
Probability theory

Peter Pfaffelhuber

Version: June 26, 2024



Prelude

These are the notes of a lecture which I gave at the University of Freiburg. After some
elementary probability and measure theory, this course introduces some main concepts in
(measure theoretic) probability theory. As a prerequisite, for measure theoretic contents, we
refer to my manuscript Measure theory for probabilists. In particular, references to Chapters 1–
5 are references to this manuscript.

The following books have guided me as references for the purpose of this manuscript.

• Durrett, Rick. Probability: Theory and Examples, Cambridge Series in Statistical and
Probabilistic Mathematics, 2019

• Kallenberg, Olaf. Foundations of Modern Probability Theory. Springer, third edition,
2021

• Klenke, Achim. Probability theory. A comprehensive course. Springer, 2014

Throughout the manuscript, we will use a probability space (Ω,F ,P) (recall from Defini-
tion 2.1). The integral with respect to P is denoted by E[·] := P[·] (recall from Chapter 3).
Further, we abbreviate Lp := Lp(P) if this does not lead to confusion (recall these spaces
from Chapter 4.

Our aim in the present course is to provide the most important probabilistic statements
available. Fundamental to this is the concept of the random variable, which we will examine
in Chapter 6 (see also Definition 3.3). We will often consider the case of E-valued random
variables, where E is a Polish space (see Appendix A in the lecture notes on measure theory).
The most influential theorems in probability theory are the strong law of large numbers (LLN,
Theorem 8.21) and the central limit theorem (CLT, Theorem10.8). These two theorems are
limit statements for random variables, and it is important to note that the type of convergence
in both theorems is fundamentally different. While the strong LLN describes an almost sure
convergence (refer to Remark 2.14), the CLT is a statement about convergence in distribution
(i.e. about the weak convergence of the distributions of the random variables; see Chapter 9).
Consequently, one of the tasks will be to understand the relationships between different types
of convergence (see Chapter 7 and 9).

The present english version of this manuscript was written based on the German version
with the help of DeepL.
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6 Random variables

We usually use real-valued random variables X : Ω → R (i.e. Borel-measurable functions,
i.e. random variables with values in R, measurable with respect to the Borel σ-algebra in R;
recall from Definition 1.7)). We will now recall several concepts from measure theory about
random variables and which we will need directly in the following. We will mainly deal with
connecting the lecture to measure theory on one side, and Basic Probability on the other side.

6.1 Repetition

Recall that we assume throughout that a probability space (Ω,F ,P) is given. In Defini-
tion 3.5, we already gave several notions with a relationship to random variables, which we
recall for completeness.

Remark 6.1 (Random variables and their distribution). Let (Ω′,F ′) be a measurable space.

1. Every F/F ′-measurable function X is called (Ω′-valued) random variable. If (Ω′,F ′) =
(R,B(R)), it is called real-valued. The σ-algebra σ(X) = {X−1(B) : B ∈ F ′)} is the
σ-algebra generated by X (see Definition 3.3).

2. The probability measure X∗P on F ′ (i.e. the image measure of P under X; see Sec-
tion 2.5) is called distribution of X. Furthermore, if Y is a random variable and
X∗P = Y∗P (i.e. P(X ∈ A′) = P(Y ∈ A′) for all A′ ∈ F ′), then X and Y are iden-

tically distributed and we write X
d
= Y . However, this notation should be used with

caution, as the equality X
d
= Y cannot be achieved by equivalence transformations to

other statements. (For example X
d
= Y does in general not imply X − Y d

= 0).

3. For a family (Xi)i∈I of random variables, their joint distribution is given by ((Xi)i∈I)∗P.
(This is the image measure under the mapping (Xi)i∈I : ω 7→ (Xi(ω))i∈I).

4. We will use the following notation: If X is a random variable with distribution N(µ, σ2).
(This means means that X : Ω 7→ R is a measurable mapping and X∗P = µN(µ,σ2); see
example 2.22.) Then, we write X ∼ N(µ, σ2). Here, read ’∼’ as has distribution.

5. Let λ be another measure on F and f : Ω → R with f ≥ 0 almost everywhere and
λ[f ] = 1. Then, X has the density f with respect to µ if and only if X∗P = f · λ (see
Definition 4.13). Then, for A ∈ F ,

P(X ∈ A) = µ[f,A].

In this case, for g : R→ R that (see Lemma 4.14),

E[g(X)] = (X∗P)[g] = (f · µ)[g] = µ[fg],

if the right-hand side exists.

6. Monotonicity and linearity of the integral means for random variables X,Y ∈ L1 and
a, b ∈ R:

X ≤ Y almost surely =⇒ E[X] ≤ E[Y ],

E[aX + bY ] = aE[X] + bE[Y ].
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Furthermore, according to Proposition 3.21,

E[X] <∞ =⇒ P(X <∞) = 1.

Although we already have a σ-algebra F , in further sections, especially in the introduction of
the conditional expectation in Chapter 11, the σ-algebra generated by X will play a special
role. Simply put, a real-valued random variable Y is σ(X)-measurable if and only if Y = ϕ(X)
for a Borel-measurable mapping ϕ. In other words, this means that the value of Y (ω) is
known if you know X(ω), although you do not know what value ω has assumed. See also
Exercise 3.38.

