Probability Theory 20. Regular version of conditional distribution

Peter Pfaffelhuber

June 25, 2024

↓
↓
↓

Problem statement

► Target: $\mathcal{G} \subseteq \mathcal{F}$; Define $\mathsf{P}(.|\mathcal{G})(\omega)$ for P-almost all $\omega \in \Omega$.

▶ Problem: For $A_1, A_2, \dots \in \mathcal{F}$ with $A_i \cap A_j = \emptyset$ and $B \in \mathcal{G}$

$$E\left[P\left(\bigcup_{n=1}^{\infty} A_{n}|\mathcal{G}\right);B\right] = E\left[E[1_{\bigcup_{n=1}^{\infty} A_{n}}|\mathcal{G}];B\right] = E[1_{\bigcup_{n=1}^{\infty} A_{n}};B]$$
$$= E\left[\sum_{n=1}^{\infty} 1_{A_{n}};B\right] = \sum_{n=1}^{\infty} E[1_{A_{n}};B] = \sum_{n=1}^{\infty} E\left[P(A_{n}|\mathcal{G});B\right]$$
$$= E\left[\sum_{n=1}^{\infty} P(A_{n}|\mathcal{G});B\right]$$
so
$$P\left(\bigcup_{n=1}^{\infty} A_{n}|\mathcal{G}\right) = \sum_{n=1}^{\infty} P(A_{n}|\mathcal{G})$$

P-almost everywhere. The exception null set depends depends on the sequence $A_1, A_2, ...$, but there are uncountably many such sequences.

・ロト・日本・モート ヨー うへつ

Regular version of the conditional distribution

Let (Ω', F') be a measurable space. κ : Ω × F' → [0, 1] is a stochastic kernel (from F) to (Ω', F') if

1. $\kappa(\omega, .)$ for all ω is a probability measure on \mathcal{F}' ;

2. $\kappa(., A')$ for all $A' \in \mathcal{F}'$ is \mathcal{F} -measurable.

Definition 11.20: Y rv, G ⊆ F a σ-algebra. A stochastic kernel κ_{Y,G} from G to (Ω', F') is called *regular version of the conditional distribution* of Y, given G, if

$$\kappa_{Y,\mathcal{G}}(\omega,B) = \mathsf{P}(Y \in B|\mathcal{G})(\omega)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for P-almost all ω and every $B \in \mathcal{F}'$.

universität freiburg

Existence of the regular version of the conditional distribution

▶ Theorem 11.22: (E, r) complete, separable metric space, Y

an E-valued rvs.

For $\mathcal{G} \subseteq \mathcal{F}$ there exists a regular version of the conditional distribution of Y given \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