Probability Theory 13. Lévy's Theorem

Peter Pfaffelhuber

June 5, 2024



↓ □ ▶ ↓ □ ▶ ↓ □ ▶ ↓ □ ▶

### Weak convergence and separating function classes

Proposition 9.27: Let P, P<sub>1</sub>, P<sub>2</sub>, · · · ∈ P(E) and M ⊆ C<sub>b</sub>(E) separating. Then the following are equivalent:

1. 
$$\mathbf{P}_n \xrightarrow{n \to \infty} \mathbf{P}$$
.

2.  $(\mathbf{P}_n)_{n=1,2,...}$  is tight and

$$\mathbf{P}_n[f] \xrightarrow{n \to \infty} \mathbf{P}[f] \text{ for all } f \in \mathcal{M}.$$

 $1. \Rightarrow 2.:$  Clear;  $2. \Rightarrow 1.:$  Assume 2. but not 1. Then, there is

arepsilon > 0, some  $f \in \mathcal{C}_b(E)$  and  $(n_k)_{k=1,2,\dots}$ , such that

$$|\mathbf{P}_{n_k}[f] - \mathbf{P}[f]| > \varepsilon$$
 for all  $k$ .

There is  $(n_{k_{\ell}})_{\ell=1,2,...}$  and  $\mathbf{Q} \in \mathcal{P}(E)$  with  $\mathbf{P}_{n_{k_{\ell}}} \xrightarrow{\ell \to \infty} \mathbf{Q}$ .

$$|\mathbf{P}[f] - \mathbf{Q}[f]| \ge \varepsilon, \qquad \mathbf{P}[g] = \lim_{\ell \to \infty} \mathbf{P}_{n_{k_{\ell}}}[g] = \mathbf{Q}[g], g \in \mathcal{M}.$$

#### universität freiburg

### Tightness and the characteristic function

• Lemma 9.28:  $\mathbf{P} \in \mathcal{P}(\mathbb{R})$ . Then for all r > 0

$$\begin{split} \mathbf{P}((-\infty;-r]\cup[r;\infty)) &\leq \frac{r}{2}\int_{-2/r}^{2/r}(1-\psi_{\mathbf{P}}(t))dt,\\ \mathbf{P}([-r;r]) &\geq 2r\int_{-1/r}^{1/r}|\psi_{\mathbf{P}}(t)|dt. \end{split}$$

 $\sin(x)/x \le 1$  for  $x \le 2$ ,  $\sin x \le x/2$  for  $x \ge 2$ . With  $X \sim \mathbf{P}$ 

$$\int_{-c}^{c} (1 - \psi_{\mathbf{P}}(t)) dt = \mathbf{P} \Big[ \int_{-c}^{c} (1 - e^{itX}) dt \Big] = \mathbf{P} \Big[ 2c - \frac{1}{iX} e^{itX} \Big|_{t=-c}^{c} \Big]$$
$$= 2c \mathbf{P} \Big[ 1 - \frac{\sin(cX)}{cX} \Big]$$
$$\geq 2c \mathbf{P} \Big[ 1 - \frac{\sin(cX)}{cX}; |cX| \ge 2 \Big]$$
$$\geq c \cdot \mathbf{P} (|cX| \ge 2) = c \mathbf{P} ((-\infty; -\frac{2}{c}] \cup [\frac{2}{c}; \infty)),$$

and the assertion follows with c = 2/r. universität freiburg

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

### Uniform continuity

► Definition 9.29:  $\mathcal{M} \subseteq \mathcal{C}(\mathbb{R}^d)$  is called uniformly continuous if  $f \in \mathcal{M}$  is  $f \in \mathcal{M}$ 

▶ Lemma 9.31: Let  $f, f_1, f_2, \dots \in \mathcal{C}(\mathbb{R}^d)$  such that  $f_n \xrightarrow{n \to \infty} f$ .

f continuous in 0  $\iff$   $(f_n)_{n=1,2,\dots}$  uniformly continuous in 0.

Proof:  $\Leftarrow$ :  $|f(t) - f(0)| \leq \limsup_{n \to \infty} |f_n(t) - f_n(0)| \xrightarrow{t \to 0} 0$ .

$$\Rightarrow: \lim_{n \to \infty} \sup |f_n(t) - f_n(0)|$$

$$\leq \limsup_{n \to \infty} |f_n(t) - f(t)| + |f(t) - f(0)| + |f(0) - f_n(0)|$$
$$= |f(t) - f(0)| \xrightarrow{t \to 0} 0.$$

#### universität freiburg

### Tightness and uniform continuity

Proposition 9.32: (P<sub>i</sub>)<sub>i∈I</sub> family in (R<sup>d</sup>). If (ψ<sub>Pi</sub>)<sub>i∈I</sub> is is uniformly continuous in 0, then (P<sub>i</sub>)<sub>i∈I</sub> is tight. Proof for d = 1:

 $\sup_{i\in I} |1-\psi_{\mathbf{P}_i}(t)| \xrightarrow{t\to 0} 0,$ 

so

$$\sup_{r>0} \inf_{i \in I} \mathbf{P}_i([-r; r]) \ge 1 - \inf_{r>0} \sup_{i \in I} \frac{r}{2} \int_{-2/r}^{2/r} (1 - \psi_{\mathbf{P}_i}(t)) dt$$
$$\ge 1 - \inf_{r>0} \frac{r}{2} \int_{-2/r}^{2/r} \sup_{i \in I} |1 - \psi_{\mathbf{P}_i}(t)| dt = 1.$$