Lemma 6.2 (Measurability with respect to σ(X)). Let (Ω′,F ′) be a measurable space and
X a random variable with values in Ω′, and Z : Ω → R. The, Z is σ(X)-measurable if and
only if there is a F ′/B(R)-measurable mapping ϕ : Ω′ → R with ϕ ◦X = Z.

Proof. ’⇐=’: clear
’=⇒’: It suffices to consider the case Z ≥ 0; otherwise, we write Z = Z+−Z−. First, let Z =
1A for A ∈ σ(X). Then there is an A′ ∈ F ′ with X−1(A′) = A, i.e. Z = 1X−1(A′) = 1A′ ◦X,
i.e. ϕ = 1A′ fulfills the statement. Due to linearity, the statement is also true for simple
functions, i.e. finite linear combinations of indicator functions. In the general case, there are
simple functions Z1, Z2, · · · ≥ 0 with Zn ↑ Z. In addition, there are F ′-measurable functions
ϕn with Zn = ϕn ◦X. Then ϕ = supn ϕn is again F ′-measurable and, since Z ≥ 0, and

ϕ ◦X = (sup
n
ϕn) ◦X = sup

n
(ϕn ◦X) = sup

n
Zn = Z.

We now briefly repeat the convergence theorems for integrals in the context of of random
variables.

Proposition 6.3 (Integral convergence theorems). Let X,X1, X2, . . . be real-valued random
variables.

1. Lemma of Fatou, Theorem 3.27: If X1, X2, ... ≥ 0, then

lim inf
n→∞

E[Xn] ≥ E[lim inf
n→∞

Xn].

2. Monotone convergence, Theorem 3.26: If X1, X2, · · · ∈ L1 and Xn ↑ X almost surely,
then

lim
n→∞

E[Xn] = E[X],

where both sides can take the value ∞.

3. Dominated convergence, Theorem 3.28: Let Xn
n→∞−−−→ X almost surely, and Y another

real-valued random variable with |X1|, |X2|, · · · ≤ Y almost surely, and E[Y ] < ∞.
Then,

E[Xn]
n→∞−−−→ E[X].

We now collect (and re-prove) already known inequalities. They often help to estimate prob-
abilities or expected values. Most of the inequalities are already known from the lecture on
Basic Probability.
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Proposition 6.4 (Markov and Chebyshev inequality). 1. Let X be a random variable with
values in R+ and x ∈ R+. Then the Markov inequality holds, i.e.,

P(X ≥ x) ≤ E[X]

x
.

2. If X is a real-valued random variable and p, x ∈ R+, then the Chebyshev inequality
holds, i.e.

P(|X| ≥ x) ≤ E[|X|p]
xp

.

Proof. 1. Since X is non-negative, we find x · 1X≥x ≤ X. Thus,

x ·P(X ≥ x) = E[x · 1X≥x] ≤ E[X],

and the inequality follows. The inequality in 2. follows from 1. by

P(|X| ≥ x) = P(|X|p ≥ xp) ≤ E[|X|p]
xp

.

The next statement was already given in Proposition 4.2.

Proposition 6.5 (Minkowski and Hölder inequalities). Let X,Y be real-valued random vari-
ables.

1. If 0 < p, q, r ≤ ∞ such that 1
p + 1

q = 1
r . Then,

E[|XY |r]1/r ≤ E[|X|p]1/p ·E[|Y |q]1/q (Hölder inequality) (6.1)

Especially, if p = q = 2

E[|XY |] ≤ E[|X|2]1/2 ·E[|Y |2]1/2. (Cauchy-Schwartz inequality) (6.2)

2. For 1 ≤ p ≤ ∞,

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p, 1 ≤ p ≤ ∞ (Minkowski inequality)
(6.3)

Proposition 6.6 (Jensen’s inequality). Let I ⊆ R be an open interval and X ∈ L1 with
values in I and ϕ : I → R convex.1 Then,

E[ϕ(X)] ≥ ϕ(E[X]).

Proof. Since ϕ is convex, ϕ is continuous and

t 7→ ϕ(tx+ (1− t)y)− ϕ(y)

t(x− y)

1A mapping ϕ : I → R is convex if ϕ(tx + (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y) for all 0 ≤ t ≤ 1 and x, y ∈ I.
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is monotonically decreasing for y ≤ x. In particular, for y ∈ I there exists

λ(y) := lim
x↓y

ϕ(x)− ϕ(y)

x− y
= lim

t↓0

ϕ(tx+ (1− t)y)− ϕ(y)

t(x− y)
(6.4)

and

ϕ(x)− ϕ(y)

x− y
≥ λ(y) =⇒ ϕ(y) + λ(y)(x− y) ≤ ϕ(x) (6.5)

for all x ∈ I. (For y > x one argues analogously as above).

Note, since I is an interval, we have E[X] ∈ I. According to (6.5), for x ∈ I with y = E[X]

ϕ(x) ≥ ϕ(E[X]) + λ(E[X])(x−E[X])

and thus

E[ϕ(X)] ≥ ϕ(E[X]) + λ(E[X])E[X −E[X]] = ϕ
(
E[X]

)
.

Jensen’s inequality can be used to show, for example, that Lq ⊆ Lp for p ≤ q. Alternatively,
you can read this property from Proposition 4.3.

