universität freiburg

Measure theory for probabilists

Lecture: Prof. Dr. Peter Pfaffelhuber Assistance: Samuel Adeosun https://pfaffelh.github.io/hp/2024WS_measure_theory.html https://www.stochastik.uni-freiburg.de/

Tutorial 2 - Review of topology and compactness

Exercise 1.

Let $X = \{a, b, c, d\}$. Which of the following are topologies for X?

- (i) $\{\emptyset, X, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}, \{a,b\}\}$
- (ii) $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}\}$
- (iii) $\{\emptyset, X, \{a, c, d\}, \{b, c, d\}\}$

Can you further give an example of two subsets A and B of \mathbb{R} such that

 $A\cap B=\emptyset, \quad \overline{A}\cap B\neq \emptyset, \quad A\cap \overline{B}\neq \emptyset.$

Exercise 2.

Prove that a subset of a topological space (Ω, r) is open if and only if its complement in Ω is closed.

Exercise 3 (4 Points).

Let A and B be compact subsets of a metric space (X,r). Show that $A \cap B$ and $A \cup B$ are also compact.

Exercise 4 (4 Points).

Consider the cofinite topology \mathcal{O} on \mathbb{Z} defined as follows: a subset $O \subset \mathbb{Z}$ is an open set if and only if $O = \emptyset$ or $O = O^c$ is finite. Show that \mathcal{O} is a topology in \mathbb{Z} .