Probability Theory 11. Prohorov's Theorem

Peter Pfaffelhuber

May 26, 2024

Vague convergence

$$(\mathsf{P}_n \xrightarrow{n \to \infty}_{\mathsf{v}} \mu) \qquad : \Longleftrightarrow \qquad \mathsf{P}_n[f] \xrightarrow{n \to \infty} \mu[f], \quad f \in \mathcal{C}_c(E)$$

Lemma 9.12: Let P₁, P₂, · · · ∈ P(ℝ) and μ measure on ℝ with P_n[f] →∞ μ[f], f ∈ C_c(ℝ), then μ ∈ P_{≤1}(ℝ).

Proof: Let $f_1, f_2, \dots \in \mathcal{C}_c(\mathbb{R})$ with $f_k \uparrow 1$. Then with

monotone convergence

$$\mu(\mathbb{R}) = \sup_{k \in \mathbb{N}} \mu[f_k] = \sup_{k \in \mathbb{N}} \limsup_{n \to \infty} \mathsf{P}_n[f_k] \le 1.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

universitätfreiburg

٠

Helly's Theorem

- ▶ Theorem 10.13: Let $P_1, P_2, \dots \in \mathcal{P}(\mathbb{R})$. Then there is a subsequence $(n_k)_{k=1,2,...}$ and a $\mu \in \mathcal{P}_{\leq 1}(\mathbb{R})$ with $\mathsf{P}_{n} \xrightarrow{k \to \infty} \mu$
- ▶ In other words: The space $(\mathcal{P}_{<1}, \rightarrow_{v})$ is compact. Proof: F_n distribution function of P_n , and $(x_i)_{i=1,2,...}$ a denumeration of \mathbb{Q} . Choose a sequence $(n_k)_{k=1,2,...}$ and Fright-continuous, non-increasing, so that $(F_{n_k}(x))_{k=1,2,\dots} \xrightarrow{k \to \infty} F(x)$ for all $x \in \mathbb{Q}$. Set $\mu((x, y]) := F(y) - F(x).$ To show: $P_n[f] \xrightarrow{n \to \infty} \mu[f]$ for all $f \in \mathcal{C}_c(\mathbb{R})$. Wlog $f \ge 0$. $\mu[f] = \int_{0}^{\infty} \mu(f > t) dt \le \liminf_{n \to \infty} \int_{0}^{\infty} \mathsf{P}_{n}(f > t) dt$ $= \liminf \mathsf{P}_n[f] \le \limsup \mathsf{P}_n[f] = \cdots = \mu[f].$ (日本本語を本書を本書を入事)の(で)

Tightness

Definition 9.14: Let K := {A ⊆ E compact}. A family (P_i)_{i∈I} in P(E) is tight, if

 $\sup_{K\in\mathcal{K}}\inf_{i\in I}\mathsf{P}_i(K)=1.$

 $(X_i)_{i \in I}$ is called *tight* if $((X_i)_*\mathsf{P})_{i \in I}$ is tight, i.e.

 $\sup_{K\in\mathcal{K}}\inf_{i\in I}\mathsf{P}(X_i\in K)=1.$

Equivalent formulation:

 $\forall \varepsilon > 0 \ \exists K \text{ compact} : \inf_{i \in I} \mathsf{P}(X_i \in K) > 1 - \varepsilon.$

If E is Polish, then individual P are tight.

- If E is compact, then every family is tight.
- ▶ Let $(X_i)_{i \in I}$ be such that $\sup_{i \in I} P[|X_i|] < \infty$. Then

$$\inf_{r>0} \sup_{i\in I} \mathsf{P}(|X_i| \ge r) \le \inf_{r>0} \sup_{i\in I} \frac{\mathsf{P}[|X_i|]}{r} = 0.$$

Vague convergence and tightness

Lemma 9.17: μ , P₁, P₂,... such that P_n $\xrightarrow{n \to \infty}_{\nu} \mu$. Then $(\mathsf{P}_n)_{n=1,2,\dots}$ tight $\iff \mu(\mathbb{R}) = 1.$ Then $P_n \xrightarrow{n \to \infty} \mu$. For r > 0 let $g_r \in \mathcal{C}_c(\mathbb{R})$ with $1_{B_r(0)} \leq g_r \leq 1_{B_{r+1}(0)}$. $(\mathsf{P}_n)_{n=1,2,\dots}$ tight $\iff \sup_{r>0} \liminf_{n\to\infty} \mathsf{P}_n[g_r] = 1.$ ' \Leftarrow ': 1 = sup_{r>0} $\mu[g_r]$ = sup_{r>0} lim inf_{n→∞} $\mathsf{P}_n[g_r] \le 1$. $\Rightarrow': 1 \ge \mu(\mathbb{R}) = \sup_{r>0} \mu[g_r] = \sup_{r>0} \liminf_{n \to \infty} \mathsf{P}_n[g_r] = 1.$ to show: $P_n \xrightarrow{n \to \infty} \mu$; let $f \in \mathcal{C}_b(\mathbb{R})$. Then $|\mathsf{P}_{n}[f] - \mu[f]| \leq \left(|\mathsf{P}_{n}[f - fg_{r}]| + |\mathsf{P}_{n}[fg_{r}]| - \mu[fg_{r}]| + |\mu[f - fg_{r}]|\right)$ $< ||f||P_n(B_r(0)^c) + |P_n[fg_r]| - \mu[fg_r]| + \mu[B_r(0)^c],$ from which $P_n \stackrel{n \to \infty}{\Longrightarrow} \mu$ follows.

weak convergence and tightness

• Corollary 9.18:
$$\mathsf{P}, \mathsf{P}_1, \mathsf{P}_2, \dots \in \mathcal{P}(\mathbb{R})$$
.

If $P_n \xrightarrow{n \to \infty} P$, then $(P_n)_{n \in \mathbb{N}}$ is tight.

Clear, since the vague convergence follows from weak convergence.

Prohorov's Theorem

► Theorem 9.19: (E, r) complete, separable and (P_i)_{i∈I} a family in P(E). Equivalent are:

1. $(P_i)_{i \in I}$ is relatively compact with respect to weak convergence.

2. The family $(P_i)_{i \in I}$ is tight.

Proof for $I = \mathbb{N}$ and $E = \mathbb{R}$: \Rightarrow : Assume, $(P_n)_{n=1,2,...}$

relatively compact but not tight. For $\varepsilon > 0$ choose TF so that $P_{n_k}(B_k(0)^c) > \varepsilon$ and $P_{n_k} \xrightarrow{k \to \infty} P$. Since P tight, choose k such that

 $\varepsilon > P(B_k(0)^c) = \lim_m P_{n_m}(B_k(0)^c) \ge \lim_m P_{n_m}(B_m(0)^c) > \varepsilon$ \Leftarrow Choose a vaguely convergent subsequence. Since this is tight, the statement follows with Lemma 9.17.