Lemma 6.7 (Lq and Lp). Let q > 0 and X ∈ Lq be a reel-valued random variable. Then, for
p ≤ q

E[|X|p] ≤ E[|Xq|]p/q.

In particular, Lq ⊆ Lp.

Proof. The mapping y 7→ yp/q is concave on R+, so with Jensen’s inequality,

E[|X|p] = E[(|X|q)p/q] ≤ E[|X|q]p/q.

6.2 Moments

From the lecture Basic Probability, we know terms such as expected value, variance and
covariance. When we repeat them now, you will see that all calculation rules that you learned
also apply in the measure theoretic sense. The only difference in the formulation is that E[·]
is the integral with respect to a probability measure.

Definition 6.8 (Moments). Let X,Y be real-valued random variables. Then, if it exists,
E[X] is the expected value of X. Furthermore, if it exists, the variance of X is given by

V[X] := E[(X −E[X])2].

If it exists, the covariance of X and Y is given by

COV[X,Y ] := E[(X −E[X])(Y −E[Y ])].

If COV[X,Y ] = 0, we say that X and Y are uncorrelated. Furthermore, E[Xp] for p > 0 is
the p-th moment of X and E[(X −E[X])p] is the centered p-th moment of X.

We recall a few properties here.
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Proposition 6.9 (Properties of the second moments). Let X,Y ∈ L2 be real-valued random
variables. Then, V[X],V[Y ], |COV[X,Y ]| <∞ and

V[X] = E[X2]− (E[X])2,

COV[X,Y ] = E[XY ]−E[X] ·E[Y ].

The Cauchy-Schwartz inequality holds, i.e.

COV[X,Y ]2 ≤ V[X] ·V[Y ].

If X1, . . . , Xn ∈ L2, the identity of Bienamyé holds, i.e.

V
[ n∑
k=1

Xk

]
=

n∑
k=1

V[Xk] + 2
∑

1≤k<l≤n
COV[Xk, Xl].

Proof. For the first statement, since V[X] = COV[X,X] by definition, it is sufficient to show
the second equation. This equation follows from the linearity of the expected value by means
of

COV[X,Y ] = E[(X −E[X])(Y −E[Y ])]

= E[XY ]−E[E[X]Y ]−E[XE[Y ]] + E[X]E[Y ]

= E[XY ]−E[X]E[Y ].

The Cauchy-Schwartz inequality follows by applying Proposition 6.5 using the random vari-
ables X−E[X] and Y −E[Y ]. In particular, |COV[X,Y ]| <∞. For the equation of Bienamyé
let wlog E[Xk] = 0, k = 1, . . . , n (otherwise w use the random variables Xk −E[Xk]). Then,

V
[ n∑
k=1

Xk

]
= E

[( n∑
k=1

Xk

)2]
=

n∑
k=1

n∑
l=1

E[XkXl] =
n∑
k=1

E[X2
k ] + 2

∑
1≤k<l≤n

E[XkXl]

=
n∑
k=1

V[Xk] + 2
∑

1≤k<l≤n
COV[XkXl].

Proposition 6.10 (Moments of non-negative random variables). Let X be a random variable
with values in R+. Then,

E[Xp] = p

∫ ∞
0

P(X > t)tp−1dt = p

∫ ∞
0

P(X ≥ t)tp−1dt.

Proof. Note that both, E[.] and
∫
·dt are integrals. We use Fubini’s theorem in order to be

able to change the order of integration,

E[Xp] = pE
[ ∫ X

0
tp−1dt

]
= p

∫ ∞
0

E
[
1X>tt

p−1
]
dt = p

∫ ∞
0

P(X > t)tp−1dt.

The proof of the second equation is analogous.
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6.3 Characteristic functions and Laplace transforms

We now introduce expected values of certain functions of random variables. This results in the
characteristic function (of the distribution of real-valued random variables) and the Laplace
transform (of the distribution of of non-negative random variables). (Both are covered in some
courses on Basic Probability Theory, but not in all.) These functions are useful since they
allow the calculation of moments (see Proposition 6.14). In addition, later in Proposition 9.25,
we will show that these functions uniquely determine the underlying measure.

Definition 6.11 (Characteristic function and Laplace transform).

1. The characteristic function of an Rd-valued random variable X is given by

ψX := ψX∗P :=

{
Rd → C,
t 7→ E[eitX ] := E[cos(tX)] + iE[sin(tX)],

where tx := 〈t, x〉 is the scalar product in Rd.

2. The Laplace transform of X is given by

LX := LX∗P :=

{
Rd → R,
t 7→ E[e−tX ],

provided the integral on the right-hand side exists. (The Laplace transform is used
frequently for probability measures on Rd+.)

Proposition 6.12 (Properties of characteristic functions). Let X,Y be random variables with
values in Rd and characteristic functions ψX , ψY . Then,

1. |ψX(t)| ≤ 1 for each t ∈ Rd and ψX(0) = 1.

2. ψX is uniformly continuous.

3. ψaX+b(t) = ψX(at)eibt for all a ∈ R, b ∈ Rd.

Proof. 1. is clear. For uniform continuity, we have the bound

|eihx − 1| =
√
| cos(hx) + i sin(hx)− 1|2 =

√
(cos(hx)− 1)2 + sin(hx)2

=
√

2(1− cos(hx)) = 2| sin(hx/2)| ≤ |hx| ∧ 2.

