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Some elementary calculations

I For X ∈ L1 and A,G ∈ A let

E[X |G ] :=
E[X ;G ]

P(G )
, P(A|G ) :=

P(A ∩ G )

P(G )

the conditional probability and conditional expectation.

I Goal: Define E[X |G] for G ⊆ A σ-algebra.

I Let H = {G1,G2, . . . } ⊆ F be a partition of Ω and G = σ(H),

E[X |G](ω) :=
∞∑
i=1

E[X |Gi ] · 1Gi
(ω).

Further for J ⊆ N and A =
⋃

j∈J Gj ∈ G

E[E[X |G];A] = E
[ ∞∑

i=1

E[X |Gi ]1Gi
1A

]
=
∑
j∈J

E
[
E[X |Gj ]1Gj

]
=
∑
j∈J

E[X ;Gj ] = E[X ;A].



Random success probability

I Example: U ∼ U([0, 1]); given U let X ∼ B(n,U). Then

P(X = k|U) =

(
n

k

)
Uk(1− U)n−k .

Note that

E[X |{U < 1/2}] = 2E[X1U<1/2] = 2

∫ 1/2

0

n∑
k=0

k

(
n

k

)
uk(1− u)n−kdu

= 2

∫ 1/2

0
nudu = 1

4n

or

E[X |U] = nU.



Defining property of conditional expectation

I Theorem 11.2: Let G ⊆ F be a σ-algebra. Then there exists

an almost surely unique linear operator E[.|G] : L1 → L1 such

that E[X |G] is for all X ∈ L1 a G-measurable random variable

with

1. E
[
E[X |G];A

]
= E[X ;A] for all A ∈ G.

Proof for X ∈ L2: Let M := {Y ∈ L2 : G-measurable} linear.

There are as unique Y ∈ M,Z ⊥ M with X = Y + Z . Set

E[X |G] := Y . Then, X − E[X |G] ⊥ M, therefore

E[X − E[X |G];A] = 0, A ∈ G.



Defining property of the conditional expectation

I Theorem 11.2:

1. E
[
E[X |G];A

]
= E[X ;A] for all A ∈ G.

2. E[X |G] ≥ 0 if X ≥ 0.

3. E
[
|E[X |G]|

]
≤ E[|X |].

4. If 0 ≤ Xn ↑ X for n→∞, then also E[Xn|G] ↑ E[X |G] in L1.

Proof: 3. With A := {E[X |G] ≥ 0} ∈ G,

E[|E[X |G]|] = E[E[X |G];A]−E[E[X |G];Ac ] = E[X ;A]−E[X ;Ac ] ≤ E[|X |].

2. With A = {E[X |G] ≤ 0} ∈ G,

0 ≥ E[E[X |G];A] = E[X ;A] ≥ 0.

4. Due to monotone convergence, ||Xn − X ||1
n→∞−−−→ 0, also

E[|E[Xn|G]− E[X |G]|] = E[|E[Xn − X |G]|] ≤ E[|Xn − X |] n→∞−−−→ 0.



Defining property of the conditional expectation

I Theorem 11.2:

1. E
[
E[X |G];A

]
= E[X ;A] for all A ∈ G.

5. X is G-measurable ⇒ E[XY |G] = XE[Y |G].

6. E
[
XE[Y |G]

]
= E

[
E[X |G]Y

]
= E

[
E[X |G]E[Y |G]

]
.

7. If H ⊆ G, then E
[
E[X |G]|H

]
= E[X |H].

8. If X is independent of G, then E[X |G] = E[X ].

Proof: 6. for X ,Y ∈ L2. Then, E[Y |G] ∈ M and

E[(X − E[X |G])E[Y |G]] = 0.

5. A ∈ G is E[X |G]1A = X1A, thus E[XY ;A] = E[XE[Y |G];A]

7. For A ∈ H ⊆ G is E[E[X |G];A] = E[X ;A] = E[E[X |H];A]

8. A ∈ G is E[E[X |G];A] = E[X ;A] = E[X ]E[1A] = E
[
E[X ];A

]



Jensen’s inequality

I Proposition 11.4: I open interval, G ⊆ A and X ∈ L1 with

values in I and ϕ : I → R convex. Then,

E[ϕ(X )|G] ≥ ϕ(E[X |G]).



Uniform integrability and conditional expectation

I Lemma 11.5: Let X ∈ L1. Then, (E[X |G])G⊆A is uniformly

integrable.

Since {X} is uniformly integrable, there is ϕ : R+ → R+

monotonically increasing, convex with ϕ(x)
x

x→∞−−−→∞ and

E[ϕ(|X |)] <∞. Thus

sup
F⊆A

E[ϕ(|E[X |F ]|)] ≤ E[ϕ(|X |)] <∞.

This means that {E[X |F ] : F ⊆ A σ-algebra} uniformly

integrable.



Dominated, monotone convergence

I For G ⊆ F and X1,X2, · · · ∈ L1 with

1. Xn ↑ X ∈ L1 almost surely or

2. |Xn| ≤ Y ∈ L1 for all n, and Xn
n→∞−−−→ X almost surely.

Then

E[Xn|G]
n→∞−−−→as,L1 E[X |G].

L1-convergence: E
[∣∣E[Xn|G]− E[X |G]

∣∣] ≤ E[|Xn − X |]→ 0.

as, 1.: E[Xn|G] ↑ supn E[Xn|G] and for A ∈ G

E
[

sup
n

E[Xn|G];A
]

= sup
n

E
[
E[Xn|G];A

]
= sup

n
E[Xn;A] = E[X ;A].

as, 2.: Use monotone convergence for

Yn := sup
k≥n

Xk ↓ lim sup
n

Xn = X , Zn := inf
k≥n

Xk ↑ lim inf
n

Xn = X


