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Theorem of Radon-Nikodým

I Corollary 4.17: µ, ν be σ-finite measures. Then, ν has a
density with respect to µ if and only if ν � µ.

I Theorem 4.16 (Lebesgue decomposition theorem): µ, ν be
σ-finite measures. Then ν can be written uniquely as

ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.



Absolute continuity

I Definition 4.13: ν has a density f with respect to µ if for all
A ∈ F ,

ν(A) = µ[f ;A].

We write f = dν
dµ and ν = f · µ.

I ν is absolutely continuous with respect to µ if all µ-zero sets
are also ν-zero sets. We write ν � µ. If both ν � µ and
µ� ν, then µ and ν are called equivalent.

I µ and ν are called singular if there is an A ∈ F with µ(A) = 0
and ν(Ac) = 0. We write µ ⊥ ν.



Chain rule
I Lemma 4.14: Let µ be a measure on F .

1. Let ν be a σ-finite measure. If g1 and g2 are densities of ν
with respect to µ, then g1 = g2, µ-almost everywhere.

2. Let f : Ω→ R+ and g : Ω→ R be measurable. Then,

(f · µ)[g ] = µ[fg ],

if one of the two sides exists.

I Proof for finite µ: 1. Set A := {g1 > g2}. Since both g1 and
g2 are densities of ν with respect to µ,

0 = ν(A)− ν(A) = µ[g1 − g2;A].

Since only g1 > g2 is possible on A, g1 = g2 is 1Aµ-almost
everywhere.
2. For g = 1A with A ∈ F , write

(f · µ)[g ] = (f · µ)(A) = µ[f ,A] = µ[f 1A] = µ[fg ].

This extends up to the general case.



Examples
I For µ ∈ R, σ2 ∈ R+

fN(µ,σ2)(x) :=
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
and λ is the one-dimensional Lebesgue measure. Then,
fN(µ,σ2) · λ is a normal distribution.

I For γ ≥ 0, let

fexp(γ)(x) := 1x≥0 · γe−γx .
Then, fexp(γ) · λ is called exponential distribution with
parameter γ. From the chain rule,

E[X ] = fexp(γ) · λ[id] =

∫ ∞
0

γe−γxxdx = ... =
1

γ
.

I Let µ be the counting measure on N0 and

f (k) = e−γ
γk

k!
, k = 0, 1, 2, ....

Then f · µ is the Poisson distribution for the parameter γ.



Theorem 4.16
I Let µ, ν be σ-finite measures. Then ν can be written uniquely

as
ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.

I Proof for finite µ, ν. The map{
L2(µ+ ν) → R)

f 7→ ν[f ]

is continuous. By Riesz-Frechet, there is h ∈ L2(µ+ ν) with

ν[f ] = (µ+ ν)[fh], ν[f (1− h)] = µ[fh], f ∈ L2(µ+ ν).

For f = 1{h<0} and f = 1{h>1}, we find

0 ≤ ν{h < 0} = (µ+ ν)[h; h < 0] ≤ 0,

0 ≤ µ[h; {h > 1}] = ν[1− h; {h > 1} ≤ 0.



Theorem 4.16
I Let µ, ν be σ-finite measures. Then ν can be written uniquely

as
ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.

I Proof: Let E := h−1{1}, and f = 1E . Then,

µ(E ) = µ[h;E ] = ν[1− h;E ] = 0.

Define ν = νa + νs and νs ⊥ µ using

νa(A) = ν(A \ E ), νs(A) = ν(A ∩ E ),

To show: νa � µ, so choose A ∈ F with µ(A) = 0, so

ν[1− h;A \ E ] = µ[h;A \ E ] = 0.

Since h < 1 on A \ E , νa(A) = ν(A \ E ) = 0, i.e. νa � µ.



Theorem 4.16
I Let µ, ν be σ-finite measures. Then ν can be written uniquely

as
ν = νa + νs with νa � µ, νs ⊥ µ.

The measure νa has a density with respect to µ that is
µ-almost everywhere finite.

I Proof: Define ν = νa + νs and νs ⊥ µ using

νa(A) = ν(A \ E ), νs(A) = ν(A ∩ E ),

To show: g := h
1−h1Ω\E is the density of νa with respect to µ:

µ[g ;A] = µ
[ h

1− h
;A \ E

]
= ν(A \ E ) = νa(A).

Uniqueness: let ν = νa + νs = ν̃a + ν̃s Choose A, Ã ∈ A with
νs(A) = µ(Ac) = ν̃s(Ã) = µ(Ãc) = 0. Then,

νa = 1
A∩Ã · νa = 1

A∩Ã · ν = 1
A∩Ã · ν̃a = ν̃a.



Corollary 4.17
I Let µ, ν be σ-finite measures. Then, ν has a density with

respect to µ if and only if ν � µ.
I Proof: ’⇒’: clear. ’⇐’: Lebesgue decomposition Theorem,

there is a unique decomposition ν = νa + νs with
νa � µ, νs ⊥ µ. Since ν � µ, νs = 0 must apply and
therefore ν = νa. In particular, the density of ν exists with
respect to µ.