From this, 2. follows because of

sup
t∈Rd
|ψX(t+ h)− ψX(t)| = sup

t∈Rd
|E[ei(t+h)X − eitX ]| = sup

t∈Rd
|E[eitX(eihX − 1)]|

≤ E[|eihX − 1|] ≤ E[|hX| ∧ 2]
h→0−−−→ 0.

For 3. we calculate using linearity

E[eit(aX+b)] = eitbE[ei(at)X ] = eitbψX(at).
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Example 6.13 (Examples of characteristic functions functions). 1. The characteristic
function of X ∼ B(n, p) is given by

ψB(n,p)(t) = (1− p+ peit)n.

Indeed: By definition,

E[eitX ] =
n∑
k=0

(
n

k

)
pk(1− p)n−keitk = (1− p+ peit)n.

2. The characteristic function of X ∼ Poi(γ) is given by

ψPoi(γ) = eγ(eit−1).

Indeed: We calculate

ψPoi(γ) = e−γ
∞∑
n=0

γneitn

n!
= eγ(eit−1).

3. The characteristic function of X ∼ N(µ, σ2) is given by

ψN(µ,σ2)(t) = eitµe−σ
2t2/2.

Indeed: We use that X ∼ σZ + µ for Z ∼ N(0, 1). According to Proposition 6.12.2,
it is sufficient to compute this assertion for µ = 0, σ2 = 1. For this case, using partial
integration,

d

dt
ψN(0,1)(t) =

i√
2π

∫
xe−x

2/2eitxdx = − i√
2π

∫
e−x

2/2iteitxdx = −tψN(0,1)(t).

This differential equation with ψN(0,1)(0) = 1 has the unique solution ψN(0,1)(t) = e−t
2/2.

4. The Laplace transform of X ∼ exp(γ) is given by

Lexp(γ)(t) =
γ

γ + t
.

Indeed: A straight-forward calculation reveals

E[e−tX ] =

∫ ∞
0

γe−γxe−txdx =
γ

γ + t
.

Characteristic functions and Laplace transforms are a simple tool to calculate the moments
of random variables.

Proposition 6.14 (Characteristic function and moments). Let X be a real-valued random
variable.

1. If X ∈ Lp, then ψX is p-times continuously differentiable and for k = 0, . . . , p,

ψ
(k)
X (t) = E[(iX)keitX ].

In particular, ψ
(k)
X (0) = ikE[Xk].
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2. In particular, if X ∈ L2, then

ψX(t) = 1 + itE[X]− t2

2
E[X2] + ε(t)t2

as ε(t)
t→0−−→ 0.

Proof. 1. With |X|p also |X|p ∨ 1 is integrable. Thus, since |X|k ≤ |X|p ∨ 1, all |X|k can
be dominated by an integrable random variable and the right-hand side exists. Since the
statement is obviously true for k = 0, we assume assume that it is valid for k < n. Then

| d
k+1

dtk+1
eitX | = lim

h→0

∣∣∣(iX)kei(t+h)X − (iX)keitX

h

∣∣∣ ≤ ∣∣Xk e
ihX − 1

h

∣∣∣ ≤ ∣∣Xk+1
∣∣.

Due to dominated convergence, the derivative and integral can be interchanged and it follows

ψ
(k+1)
X (t) = E

[ d
dt

(iX)keitX
]

= E[(iX)k+1eitX ].

The continuity of the derivative also follows with dominated convergence.

2. For the estimation, we need the Taylor expansion of ψX with remainder term. We have

eitX = 1 + itX − t2X2

2
(cos(θ1tX) + i sin(θ2tX))

with random numbers θ1, θ2, so that |θ1|, |θ2| ≤ 1. Therefore we get

ψX(t) = 1 + itE[X]− t2

2
E[X2] + ε(t)t2

with 2ε(t) = E[X2(1− cos(θ1tX) + i sin(θ2tX))]
t→0−−→ 0 from dominated convergence.

Example 6.15 (Moments of the exponential and normal distribution). 1. Let X ∼ exp(γ).
We know that Lexp(γ)(t) = γ/(γ+t) from Example 6.13.4. From this and the last Propo-
sition,

E[Xn] = (−1)n
dn

dtn
E[e−tX ]

∣∣
t=0

= (−1)n
dn

dtn
γ

γ + t

∣∣∣
t=0

=
n!γ

(γ + t)n+1

∣∣∣
t=0

=
n!

γn
.

2. For X ∼ N(µ, σ2), we already know ψN(µ,σ2)(t) = eitµ−σ
2t2/2. For small t we develop

this with

ψN(µ,σ2)(t) = 1 + itµ− σ2t2/2− µ2t2/2 + ε(t)t2

with ε(t)
t→0−−→ 0. From this one reads by means of Proposition 6.14.2 that

E[X] = µ, V[X] = E[X2]− µ2 = σ2.
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7 Almost sure, stochastic and Lp-convergence

It is already known from lectures on Analysis that there are different types of convergence,
such as uniform and pointwise convergence. We will now discuss the most important types
of convergence with respect to random variables. (For definitions, see below.)

