Probability Theory 16. Multidimensional weak limits

Peter Pfaffelhuber

June 22, 2024

Multidimensional normal distribution

▶ Definition 10.14: μ ∈ ℝ^d, C ∈ ℝ^{d×d} symmetric, strictly positive definite. The *d*-dimensional normal distribution N_{μ,C} on ℝ^d has the density

$$f_{\mu,C}(x) = \frac{1}{\sqrt{(2\pi)^d \det(C)}} \exp\Big(-\frac{1}{2}(x-\mu)C^{-1}(x-\mu)^{\top}\Big).$$

As is well known

$$E[tX] = \sum_{i=1}^{d} t_i E[X_j] = t\mu^{\top},$$

$$V[tX] = \sum_{i,j=1}^{d} t_i t_j COV[X_i, X_j] = tCt^{\top} > 0,$$

$$E[e^{itX}] = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Properties

▶ Proposition 10.15: The following are equivalent:

1.
$$X \sim N_{\mu,C}$$
;
2. $tX^{\top} \sim N_{t\mu^{\top},tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$;
3. $\psi_X(t) = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$.
In each of these cases, for $C = AA^{\top}$
4. $X \stackrel{d}{=} AY + \mu$ for $Y \sim N_{0,l}$
5. $\mathbb{E}[X_i] = \mu_i$ for $i = 1, ..., d$
6. $\mathbb{COV}[X_i, X_j] = C_{ij}$ for $i, j = 1, ..., d$
4. for $t \in \mathbb{R}^d$
 $\mathbb{E}[e^{it(AY + \mu)^{\top}}] = e^{it\mu^{\top}} e^{-\frac{1}{2}tAA^{\top}t^{\top}} = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$

Properties

Proposition 10.15: The following are equivalent:

1.
$$X \sim N_{\mu,C}$$
;
2. $tX^{\top} \sim N_{t\mu^{\top},tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$;
3. $\psi_X(t) = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$.

 $1.\Leftrightarrow$ 3.: Clear, since characteristic functions are distribution-determining.

 $2. \Leftrightarrow 3.:$ The equation

$$\mathsf{E}[e^{itX}] = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$$

・ロト ・西ト ・ヨト ・ヨー うへぐ

can be used in both directions.

Cramér-Wold device

Proposition 10.17: Let X, X₁, X₂,... be rvs with values in R^d.
 Then,

$$X_n \stackrel{n \to \infty}{\Longrightarrow} X \qquad \Longleftrightarrow \qquad t X_n \stackrel{n \to \infty}{\Longrightarrow} t X, \quad t \in \mathbb{R}^d.$$

'⇒': Clear, because for $t \in \mathbb{R}^d$ the map $x \mapsto f(tx)$ is continuous.

' \Leftarrow ': Let π_i be the projection onto the *i*-th coordinate. Since $(\pi_i X_n)_{n=1,2,...}$ is tight for all *i*, $(X_n)_{n=1,2,...}$ is tight. Further $E[e^{itX_n}] \xrightarrow{n \to \infty} E[e^{itX}]$ for all $t \in \mathbb{R}^d$ and Proposition 10.27.

Multidimensional CLT

Theorem 10.18:
$$X_1, X_2, \dots$$
 iid, values in \mathbb{R}^d with
 $E[X_n] = \mu \in \mathbb{R}^d$ and $COV[X_{n,i}, X_{n,j}] = C_{ij}$ for $i, j = 1, \dots, d$
and $S_n = \sum_{i=1}^n X_i$. Then applies
 $\frac{S_n - n\mu}{\sqrt{n}} \xrightarrow{n \to \infty} X \sim N_{0,C}$.

For $t \in \mathbb{R}^d$ application of the ZGS to tX_1, tX_2, \ldots to. Thus

$$t \frac{S_n - n\mu}{\sqrt{n}} \stackrel{n \to \infty}{\Longrightarrow} tX.$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Since *t* was arbitrary, the statement follows.