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Definition

I Preliminary remark: For the expected value with respect to P

we now write

P[X ] :=

∫
XdP.

I P(E ): probability measure on B(E );

P≤1(E ): finite measure µ on B(E ) with µ(E ) ≤ 1.

Cb(E ): continuous, bounded functions E → R

Cc(E ): continuous functions E → R with compact support



Definition 9.1

I Weak convergence of P1,P2, · · · ∈ P(E ) to P ∈ P(E ):

(Pn
n→∞
===⇒ P) :⇐⇒ Pn[f ]

n→∞−−−→ P[f ], f ∈ Cb(E )

I Vague convergence of µ1, µ2, · · · ∈ P≤1 to µ:

(µn
n→∞−−−→v µ) :⇐⇒ µn[f ]

n→∞−−−→ µ[f ], f ∈ Cc(E )

I Convergence in distribution of X1,X2, . . . to X :

Xn
n→∞
===⇒ X :⇐⇒ (Xn)∗Pn

n→∞
===⇒ X∗P

⇐⇒ P[f (Xn)]
n→∞−−−→ P[f (X )], f ∈ Cb(E ).



Examples

I x , x1, x2, · · · ∈ R with xn
n→∞−−−→ x and

P = δx ,P1 = δx1 ,P2 = δx2 , . . . Then, Pn
n→∞
===⇒ P, since

Pn[f ] = f (xn)
n→∞
===⇒ f (x) = P[f ], f ∈ Cb(R).

With xn = n, we have Pn
n→∞−−−→v 0, since

Pn[f ] = f (xn)
n→∞−−−→ 0 = 0[f ], f ∈ Cc(R).

I Let X ,X1,X2, . . . identically distributed. Then Xn
n→∞
===⇒ X .

I Central Limit Theorem, for example as the theorem of

deMoivre-Laplace: For p ∈ (0, 1) let

Xn ∼ B(n, p), n = 1, 2, . . . and X ∼ N(0, 1). Then,

Xn − np√
np(1− p)

n→∞
===⇒ X .



Uniqueness of the limit

I Lemma 9.4: Let P,Q,P1,P2, · · · ∈ P(E ) with

Pn
n→∞
===⇒ P and Pn

n→∞
===⇒ Q. Then P = Q.

Proof: to show: P(A) = Q(A) for A closed. We set

r(x ,A) := inf
y∈A

r(x , y)

and

fm(x) 7→ (1−m · r(x ,A))+

for m = 1, 2, . . . . Then fm
m→∞−−−−→ 1A. Further

P(A) = lim
m→∞

P[fm] = lim
m→∞

lim
n→∞

Pn[fm] = lim
m→∞

Q[fm] = Q(A)



Convergence in probability and weak convergence

I Proposition 9.5: X ,X1,X2, . . . rvs. If Xn
n→∞−−−→p X , then

Xn
n→∞
===⇒ X . If X is constant, then the inverse is also true.

Proof: Suppose Xn
n→∞−−−→p X and

limn→∞ P[f (Xn)] 6= P[f (X )] for some f ∈ Cb(E ). Choose a

subsequence (nk)k=1,2,... and ε > 0 with

limk→∞ |P[f (Xnk )]− P[f (X )]| > ε. Select a further

subsequence (nk`)`=1,2,... with Xnk`

`→∞−−−→as X . Then,

lim
`→∞

P[f (Xnk`
)] = P[f (X )]



Convergence in probability and weak convergence

I Proposition 9.5: X ,X1,X2, . . . rvs. If Xn
n→∞−−−→p X , then

Xn
n→∞
===⇒ X . If X is constant, then the inverse is also true.

Proof: weak convergence ⇒ conv. in probability with X = c :

Select x 7→ r(x , c) ∧ 1 ∈ Cb(E ), such that

P[r(Xn, c) ∧ 1]
n→∞−−−→ P[r(X , c) ∧ 1] = 0.

From this, Xn
n→∞−−−→p X follows.



The Portmanteau Theorem

I Theorem 10.6: X ,X1,X2, . . . rvs. Equivalent are:

(i) Xn
n→∞
===⇒ X ;

(ii) P[f (Xn)]
n→∞−−−→ P[f (X )] for f ∈ Cb(E ) Lipschitz;

(iii) lim inf
n→∞

P(Xn ∈ G ) ≥ P(X ∈ G ) for all open G ⊆ E .

(iv) lim sup
n→∞

P(Xn ∈ F ) ≤ P(X ∈ F ) for all closed F ⊆ E .

(v) lim
n→∞

P(Xn ∈ B) = P(X ∈ B) for all B ∈ B(E ) with

P(∂B) = 0.

Proof: (i)⇒ (ii): clear; (iii) ⇐⇒ (iv) clear;

(ii)⇒ (iv) F ⊆ E closed, εk ↓ 0 and

fk(x) =
(

1− 1

εk
r(x ,F )

)+
.

lim sup
n→∞

P(Xn ∈ F ) ≤ lim sup
n→∞

P[fk(Xn)] = P[fk(X )] ↓ P(X ∈ F ).



The Portmanteau Theorem

I Theorem 10.6: X ,X1,X2, . . . rvs. Equivalent are:

(i) Xn
n→∞
===⇒ X ;

(ii) P[f (Xn)]
n→∞−−−→ P[f (X )] for f ∈ Cb(E ) Lipschitz;

(iii) lim inf
n→∞

P(Xn ∈ G ) ≥ P(X ∈ G ) for all open G ⊆ E .