In our course on measure theory, we have already seen almost sure convergence. In
addition, we will discuss convergence in probability and the Lp-convergence (see also Section
4). In Section 9, we will learn about convergence in distribution (which is the same as the weak
convergence of the distributions of random variables). The following diagram summarizes all
types of convergence:

almost sure
convergence

convergence
in probability

Lp-
convergence

Weak convergence
(conv. in distribution)

.............
...............

.................
....................

............................
................................................................................................................................................................................................... .........

........

............................................................................................................................................................................................
......................

.................
..............

............
.................................................

along a subsequence

..............
...............

.................
....................

............................
.................................................................................................................................................................. .......................... ........

.......
..

...........................................................................................................................................................................................
.....................

................
..............

............
...... ..........................................

+uniform
integrability

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

..........................
....
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..
........
......................
.................

if X
constant

Prop. 7.6 Theorem 7.11

Prop. 9.5

7.1 Definition and examples

Let’s start with some definitions.

Definition 7.1 (Almost sure convergence and convergence in probability). Let X,X1, X2, . . .
be random variables with values in a metric space (E, r).

1. If
P( lim

n→∞
r(Xn, X) = 0) = 1,

we say that the sequence X1, X2, . . . converges almost surely to X and write Xn
n→∞−−−→as

X.

2. If, for all ε > 0,
lim
n→∞

P(r(Xn, X) > ε) = 0,

we say that the sequence X1, X2, . . . converges to X in probability (or stochastically)
and write Xn

n→∞−−−→p X.

3. If the random variables are real-valued and for some p > 0

lim
n→∞

E[|Xn −X|p] = 0,

we say that the sequence X1, X2, . . . converges in Lp (or in the p-th mean) to X and
also write Xn

n→∞−−−→Lp X.
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Remark 7.2 (Properties of Lp convergence). From section 4 we already know a lot about
the Lp-convergence. For example, if X,X1, X2, . . . is such that Xn

n→∞−−−→Lq X and p < q,
then Xn

n→∞−−−→Lp X according to Proposition 4.7. In addition, the spaces Lp are complete
according to Proposition 4.8. So, if for all ε > 0, there is an N ∈ N such that for all m,n ≥ n

E[|Xn −Xm|p] < ε,

then there is a random variable X ∈ Lp with Xn
n→∞−−−→Lp X.

Example 7.3 (Counterexamples). If we look at the diagram at the beginning of the chapter,
we can see that convergence in probability follows from almost sure convergence, but not vice
versa. Furthermore, convergence in probability follows from L1 convergence, but not even
almost sure convergence implies L1 convergence. We first give two examples for these two
cases.

1. Convergence in probability does not imply almost sure convergence: Let U be a [0, 1]
uniformly distributed random variable. Further we set

A1 = [0, 1
2 ], A2 = [1

2 , 1],

A3 = [0, 1
4 ], A4 = [1

4 ,
2
4 ], A5 = [2

4 ,
3
4 ], A6 = [3

4 , 1],

· · ·

and Xn := 1U∈An . Then it is clear for 0 < ε < 1

lim
n→∞

P(|Xn| > ε) = lim
n→∞

P(U ∈ An) = 0,

i.e. Xn
n→∞−−−→p 0, but for each n ∈ N there is an m > n with Xm = 1. Therefore,

X1, X2, . . . does not converge almost surely to 0.

2. Almost sure convergence does not imply L1 convergence: Let U again be a uniformly
distributed random variable on [0, 1] random variable. Further, Bn = [0, 1

n ] and Yn =

n · 1U∈Bn. Then Yn
n→∞−−−→fs Y =∞· 1U=0, so Y = 0 is almost sure. On the other hand

E[Yn] = n ·P(U ∈ An) = 1,

so Y1, Y2, . . . does not converge to 0 in L1.

Lemma 7.4 (Limit in probability is (almost surely) unique). Let X,Y,X1, X2, . . . be random
variables with values in a metric space space (E, r) and Xn

n→∞−−−→p X, as well as Xn
n→∞−−−→p Y .

Then X = Y almost surely.

Proof. For all ε > 0,

P(r(X,Y ) > 2ε) ≤ P(r(Xn, X) > ε or r(Xn, Y ) > ε)

≤ P(r(Xn, X) > ε) + P(r(Xn, Y ) > ε)
n→∞−−−→ 0.

Therefore,

P(X 6= Y ) = P
( ∞⋃
k=1

{
r(X,Y ) > 1/k

})
≤
∞∑
k=1

P(r(X,Y ) > 1/k) = 0,

and the statement follows.
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7.2 Almost sure convergence and convergence in probability

We now show a result that relates almost sure convergence and convergence in probability.

Lemma 7.5 (Characterization of convergence in probability). Let X,X1, X2, . . . be random
variables with values in a metric space (E, r). Then,

Xn
n→∞−−−→p X ⇐⇒ E[r(Xn, X) ∧ 1]

n→∞−−−→ 0. (7.1)

Proof. If Xn
n→∞−−−→p X, then for all ε > 0,

lim
n→∞

E[r(Xn, X) ∧ 1] = lim
n→∞

E[r(Xn, X) ∧ 1, r(Xn, X) ≤ ε] + E[r(Xn, X) ∧ 1, r(Xn, X) > ε]

≤ lim
n→∞

(
ε+ P(r(Xn, X) > ε)

)
= ε,

which shows the right-hand side since ε > 0 was arbitrary. However, if the right-hand side
applies, the Chebyshev inequality for 0 < ε ≤ 1 implies that

P(r(Xn, X) > ε) ≤ E[r(Xn, X) ∧ 1]

ε

n→∞−−−→ 0.

