Probability Theory 19. Conditional independence

Peter Pfaffelhuber

June 25, 2024

 290

Conditional probability and independence

\blacktriangleright Lemma 11.12:

 $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ independent $\iff P(G|\mathcal{H}) = P(G), \; G \in \mathcal{G}.$

Proof: \Rightarrow : For $G \in \mathcal{G}, H \in \mathcal{H}$

 $E[P(G), H] = P(G)P(H) = P(G \cap H) = E[1_G, H] = E[P(G | H), H].$

' \Leftarrow ': With P(G|H) = P(G), it follows for $H \in \mathcal{H}$

 $P(G \cap H) = E[1_G, H] = E[P(G | H), H] = E[P(G), H] = P(G) \cdot P(H).$

KORKARYKERKER POLO

Example for conditional independence

Let
$$
(X_t)_{t=0,1,2,...
$$
 be a Markov chain. Simple Example:
\n $Y_1, Y_2,...$ *uiv with* $P(Y_1 = 1) = 1 - P(Y_1 = -1) = p$ for a
\n $p \in [0, 1]$. Further $X_t = Y_1 + \cdots + Y_t$. Then
\n $P(X_{t+1} = k | X_0, ..., X_t) = P(X_{t+1} = k | X_t) = \begin{cases} p, & k = X_t + 1, \\ q, & k = X_t - 1. \end{cases}$

 \blacktriangleright For Markov chains:

Given X_t , X_{t+1} is independent of X_0, \ldots, X_{t-1} .

Or in terms of σ -algebras: Given $\sigma(X_t)$, $\sigma(X_{t+1})$ is independent of $\sigma(X_0, \ldots, X_{t-1})$.

universität freiburg

Conditional independence

▶ Definition 11.14: Let $\mathcal{G} \subseteq \mathcal{F}$. A family $(\mathcal{C}_i)_{i \in I}$ is called

independently given G, if

$$
\mathbb{E}\Big[\mathbb{1}\Big(\bigcap_{j\in J} A_j\Big)\Big|\mathcal{G}\Big] = \mathsf{P}\Big(\bigcap_{j\in J} A_j|\mathcal{G}\Big) = \prod_{j\in J} \mathsf{P}(A_j|\mathcal{G}) = \prod_{j\in J} \mathsf{E}[\mathbb{1}_{A_j}|\mathcal{G}]
$$
\n
$$
\text{applies to all } J \subseteq_f I \text{ and } A_j \in C_j, j \in J.
$$

 \blacktriangleright Examples:

If $G = \mathcal{F}$, then $(C_i)_{i \in I}$ is always independent given \mathcal{G} .

$$
\blacktriangleright \ \ \text{For} \ \mathcal{G} = \{ \emptyset, \Omega \},
$$

 $(\mathcal{C}_i)_{i\in I}$ independently given $\mathcal{G} \iff (\mathcal{C}_i)_{i\in I}$ independent.

universität freiburg

Example: Random probability of success

 $U \sim U([0, 1])$; given U let $Y_1, ..., Y_n \sim B(n, U)$ be are independent and $X = Y_1 + \cdots + Y_n \sim B(n, U)$. Then for $I \subset [0, 1]$ and $v_1 + \cdots + v_n = k$ $E[1_{Y_1=y_1,...,Y_n=y_n}, U \in I] = P(Y_1=y_1,...,Y_n=y_n, U \in I)$

$$
= \int_I u^k (1-u)^{n-k} du = \mathsf{E}[U^k (1-U)^{n-k}, U \in I],
$$

so

$$
P(Y_1 = y_1, \ldots, Y_n = y_n | U) = U^k (1 - U)^{n-k}
$$

and

$$
P(Y_1 = y_1, ..., Y_n = y_n | U) = \prod_{i=1}^n P(Y_i = y_i | U).
$$

universität freiburg

KORKAR KERKER SAGA

Conditional probability and conditional independence

▶ Proposition 11.17: $K, G, H \subseteq F$. Then,

 G, H independently given $K \iff P(G|\sigma(H,K)) = P(G|K)$, $G \in G$.

Proof with $G \in \mathcal{G}, H \in \mathcal{H}, K \in \mathcal{K}$: \Rightarrow

 $E[P(G|\mathcal{K}), H \cap \mathcal{K}] = E[P(G|\mathcal{K})P(H|\mathcal{K}), \mathcal{K}] = E[P(G \cap H|\mathcal{K}), \mathcal{K}]$

 $= P(G \cap H \cap K) = E[1_G, H \cap K] = E[P(G | \sigma(H, K)), H \cap K].$

The following is a ∩-stable Dynkin system:

 $\mathcal{D} := \{A \in \sigma(\mathcal{H}, \mathcal{K}) : E[P(G|\mathcal{K}), A] = P(G \cap A)\}\$

 \Leftarrow : P(G \cap H|K) = E(1_G1_H|K) = E(E[1_G| σ (H, K)]1_H|K)

 $= E(P(G|\sigma(H,K))1_H|K) = E[P(G|K), H|K] = P(G|K) \cdot P(H|K).$

universitätfreiburg

Example: Markov chains

$$
\blacktriangleright
$$
 Markov chain $(X_t)_{t=0,1,2,...}$, i.e.

$$
P(\underbrace{X_{t+1} \in A}_{\in \mathcal{G}} | \sigma(\underbrace{\sigma(X_t)}_{=: \mathcal{K}}, \underbrace{\sigma(X_1, ..., X_{t-1})}_{=: \mathcal{H}})) = P(\underbrace{X_{t+1} \in A}_{\in \mathcal{G}} | \underbrace{\sigma(X_t)}_{=: \mathcal{K}}).
$$

KE K K Ø K K E K K E K V R K K K K K K K K

Thus X_{t+1} is independent of $X_1, ..., X_{t-1}$ given X_t .

universitätfreiburg