#### universitätfreiburg

# Lévy's continuity theorem

► Theorem 9.33: 
$$\mathbf{P}_1, \mathbf{P}_2, \dots \in \mathcal{P}(\mathbb{R}^d)$$
 and  $\psi : \mathbb{R}^d \to \mathbb{C}$ , so that  
 $\psi_{\mathbf{P}_n}(t) \xrightarrow{n \to \infty} \psi(t)$  for all  $t \in \mathbb{R}^d$ .  
( $\psi$  cont in 0)  $\Rightarrow$  ( $\mathbf{P}_n \xrightarrow{n \to \infty} \mathbf{P}$  for a  $\mathbf{P} \in \mathcal{P}(\mathbb{R}^d)$  with  $\psi_{\mathbf{P}} = \psi$ )  
Proof:  $(\psi_{\mathbf{P}_n})_{n=1,2,\dots}$  in 0 is uniformly continuous, so that  
( $\mathbf{P}_n)_{n=1,2,\dots}$  is tight. Let  $(n_k)_{k=1,2,\dots}$  and  $\mathbf{P} \in \mathcal{P}(\mathbb{R}^d)$ , so that  
 $\mathbf{P}_{n_k} \xrightarrow{k \to \infty} \mathbf{P}$ . Since .  $x \mapsto e^{itx} \in \mathcal{C}_b(\mathbb{R})$ , we have  
 $\psi_{\mathbf{P}_{n_k}}(t) \xrightarrow{k \to \infty} \psi_{\mathbf{P}}(t)$  for all  $t \in \mathbb{R}^d$ . In particular,  
 $\psi_{P}(t) = \lim \psi_{P_n}(t) = \psi(t)$ ,

#### universität freiburg

## Theorem of deMoivre-Laplace

-

$$S_n^* := rac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{n o \infty} Z \sim N(0,1).$$

Since 
$$\mathbf{E}[e^{itS_n}] = \sum_k {n \choose k} (pe^{it})^k q^{n-k} = (q+pe^{it})^n$$
  
 $\psi_{S_n^*}(t) = \exp\left(-it\sqrt{\frac{np}{q}}\right) \cdot \psi_{B(n,p)}\left(\frac{t}{\sqrt{npq}}\right)$   
 $= \exp\left(-it\sqrt{\frac{np}{q}}\right) \left(q+p\exp\left(\frac{it}{\sqrt{npq}}\right)\right)^n$   
 $= \left(q\exp\left(-it\sqrt{\frac{p}{nq}}\right)+p\exp\left(it\sqrt{\frac{q}{np}}\right)\right)^n$   
 $= \left(1-qit\sqrt{\frac{p}{nq}}-q\frac{t^2}{2}\frac{p}{nq}+pit\sqrt{\frac{q}{np}}-p\frac{t^2}{2}\frac{q}{np}+\frac{C_n}{n^{3/2}}\right)^n$   
 $= \left(1-\frac{t^2}{2}\frac{1}{n}+\frac{C_n}{n^{3/2}}\right)^n \xrightarrow{n\to\infty} e^{-\frac{t^2}{2}} = \psi_{N(0,1)}(t).$ 

univers

Theorem 9.35

▶ Let 
$$\mathbf{P}_1, \mathbf{P}_2, \dots \in \mathcal{P}(\mathbb{R}^d_+)$$
 and  $\mathcal{L} : \mathbb{R}^d \to [0, 1]$ , so that  
 $\mathcal{L}_{\mathbf{P}_n}(t) \xrightarrow{n \to \infty} \mathcal{L}(t)$  for all  $t \in \mathbb{R}^d$ .  
( $\mathcal{L}$  cont in 0) ⇒  $\mathbf{P}_n \xrightarrow{n \to \infty} \mathbf{P}$  for a  $\mathbf{P} \in \mathcal{P}(\mathbb{R}^d)$  with  $\mathcal{L}_{\mathbf{P}} = \mathcal{L}$ .

Example: geometric  $\Rightarrow$  exponential

$$\begin{array}{l} \blacktriangleright X_n \sim \mu_{\text{geo}(p_n)} \text{ with } n \cdot p_n \xrightarrow{n \to \infty} \lambda. \text{ Then} \\ \\ \mathcal{L}_{X_n/n}(t) = \mathbf{P}[e^{-tX_n/n}] = \sum_{k=1}^{\infty} (1-p_n)^{k-1} p_n e^{-tk/n} \\ \\ = p_n e^{-t/n} \frac{1}{1-(1-p_n)e^{-t/n}} \\ \\ = \frac{\lambda}{n(1-(1-\lambda/n)(1-t/n))} + o(1/n) \\ \\ \frac{n \to \infty}{\lambda} \frac{\lambda}{\lambda+t}. \end{array} \\ \\ \text{This means } \frac{X_n}{n} \xrightarrow{n \to \infty} Y \sim \mu_{\exp(\lambda)}, \text{ since} \\ \\ \\ \mathcal{L}_{\exp(\lambda)}(t) = \int_0^{\infty} \lambda e^{-\lambda a} e^{-ta} da = \frac{\lambda}{\lambda+t}. \end{array}$$

### universität freiburg

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