Proposition 7.6 (Convergence in probability and almost sure convergence). Let X,X1, X2, . . .
be random variables with values in a metric space (E, r). Then, the following are equivalent:

1. Xn
n→∞−−−→p X

2. For each sequence (nk)k=1,2,... there is a subsequence (nk`)`=1,2,... with Xnk`

`→∞−−−→as X.

In particular,
Xn

n→∞−−−→fs X −→ Xn
n→∞−−−→p X.

Proof. 1. → 2.: Because of (7.1), for each sequence (nk)k=1,2,..., there is a subsequence
(nk`)`=1,2,... such that (using monotone convergence in the first equality)

E
[ ∞∑
`=1

(r(Xnk`
, X) ∧ 1)

]
=

∞∑
`=1

E[r(Xnk`
, X) ∧ 1] <∞.

This means that

1 = P
( ∞∑
`=1

(r(Xnk`
, X) ∧ 1) <∞

)
≤ P

(
lim sup
`→∞

r(Xnk`
, X) = 0

)
≤ 1,

i.e. Xnk`

`→∞−−−→fs X.
2. → 1.: Let’s assume that 1. is not valid. (We must show that 2. cannot hold.) Because
of (7.1), there is ε > 0 and a subsequence (nk)k=1,2,..., so that limk→∞E[r(Xnk , X) ∧ 1] > ε.

Assuming that there is a subsequence (nk`)`=1,2,... such that Xnk`

`→∞−−−→as X. Then also

lim
`→∞

E[r(Xnk`
, X) ∧ 1] = E

[
lim
`→∞

r(Xnk`
, X) ∧ 1

]
= 0

due to dominated convergence, i.e. a contradiction. So we have found a sequence (nk)k=1,2,...

for which there is no further subsequence (nk`)`=1,2,... with Xnk`

`→∞−−−→as X, and we have
shown that 2. does not hold.
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7.3 Convergence in probability and Lp-convergence

In Example 7.3 we had already seen that almost sure convergence (as well as convergence
in probability) does not imply L1-convergence. This is not surprising, since the theorem of
dominated convergence states that a sequence X1, X2, . . . , which converges almost surely to
X and has an integrable dominating random variable converges in L1 to X. If the almost
sure convergence implies the L1 convergence, one would not need to make the requirement
of an integrable dominating random variable. In the following, we want to find conditions
of the integrable dominating random variable in order to suffice for L1 convergence. See
theorem 7.11 and Corollary 7.12. The concept of uniform integrability is central to this, see
Definition 7.7.

Definition 7.7 (Uniform integrability). A family (Xi)i∈I is called uniformly integrable if

inf
K

sup
i∈I

E[|Xi|; |Xi| > K] = 0.

Example 7.8 (Uniform integrability). 1. Let Y ∈ L1 and (Xi)i∈I with supi |Xi| ≤ |Y |.
Then (Xi)i∈I is uniformly integrable since

sup
i∈I

E[|Xi|; |Xi| > K] ≤ E[|Y |; |Y | > K]
K→∞−−−−→ 0

by dominated convergence. In particular, every Y ∈ L1 is uniformly integrable.

2. Every finite family (Xi)i=1,...,n with X1, ..., Xn ∈ L1 is uniformly integrable, because
sup1≤i≤n |Xi| ∈ L1 and therefore, 1. applies with Y = sup1≤i≤n |Xi|.

3. Let us consider the example 7.3.2 Here, for n > K

E[|Yn|; |Yn| > K] = E[Yn] = 1.

In particular, (Yn)n=1,2,... is not uniformly integrable.

4. Let p > 1. Then (Xi)i∈I with Xi ∈ Lp, i ∈ I is uniformly integrable if supi∈I ||Xi||p <∞.
This is because Kp−1|Xi|1|Xi|>K ≤ |Xi|p, therefore

sup
i∈I

E[|Xi|; |Xi| > K] ≤ sup
i∈I

E[|Xi|p]
Kp−1

K→∞−−−−→ 0.

.

Lemma 7.9 (Characterization of uniform integrability). Let (Xi)i∈I be a family of random
variables. Then, the following are equivalent:

1. (Xi)i∈I is uniformly integrable.

2. It holds
sup
i∈I

E[|Xi|] <∞ and lim
ε→0

sup
A:P(A)<ε

sup
i∈I

E[|Xi|;A] = 0.

.

3. It holds
lim
K→∞

sup
i∈I

E[(|Xi| −K)+] = 0.
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4. There exists a function f : R+ → R+ such that f(x)
x

x→∞−−−→∞ and
supi∈I E[f(|Xi|)] <∞.

If one of the four statements is true, the function f in 4. can be chosen to be monotonically
increasing and convex.

Proof. ’1. → 2.’: Let δ > 0 be given and K = Kδ such that supi∈I E[|Xi|; |Xi| > K] ≤ δ.
Then, for A ∈ F ,

E[|Xi|;A] = E[|Xi|;A ∩ {|Xi| > K}] + E[|Xi|;A ∩ {|Xi| ≤ K}] ≤ δ +K ·P(A).

