Probability Theory 16. Multidimensional weak limits

Peter Pfaffelhuber

June 22, 2024

◀ㅁ▶◀@▶◀들▶◀들▶

 Ω

Multidimensional normal distribution

▶ Definition 10.14: $\mu \in \mathbb{R}^d$, $C \in \mathbb{R}^{d \times d}$ symmetric, strictly positive definite. The d-dimensional normal distribution $N_{\mu,C}$ on \mathbb{R}^d has the density

$$
f_{\mu,C}(x) = \frac{1}{\sqrt{(2\pi)^d \det(C)}} \exp\left(-\frac{1}{2}(x-\mu)C^{-1}(x-\mu)^{\top}\right).
$$

 \triangleright As is well known

$$
E[tX] = \sum_{i=1}^{d} t_i E[X_j] = t\mu^\top,
$$

\n
$$
V[tX] = \sum_{i,j=1}^{d} t_i t_j \text{COV}[X_i, X_j] = tCt^\top > 0,
$$

\n
$$
E[e^{itX}] = e^{it\mu^\top} e^{-\frac{1}{2}tCt^\top}.
$$

Properties

 \blacktriangleright Proposition 10.15: The following are equivalent:

1.
$$
X \sim N_{\mu, C}
$$
;
\n2. $tX^{\top} \sim N_{t\mu^{\top}, tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$;
\n3. $\psi_{X}(t) = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$.
\nIn each of these cases, for $C = AA^{\top}$
\n4. $X \stackrel{d}{=} AY + \mu$ for $Y \sim N_{0,I}$
\n5. $E[X_{i}] = \mu_{i}$ for $i = 1, ..., d$
\n6. $COV[X_{i}, X_{j}] = C_{ij}$ for $i, j = 1, ..., d$
\n4. for $t \in \mathbb{R}^{d}$
\n $E[e^{it(AY + \mu)^{\top}}] = e^{it\mu^{\top}} e^{-\frac{1}{2}tAA^{\top}t^{\top}} = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

Properties

 \triangleright Proposition 10.15: The following are equivalent:

\n- 1.
$$
X \sim N_{\mu, C}
$$
;
\n- 2. $tX^{\top} \sim N_{t\mu^{\top}, tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$;
\n- 3. $\psi_{X}(t) = e^{it\mu^{\top}} e^{-\frac{1}{2}tCt^{\top}}$ for each $t \in \mathbb{R}^{d}$.
\n

1.⇔ 3.: Clear, since characteristic functions are distribution-determining.

2.⇔ 3.: The equation

$$
E[e^{itX}] = e^{it\mu^\top} e^{-\frac{1}{2}tCt^\top}
$$

can be used in both directions.

Cramér-Wold device

Proposition 10.17: Let X, X_1, X_2, \ldots be rvs with values in \mathbb{R}^d . Then,

$$
X_n \xrightarrow{n \to \infty} X \qquad \Longleftrightarrow \qquad tX_n \xrightarrow{n \to \infty} tX, \quad t \in \mathbb{R}^d.
$$

'⇒': Clear, because for $t\in \mathbb{R}^d$ the map $x\mapsto f(tx)$ is continuous.

 $\left\langle \leftarrow \right\rangle$: Let π_i be the projection onto the *i*-th coordinate. Since $(\pi_i X_n)_{n=1,2,...}$ is tight for all i, $(X_n)_{n=1,2,...}$ is tight. Further $E[e^{itX_n}] \xrightarrow{n \to \infty} E[e^{itX}]$ for all $t \in \mathbb{R}^d$ and Proposition 10.27.

KID KA KERKER KID KO

Multidimensional CLT

► Theorem 10.18:
$$
X_1, X_2,...
$$
 iid, values in \mathbb{R}^d with
\n
$$
E[X_n] = \mu \in \mathbb{R}^d \text{ and } \text{COV}[X_{n,i}, X_{n,j}] = C_{ij} \text{ for } i, j = 1,..., d
$$
\nand $S_n = \sum_{i=1}^n X_i$. Then applies\n
$$
\frac{S_n - n\mu}{\sqrt{n}} \xrightarrow{n \to \infty} X \sim N_{0,C}.
$$

For $t \in \mathbb{R}^d$ application of the ZGS to tX_1, tX_2, \ldots to. Thus

$$
t\frac{S_n-n\mu}{\sqrt{n}}\xrightarrow{n\to\infty}tX.
$$

K □ → K @ → K 글 → K 글 → L 글 → O Q O

Since *t* was arbitrary, the statement follows.