Probability Theory 17. Introduction to conditional expectation

Peter Pfaffelhuber

June 25, 2024

◀ㅁ▶◀@▶◀들▶◀들▶

 Ω

Some elementary calculations

• For
$$
X \in \mathcal{L}^1
$$
 and $A, G \in \mathcal{A}$ let
\n
$$
E[X|G] := \frac{E[X; G]}{P(G)}, \qquad P(A|G) := \frac{P(A \cap G)}{P(G)}
$$

the conditional probability and conditional expectation.

► Goal: Define
$$
E[X|\mathcal{G}]
$$
 for $\mathcal{G} \subseteq \mathcal{A}$ σ -algebra.

In Let $\mathcal{H} = \{G_1, G_2, \dots\} \subseteq \mathcal{F}$ be a partition of Ω and $\mathcal{G} = \sigma(\mathcal{H})$, $\mathsf{E}[X|\mathcal{G}](\omega) := \sum_{\alpha=1}^{\infty}$ $E[X|G_i] \cdot 1_{G_i}(\omega)$. $i=1$ Further for $J \subseteq \mathbb{N}$ and $A = \bigcup_{j \in J} G_j \in \mathcal{G}$ E[E[X| \mathcal{G}]; A] $=$ E $\left\lceil \sum\limits_{n=1}^{\infty}\right\rceil$ $\mathsf{E}[X|G_i] 1_{G_i} 1_A \Big] = \sum_i$ $\mathsf{E}\big[\mathsf{E}[X|\mathsf{G}_j]\mathbb{1}_{\mathsf{G}_j}\big]$ $i=1$ j∈J $=$ \sum $E[X; G_j] = E[X; A].$ j∈J YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

universität freiburg

Random success probability

Example:
$$
U \sim U([0, 1])
$$
; given U let $X \sim B(n, U)$. Then

$$
P(X = k | U) = {n \choose k} U^{k} (1 - U)^{n-k}.
$$

Note that

$$
E[X|\{U < 1/2\}] = 2E[X1_{U < 1/2}] = 2\int_0^{1/2} \sum_{k=0}^n k \binom{n}{k} u^k (1-u)^{n-k} du
$$
\n
$$
= 2\int_0^{1/2} n u du = \frac{1}{4}n
$$

or

 $E[X|U] = nU$.

universität freiburg

Defining property of conditional expectation

 \triangleright Theorem 11.2: Let $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. Then there exists an almost surely unique linear operator $\mathsf{E}[.| \mathcal{G}] : \mathcal{L}^1 \to \mathcal{L}^1$ such that E $[X|\mathcal{G}]$ is for all $X\in\mathcal{L}^1$ a $\mathcal{G}\text{-measurable random variable}$ with

1. $E[E[X|\mathcal{G}];A] = E[X;A]$ for all $A \in \mathcal{G}$. Proof for $X \in \mathcal{L}^2$: Let $M := \{ Y \in \mathcal{L}^2 : \mathcal{G}\text{-measurable}\}\$ linear. There are as unique $Y \in M$, $Z \perp M$ with $X = Y + Z$. Set $E[X|\mathcal{G}] := Y$. Then, $X - E[X|\mathcal{G}] \perp M$, therefore

$$
E[X - E[X|\mathcal{G}]; A] = 0, \qquad A \in \mathcal{G}.
$$

universitätfreiburg

Defining property of the conditional expectation

 \blacktriangleright Theorem 11.2:

1. $E|E[X|\mathcal{G}]; A| = E[X; A]$ for all $A \in \mathcal{G}$.

2. E[$X|G| > 0$ if $X > 0$.

3. $E[|E[X|\mathcal{G}]|] \leq E[|X|].$

4. If $0 \le X_n \uparrow X$ for $n \to \infty$, then also $E[X_n|\mathcal{G}] \uparrow E[X|\mathcal{G}]$ in \mathcal{L}^1 .

Proof: 3. With $A := \{E[X|\mathcal{G}] > 0\} \in \mathcal{G}$,

 $\mathsf{E}[|\mathsf{E}[X|\mathcal{G}]|] = \mathsf{E}[\mathsf{E}[X|\mathcal{G}];\mathcal{A}] - \mathsf{E}[\mathsf{E}[X|\mathcal{G}];\mathcal{A}^c] = \mathsf{E}[X;\mathcal{A}] - \mathsf{E}[X;\mathcal{A}^c] \leq \mathsf{E}[|X|].$

2. With
$$
A = \{E[X|\mathcal{G}] \le 0\} \in \mathcal{G}
$$
,

$$
0 \geq E[E[X|\mathcal{G}];A] = E[X;A] \geq 0.
$$

4. Due to monotone convergence, $||X_n - X||_1 \xrightarrow{n \to \infty} 0$, also

 $\mathsf{E}[|\mathsf{E}[X_n|\mathcal{G}]-\mathsf{E}[X|\mathcal{G}]|]=\mathsf{E}[|\mathsf{E}[X_n-X|\mathcal{G}]|]\leq \mathsf{E}[|X_n-X|]\xrightarrow{n\to\infty} 0.$ universität freiburg **KORKARYKERKER POLO** Defining property of the conditional expectation

 \blacktriangleright Theorem 11.2:

1. $E|E[X|\mathcal{G}]; A| = E[X; A]$ for all $A \in \mathcal{G}$.