In particular,
sup
i∈I

E[|Xi|] = sup
i∈I

E[|Xi|; Ω] ≤ δ +K <∞

and
sup

A:P(A)<ε
sup
i∈I

E[|Xi|;A] ≤ δ +Kε
ε→0−−−→ δ.

Since δ > 0 was arbitrary,
lim
ε→0

sup
A:P(A)<ε

sup
i∈I

E[|Xi|;A] = 0.

’2. ⇒ 3.’: First, we note that (|Xi| −K)+ ≤ |Xi|1|Xi|≥K . Let ε > 0. Choose K = Kε large
enough so that – using the Markov inequality –

sup
i∈I

P(|Xi| > K) ≤ sup
i∈I

E[|Xi|]
K

< ε.

This means that 3. follows from

lim
K→∞

sup
i∈I

E[(|Xi| −K)+] = lim
ε→0

sup
i∈I

E[(|Xi| −Kε)
+] ≤ lim

ε→0
sup
i∈I

E[|Xi|; |Xi| > Kε]

≤ lim
ε→0

sup
A:P(A)<ε

sup
i∈I

E[|Xi|;A] = 0.

’3. ⇒ 4.’: There is a sequence K1,K2, . . . with Kn ↑ ∞ and supi∈I E[(|Xi| −Kn)+] ≤ 2−n.
We set

f(x) :=
∞∑
n=1

(x−Kn)+.

Then f is monotonically increasing and convex as a sum of convex functions. Furthermore,
for x ≥ 2Kn,

f(x)

x
≥

n∑
k=1

(
1− Kk

x

)
≥ n

2
,

thus f(x)
x

x→∞−−−→∞. Because of monotone convergence,

E[f(|Xi|)] =

∞∑
n=1

E[(|Xi| −Kn)+] ≤
∞∑
n=1

2−n = 1.

’4.⇒ 1.’: Set aK := infx≥K
f(x)
x , so that aK

K→∞−−−−→∞. Thus,

sup
i∈I

E[|Xi|; |Xi| ≥ K] ≤ 1

aK
sup
i∈I

E[f(|Xi|); |Xi| ≥ K] ≤ 1

aK
sup
i∈I

E[f(|Xi|)]
K→∞−−−−→ 0.
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Example 7.10 (Differences and uniform integrability). For X ∈ L1, (Xi)i∈I is uniformly
integrable iff (Xi −X)i∈I is uniformly integrable.

To see this, let (Xi)i∈I be uniformly integrable. According to Example 7.8.2, X is uniformly
integrable. Furthermore,

sup
i∈I

E[|Xi −X|] ≤ E[|X|] + sup
i∈I

E[|Xi|] <∞

and

sup
A:P(A)<ε

sup
i∈I

E[|Xi −X|;A] ≤ sup
A:P(A)<ε

sup
i∈I

E[|Xi|;A] + sup
A:P(A)<ε

E[|X|;A]
ε→0−−−→ 0,

i.e. according to Lemma 7.9, (Xi −X)i∈I is uniformly integrable. The inverse follows analo-
gously.

Theorem 7.11 (Convergence in probability and convergence in the p-th mean). Let X1, X2, . . .
be a sequence in Lp with 1 ≤ p <∞. The following statements are equivalent:

1. There is a measurable function X ∈ Lp with Xn
n→∞−−−→Lp X.

2. The family (|Xi|p)i=1,2,... is uniformly integrable and there is a measurable function X

with Xn
n→∞−−−→p X.

If 1. or 2. applies, then the limits coincide almost surely.

Proof. 1.→ 2.: First, due to Chebyshev’s inequality for every ε > 0

P(|Xn −X| > ε) ≤ E[|Xn −X|p]
εp

=
||Xn −X||pp

εp
n→∞−−−→ 0,

i.e. convergence in probability applies. For the proof of uniform integrability, we use Lemma 7.9.
Let ε > 0 and N = Nε such that ||Xn−X||p < ε for n ≥ N . Then for A ∈ F , with Minkowski’s
inequality,

sup
n∈N

(E[|Xn|p;A])1/p = sup
n∈N
||Xn1A||p

≤ sup
n<N
||Xn1A||p + sup

n≥N
||(Xn −X)1A||p + ||X1A||p

≤ sup
n<N

(E[|Xn|p;A]) + ε+ (E[|X|p;A]).

Using A = Ω, we find supn∈N(E[|Xn|p]) <∞. Moreover, since N is finite, we find

lim
δ→0

sup
A:P(A)<δ

sup
n∈N

E[|Xn|p;A] ≤ εp.

Because ε > 0 was arbitrary, the assertion follows.

2.→ 1.: Since Xn
n→∞−−−→p X, according to proposition 7.6 there is a subsequence n1, n2, . . .

with Xnk
k→∞−−−→ X almost surely. With Fatou’s Lemma,

E[|X|p] = E[lim inf
k→∞

|Xnk |
p] ≤ sup

n∈N
E[|Xn|p] <∞
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because of Lemma 7.9. In particular, X ∈ Lp. Just like in Example 7.10, {|Xn−X|p : n ∈ N}
is uniformly integrable. For every δ > 0, due to convergence in probability,

P(|Xn −X| > δ)
n→∞−−−→ 0.

