $B \subseteq \bigcup_{i \in J_B} O_i$. Clearly, $J_A \cup J_B \subseteq I$ and $A \cup B \subseteq \bigcup_{i \in J_A \cup J_B} O_i$.

Exercise 4 (4 Points).

Consider the cofinite topology \mathcal{O} on \mathbb{Z} defined as follows: a subset $\mathcal{O} \subset \mathbb{Z}$ is an open set if and only if $\mathcal{O} = \emptyset$ or \mathcal{O}^c is finite. Show that \mathcal{O} is a topology on \mathbb{Z} .

Solution. We shall verify the three axioms in Definition A.1(3):

- (i) By definition, \emptyset is an open set so $\emptyset \in \mathcal{O}$ and \mathbb{Z} is open since \mathbb{Z}^c is finite.
- (ii) Let $O_1, O_2 \in \mathcal{O}$. We consider two cases: if either O_1 or O_2 is empty, then $O_1 \cap O_2 = \emptyset$, which is in \mathcal{O} . If both O_1 and O_2 are non-empty, then both are complements of finite sets. Therefore, we have O_1^c and O_2^c are finite. Thus, $(O_1 \cap O_2)^c = O_1^c \cup O_2^c$, which is a union of finite sets and hence is finite
- (iii) Let $\{O_i\}_{i \in I} \subseteq \mathcal{O}$ be an arbitrary collection of open sets. The union of the O_i will only be empty if all O_i are empty. Suppose that there exists some $i \in I$ such that O_i is nonempty, $\left(\bigcap_{i \in I} O_i\right)^c = \bigcup_{i \in I} O_i^c$. If $O_i = \emptyset$ for some $i \in I$, $O = \emptyset$ because of the intersection. Again, we consider two cases: If any O_i is \emptyset , then the union $\bigcup_{i \in I} O_i$ may or may not be \emptyset . If all O_i are non-empty, then each O_i is the complement of a finite set. The complement of the union is $\left(\bigcup_{i \in I} O_i\right)^c = \bigcap_{i \in I} O_i^c$; if we take the union of an infinite number of non-empty open sets, it will still be open in the cofonite topology. In particular $\mathbb{Z} \setminus (O_1 \cup O_2 \cup O_3 \cup \ldots) = \left(\bigcup_{i \in I} O_i\right)^c$.