Probabily Theory 12. Separating classes of functions

Peter Pfaffelhuber

June 5, 2024

 290

◀ㅁ▶◀@▶◀들▶◀들▶

Separating points, separating

$$
\blacktriangleright
$$
 Definition 9.20: $\mathcal{M} \subseteq \mathcal{C}(E)$

separates points if

$$
\forall x \neq y \; \exists f \in \mathcal{M} : \; f(x) \neq f(y).
$$

is separating in $P(E)$ if for $P, Q \in P(E)$

$$
\forall x \in \mathcal{M} : \mathbf{P}[f] = \mathbf{Q}[f] \implies \mathbf{P} = \mathbf{Q}.
$$

Example: $M = C_b(E)$ separates points and is separating.

Indeed: $z \mapsto r(x, z) \wedge 1 \in C_b(\mathbb{R})$ separates points. Let A be open and $f_n \uparrow 1_A$. If $P[f_n] = Q[f_n]$ then

$$
\mathbf{P}(A) = \lim_{n \to \infty} P[f_n] = \lim_{n \to \infty} Q[f_n] = \mathbf{Q}(A).
$$

universität freiburg

Algebra separating points \rightarrow separating

- ▶ Theorem 9.24: (E, r) complete, separable. If $\mathcal{M} \subseteq \mathcal{C}_b(E)$ separates points and $f, g \in \mathcal{M} \Rightarrow$ also $f \in \mathcal{M}$. Then M is separating.
- ▶ Theorem 9.23 (Stone-Weierstrass): Let (E, r) be compact and $M \subseteq C_b(E)$ be an algebra which separates points, i.e. $1 \in M$ and with $f, g \in \mathcal{M}$ and $\alpha, \beta \in \mathbb{R}$ is also $\alpha f + \beta g \in \mathcal{M}$. Then M is dense in $C_b(E)$ with respect to the supremum norm.

Algebra separating points \rightarrow separating

▶ Theorem 9.24: (E, r) complete, separable. If $M \subseteq C_b(E)$ separates points and $f, g \in \mathcal{M} \Rightarrow$ also $fg \in \mathcal{M}$. Then $\mathcal M$ is separating.

Let $\mathsf{P},\mathsf{Q}\in\mathcal{P}(E)$; Let K compact with $\mathsf{P}(K^c)<\varepsilon$ and $C := \sup x e^{-x^2}$

$$
\big|\mathbf{P}[ge^{-\varepsilon g^2}]-\mathbf{P}[ge^{-\varepsilon g^2};K]\big|\le \frac{C}{\sqrt{\varepsilon}}\mathbf{P}(K^c)\le C\sqrt{\varepsilon}
$$

Approximate $\mathit{g}_n \rightarrow \mathit{g}^{-\varepsilon \mathit{g}^2}$ on K with $\mathit{g}_n \in \mathcal{M}.$

univer

$$
|\mathbf{P}[g] - \mathbf{Q}[g]| = \lim_{\varepsilon \to 0} |\mathbf{P}[ge^{-\varepsilon g^2}] - \mathbf{Q}[ge^{-\varepsilon g^2}]|
$$

\n
$$
\leq |\mathbf{P}[ge^{-\varepsilon g^2}] - \mathbf{P}[ge^{-\varepsilon g^2}; K]| + \dots + |\mathbf{Q}[ge^{-\varepsilon g^2}; K] - \mathbf{Q}[ge^{-\varepsilon g^2}]|
$$

\n
$$
\leq 2C \lim_{\varepsilon \to 0} \sqrt{\varepsilon} = 0
$$

\nsitätfreiburg

Characteristic function

▶ Proposition 9.25: $\mathbf{P} \in \mathcal{P}(\mathbb{R}^d)$ $(\mathbf{P} \in \mathcal{P}(\mathbb{R}^d_+))$ is uniquely given by $t \mapsto \psi_{\mathsf{P}}(t) := \mathsf{P}[e^{it}]\; (\lambda \mapsto \mathcal{L}_{\mathsf{P}}(\lambda) := \mathsf{P}[e^{-\lambda \cdot}]).$ $\mathcal{M} := \{\textcolor{black}{x} \mapsto \textcolor{black}{e^{itx}}; t \in \mathbb{R}^d \} \subseteq \mathcal{C}_b(\mathbb{R}^d).$ Furthermore, $\mathcal M$ is

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

closed under multiplication and $1 \in \mathcal{M}$.

independence and characteristic function

▶ Corollary 9.26: $(X_j)_{j \in I}$ is independent if and only if if for all $J \subseteq_f I$

$$
\mathsf{E}\Big[\prod_{j\in J}e^{it_jX_j}\Big]=\prod_{j\in J}\mathsf{E}[e^{it_jX_j}]
$$

for all $(t_j)_{j\in J}\in\mathbb{R}^J$.