(iv) lim sup
n→∞

P(Xn ∈ F ) ≤ P(X ∈ F ) for all closed F ⊆ E .

(v) lim
n→∞

P(Xn ∈ B) = P(X ∈ B) for all B ∈ B(E ) with

P(∂B) = 0.

Proof: (iii)⇒ (i) f ∈ Cb, 0 ≤ f ≤ c :

P[f (X )] =

∫ ∞
0

P(f (X ) > t)dt ≤
∫ ∞
0

lim inf
n→∞

P(f (Xn) > t)dt

≤ lim inf
n→∞

∫ ∞
0

P(f (Xn) > t)dt = lim inf
n→∞

P[f (Xn)],

lim sup
n→∞

P[f (Xn)] = c − lim inf
n→∞

P[−f (Xn) + c] ≤ P[f (X )]



The Portmanteau Theorem

I 10.6: X ,X1,X2, . . . ZV. Equivalent are:

(i) Xn
n→∞
===⇒ X ;

(ii) P[f (Xn)]
n→∞−−−→ P[f (X )] for f ∈ Cb(E ) Lipschitz;

(iii) lim inf
n→∞

P(Xn ∈ G ) ≥ P(X ∈ G ) for all open G ⊆ E .

(iv) lim sup
n→∞

P(Xn ∈ F ) ≤ P(X ∈ F ) for all closed F ⊆ E .

(v) lim
n→∞

P(Xn ∈ B) = P(X ∈ B) for all B ∈ B(E ) with

P(∂B) = 0.

(iii), (iv)⇒ (v) For B ∈ B(E ) is

P(X ∈ B◦) ≤ lim inf
n→∞

P(Xn ∈ B◦) ≤ lim sup
n→∞

P(Xn ∈ B) ≤ P(Xn ∈ B).

(v)⇒ (iv) For F ⊆ E closed let F ε := {x ∈ E : r(x ,F ) ≤ ε}.
Then P(X ∈ ∂F ε) = 0 for Lebesgue-almost every ε. So,

lim sup
n→∞

P(Xn ∈ F ) ≤ lim sup
n→∞

P(Xn ∈ F εk ) = P(X ∈ F εk ) ↓ P(X ∈ F ).



Convergence of distribution functions

I Corollary 9.7: P,P1,P2, · · · ∈ P(R) with distribution functions

F ,F1,F2, . . . Then,

Pn
n→∞
===⇒ P ⇐⇒

(
Fn(x)

n→∞
===⇒ F (x) for all continuity points x of F .

)
’⇒’: If x is the continuity point of F , then

P(∂(−∞; x ]) = P({x}) = 0. Also

Fn(x) = Pn((−∞; x ])
n→∞−−−→ P((−∞; x ]) = F (x).

’⇐’: See manuscript;



The Theorem of deMoivre-Laplace

I For Xn ∼ B(n, p),

P
( Xn − np√

np(1− p)
≤ x

)
n→∞−−−→ Φ(x),

where Φ is the distribution function of the standard normal

distribution is.

This also means

Xn − np√
np(1− p)

N→∞
===⇒ Z ∼ N(0, 1).



Slutzky’s Theorem

I Corollary 9.9: X ,X1,X2, ...,Y1,Y2, ... rvs. If Xn
n→∞
===⇒ X and

r(Xn,Yn)
n→∞
===⇒p 0, then Yn

n→∞−−−→ X .

I Proof: f ∈ Cb(E ) Lipschitz. Then

|f (x)− f (y)| ≤ L · r(x , y) ∧ (2||f ||∞), x , y ∈ E

⇒ lim sup
n→∞

|E[f (Xn)−f (Yn)]| ≤ lim sup
n→∞

E[L·r(Xn,Yn)∧(2||f ||∞)] = 0.

Also,

lim sup
n→∞

∣∣E[f (Yn)]− E[f (X )]
∣∣

≤ lim sup
n→∞

∣∣E[f (Yn)]− E[f (Xn)]
∣∣+
∣∣E[f (Xn)]− E[f (X )]

∣∣ = 0.



The Continuous Mapping Theorem

I Remark: X ,X1,X2, . . . ZV,

ϕ : E → E ′ continuous. Then

Xn
n→∞
===⇒ X ⇒ ϕ(Xn)

n→∞
===⇒ ϕ(X ).

Indeed: For g ∈ Cb(E ′) we have g ◦ ϕ ∈ Cb(E ), therefore

P[g(ϕ(Xn))]
n→∞−−−→ P[g(ϕ(X ))].

I Theorem 9.10: X ,X1,X2, . . . ZV,

ϕ : E → E ′ measurable,

Uϕ := {x : ϕ discontinuous in x} ⊆ E .

P(X ∈ Uϕ) = 0, Xn
n→∞
===⇒ X ⇒ ϕ(Xn)

n→∞
===⇒ ϕ(X ).



Weak and almost sure convergence, Skorohod

I Theorem 9.11: X ,X1,X2, . . . ZV. Then, Xn
n→∞
===⇒ X holds if

and only if there is a probability space exists on which random

variables Y ,Y1,Y2, . . . are defined with Yn
n→∞−−−→as Y and

Y
d
= X ,Y1

d
= X1,Y2

d
= X2, . . .

I Example: If X ,X1,X2, ... are iid, then Xn
n→∞
===⇒ x . With

X = Y1,Y2, ... we find Xn ∼ Yn and Yn = X , in particular

Yn
n→∞−−−→as X .


