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Weak convergence and separating function classes

▶ Proposition 9.27: Let P,P1,P2, · · · ∈ P(E ) and M ⊆ Cb(E )
separating. Then the following are equivalent:

1. Pn
n→∞
====⇒ P.

2. (Pn)n=1,2,... is tight and

Pn[f ]
n→∞
====⇒ P[f ] for all f ∈ M.

1.⇒ 2.: Clear; 2.⇒ 1.: Assume 2. but not 1. Then, there is

ε > 0, some f ∈ Cb(E ) and (nk)k=1,2,..., such that

|Pnk [f ]− P[f ]| > ε for all k .

There is (nkℓ)ℓ=1,2,... and Q ∈ P(E ) with Pnkℓ

ℓ→∞
===⇒ Q.

|P[f ]−Q[f ]| ≥ ε, P[g ] = lim
ℓ→∞

Pnkℓ
[g ] = Q[g ], g ∈ M.



Tightness and the characteristic function

▶ Lemma 9.28: P ∈ P(R). Then for all r > 0

P((−∞;−r ] ∪ [r ;∞)) ≤ r

2

∫ 2/r

−2/r
(1− ψP(t))dt,

P([−r ; r ]) ≥ 2r

∫ 1/r

−1/r
|ψP(t)|dt.

sin(x)/x ≤ 1 for x ≤ 2, sin x ≤ x/2 for x ≥ 2. With X ∼ P∫ c

−c
(1− ψP(t))dt = P

[ ∫ c

−c
(1− e itX )dt

]
= P

[
2c − 1

iX
e itX

∣∣∣c
t=−c

]
= 2cP

[
1− sin(cX )

cX

]
≥ 2cP

[
1− sin(cX )

cX
; |cX | ≥ 2

]
≥ c · P(|cX | ≥ 2) = cP((−∞;− 2

c ] ∪ [ 2c ;∞)),

and the assertion follows with c = 2/r .



Uniform continuity

▶ Definition 9.29: M ⊆ C(Rd) is called uniformly continuous if
sup
f ∈M

|f (y)− f (x)| y→x−−−→ 0.

▶ Lemma 9.31: Let f , f1, f2, · · · ∈ C(Rd) such that fn
n→∞−−−→ f .

f continuous in 0 ⇐⇒ (fn)n=1,2,... uniformly continuous in 0.

Proof: ⇐: |f (t)− f (0)| ≤ lim supn→∞ |fn(t)− fn(0)|
t→0−−→ 0.

⇒: lim sup
n→∞

|fn(t)− fn(0)|

≤ lim sup
n→∞

|fn(t)− f (t)|+ |f (t)− f (0)|+ |f (0)− fn(0)

= |f (t)− f (0)| t→0−−→ 0.



Tightness and uniform continuity

▶ Proposition 9.32: (Pi )i∈I family in (Rd). If (ψPi
)i∈I is is

uniformly continuous in 0, then (Pi )i∈I is tight.

Proof for d = 1:

sup
i∈I

|1− ψPi
(t)| t→0−−→ 0,

so

sup
r>0

inf
i∈I

Pi ([−r ; r ]) ≥ 1− inf
r>0

sup
i∈I

r

2

∫ 2/r

−2/r
(1− ψPi

(t))dt

≥ 1− inf
r>0

r

2

∫ 2/r

−2/r
sup
i∈I

|1− ψPi
(t)|dt = 1.



Lévy’s continuity theorem

▶ Theorem 9.33: P1,P2, · · · ∈ P(Rd) and ψ : Rd → C, so that

ψPn(t)
n→∞−−−→ ψ(t) for all t ∈ Rd .

( ψ cont in 0) ⇒ (Pn
n→∞
====⇒ P for a P ∈ P(Rd) with ψP = ψ)

Proof: (ψPn)n=1,2,... in 0 is uniformly continuous, so that

(Pn)n=1,2,... is tight. Let (nk)k=1,2,... and P ∈ P(Rd), so that

Pnk
k→∞
====⇒ P. Since . x 7→ e itx ∈ Cb(R), we have

ψPnk
(t)

k→∞−−−→ ψP(t) for all t ∈ Rd . In particular,

ψP(t) = limψPn(t) = ψ(t),



Theorem of deMoivre-Laplace

S∗
n :=

Sn − np√
np(1− p)

n→∞
====⇒ Z ∼ N(0, 1).

▶ Since E[e itSn ] =
∑

k

(n
k

)
(pe it)kqn−k = (q + pe it)n

ψS∗
n
(t) = exp

(
− it

√
np

q

)
· ψB(n,p)

( t
√
npq

)
= exp

(
− it

√
np

q

)(
q + p exp

( it
√
npq

))n

=
(
q exp

(
− it

√
p

nq

)
+ p exp

(
it

√
q

np

)))n

=
(
1− qit

√
p

nq
− q

t2

2

p

nq
+ pit

√
q

np
− p

t2

2

q

np
+

Cn

n3/2

)n

=
(
1− t2

2

1

n
+

Cn

n3/2

)n n→∞−−−→ e−
t2

2 = ψN(0,1)(t).



Theorem 9.35

▶ Let P1,P2, · · · ∈ P(Rd
+) and L : Rd → [0, 1], so that

LPn(t)
n→∞−−−→ L(t) for all t ∈ Rd .

(L cont in 0) ⇒ Pn
n→∞
====⇒ P for a P ∈ P(Rd) with LP = L.



Example: geometric ⇒ exponential

▶ Xn ∼ µgeo(pn) with n · pn
n→∞−−−→ λ. Then

LXn/n(t) = P[e−tXn/n] =
∞∑
k=1

(1− pn)
k−1pne

−tk/n

= pne
−t/n 1

1− (1− pn)e−t/n

=
λ

n(1− (1− λ/n)(1− t/n))
+ o(1/n)

n→∞−−−→ λ

λ+ t
.

This means Xn
n

n→∞
====⇒ Y ∼ µexp(λ), since

Lexp(λ)(t) =

∫ ∞

0
λe−λae−tada =

λ

λ+ t
.