5. X is G-measurable \Rightarrow $E[XY|\mathcal{G}] = XE[Y|\mathcal{G}]$.

6. $E[XE[Y|\mathcal{G}]] = E[E[X|\mathcal{G}]Y] = E[E[X|\mathcal{G}]E[Y|\mathcal{G}]].$

7. If $\mathcal{H} \subseteq \mathcal{G}$, then $\mathsf{E}\big[\mathsf{E}[X|\mathcal{G}]|\mathcal{H}\big] = \mathsf{E}[X|\mathcal{H}].$

8. If X is independent of G, then $E[X|\mathcal{G}] = E[X]$.

Proof: 6. for $X, Y \in \mathcal{L}^2$. Then, $E[Y|\mathcal{G}] \in M$ and

 $E[(X - E[X|G])E[Y|G]] = 0.$

5. $A \in \mathcal{G}$ is $E[X|\mathcal{G}]1_A = X1_A$, thus $E[XY; A] = E[XE[Y|\mathcal{G}]; A]$ 7. For $A \in \mathcal{H} \subseteq \mathcal{G}$ is $E[E[X|\mathcal{G}]; A] = E[X; A] = E[E[X|\mathcal{H}]; A]$ 8. $A\in\mathcal{G}$ is $\mathsf{E}[\mathsf{E}[X\vert\mathcal{G}];A]=\mathsf{E}[X;A]=\mathsf{E}[X]\mathsf{E}[1_A]=\mathsf{E}\big[\mathsf{E}[X];A\big]$

universitätfreiburg

Jensen's inequality

▶ Proposition 11.4: *I* open interval, $G \subseteq A$ and $X \in L^1$ with values in I and $\varphi : I \to \mathbb{R}$ convex. Then,

 $E[\varphi(X)|\mathcal{G}] \geq \varphi(E[X|\mathcal{G}]).$

Uniform integrability and conditional expectation

► Lemma 11.5: Let $X \in \mathcal{L}^1$. Then, $(E[X|\mathcal{G}])_{\mathcal{G} \subseteq \mathcal{A}}$ is uniformly integrable.

Since $\{X\}$ is uniformly integrable, there is $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ monotonically increasing, convex with $\frac{\varphi(x)}{x} \xrightarrow{x \to \infty} \infty$ and $E[\varphi(|X|)] < \infty$. Thus

$$
\sup_{\mathcal{F}\subseteq \mathcal{A}} \mathsf{E}[\varphi(|\mathsf{E}[X|\mathcal{F}]|)] \leq \mathsf{E}[\varphi(|X|)] < \infty.
$$
 This means that $\{\mathsf{E}[X|\mathcal{F}]: \mathcal{F}\subseteq \mathcal{A} \text{ } \sigma\text{-algebra}\}$ uniformly integrable.

Dominated, monotone convergence

\n- For
$$
\mathcal{G} \subseteq \mathcal{F}
$$
 and $X_1, X_2, \dots \in \mathcal{L}^1$ with
\n- 1. $X_n \uparrow X \in \mathcal{L}^1$ almost surely or
\n- 2. $|X_n| \leq Y \in \mathcal{L}^1$ for all *n*, and $X_n \xrightarrow{n \to \infty} X$ almost surely.
\n- Then
\n

$$
E[X_n|\mathcal{G}] \xrightarrow{n\to\infty} {}_{as,L^1} E[X|\mathcal{G}].
$$

\n
$$
\mathcal{L}^1
$$
-convergence: $E[|E[X_n|\mathcal{G}]-E[X|\mathcal{G}]|] \le E[|X_n - X|] \to 0.$
\nas, 1.: $E[X_n|\mathcal{G}] \uparrow \sup_n E[X_n|\mathcal{G}]$ and for $A \in \mathcal{G}$
\n
$$
E[\sup_n E[X_n|\mathcal{G}]; A] = \sup_n E[E[X_n|\mathcal{G}]; A] = \sup_n E[X_n; A] = E[X; A].
$$

as, 2.: Use monotone convergence for

$$
Y_n := \sup_{k \ge n} X_k \downarrow \limsup_n X_n = X, \quad Z_n := \inf_{k \ge n} X_k \uparrow \liminf_n X_n = X
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

universität freiburg