From lemma 7.9 now follows with dominated convergence

lim
n→∞

E[|Xn −X|p] = lim
n→∞

E[|Xn −X|p; |Xn −X| > δ] + E[|Xn −X|p; |Xn −X| ≤ δ] ≤ δp.

Since δ > 0 was arbitrary, Xn
n→∞−−−→Lp X follows.

Corollary 7.12 (Lp-convergence and uniform integrability). Let 1 ≤ p <∞ and X1, X2, · · · ∈
Lp and X be measurable with Xn

n→∞−−−→p X. Then, the following are equivalent:

1. Xn
n→∞−−−→Lp X,

2. ||Xn||p
n→∞−−−→ ||X||p,

3. The family (|Xn|p)n=1,2,... is uniformly integrable.

Proof. The equivalence 1.⇔ 3. is clear from Theorem 7.11.
1.⇒ 2.: follows from Minkowski’s inequality with∣∣||Xn||p − ||X||p

∣∣ ≤ ||Xn −X||p
n→∞−−−→ 0.

2.→ 3.: For fixed K, we write

E[|Xn|p; |Xn| > K] ≤ E[|Xn|p− (|Xn| ∧ (K − |Xn|)+)p]
n→∞−−−→ E[|X|p− (|X| ∧ (K − |X|)+)p].

Convergence follows from E[|Xn|p]
n→∞−−−→ E[|X|p], and (|Xn|∧(K−Xn|)+)p

n→∞−−−→L1 |X|∧(K−
X)+)p, since the convergence according to Proposition 7.6 is in probability, and ((|Xn|∧ (K−
|Xn|)+)p)n=1,2,... is bounded, in particular uniformly integrable. Since E[|X|p − (|X| ∧ (K −
|X|)+)p]

K→∞−−−−→ 0 after dominated convergence, (|Xn|p)n=1,2,... is uniformly integrable.

8 Independence and the strong law

With our knowledge on probability measures and σ-algebras we now shed light on the con-
cept of independence. In particular, in this chapter we will prove the strong law of large
numbers, see Theorem 8.21. On the way, we prove the Borel-Cantelli lemma (Theorem 8.8)
and Kolmogorov’s 0-1 law (Theorem 8.15).

8.1 Definition and simple properties

Already in the lecture Basic Probability, independent random variables were considered. The
intuitive idea of independence is often correct, but should sometimes be treated with caution.

Definition 8.1 (Independence). 1. A family of sets (Ai)i∈I with Ai ∈ F is called inde-
pendent if

P
( ⋂
j∈J

Aj

)
=
∏
j∈J

P(Aj) (8.1)

for all J ⊆f I.2

2Recall that we write J ⊆f I iff J ⊆ I and J is finite.
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2. A family (Ci)i∈I of set systems Ci ⊆ F is called independent if (8.1) holds for all J ⊆f I
and Aj ∈ Cj , j ∈ J .

3. A family of random variables (Xi)i∈I is called independent if (σ(Xi))i∈I is independent.

We first deal with the question if there are probability spaces with an arbitrary number of
independent random variables. Here we benefit from our knowledge of product measures.

Proposition 8.2 (Independence and product measures). A family (Xi)i∈I of random vari-
ables is independent iff for each J ⊆f I

((Xi)i∈J)∗P =
⊗
i∈J

(Xi)∗P,

i.e. the joint distribution of each finite subfamily is the product distribution of the individual
distributions.

Proof. By definition, the family (Xi)i∈I is independent if and only if for each J ⊆f I and
Ai ∈ F , i ∈ J ,

P(Xi ∈ Ai, i ∈ J) =
∏
i∈J

P(Xi ∈ Ai).

The assertion now follows from the fact that P(Xi ∈ Ai) = (Xi)∗P(Ai) (see Definition 2.23)
and P(Xi ∈ Ai, i ∈ J) = ((Xi)i∈J)∗P

(×i∈J Ai
)

(see Corollary 5.14).

Corollary 8.3 (Existence of uncountably many independent random variables). Let E be a
Polish space and I an arbitrary index set. Let (Ωi,Fi,Pi) be probability spaces and Xi an
E-valued random variable, i ∈ I. Then there is a probability space (Ω,F ,P) and a family

(Yi)i∈I E-valued, independent random variable with Yi
d
= Xi.

Proof. It should be noted that (((Xi)i∈J)∗
⊗

i∈J Pi)J⊆f I is a projective family of probability
measures on (E,B(E)). Using Theorem 5.24 we find the projective limit PI . This is a
probability measure on (EI , (B(E))I). Furthermore, with πi : EI → E, the i-th projection,

(πi)∗PI = (Xi)∗Pi, i.e. πi
d
= Xi.

Lemma 8.4 (Functions of independent random variables). Let (Ω′i,F ′i), (Ω′′i ,F ′′i ), i ∈ I,
measurable spaces. Let (Xi)i∈I be a family of independent random variables, Xi : Ω → Ω′i,
and ϕi : Ω′i → Ω′′i measurable, i ∈ I. Then the family (ϕi(Xi))i∈I is independent.

Proof. According to Lemma 6.2, the random variable ϕi(Xi) is measurable according to σ(Xi),
i ∈ I, i.e. σ(ϕi(Xi)) ⊆ σ(Xi). Since (σ(Xi))i∈I is an independent family by assumption, the
assertion follows from the definition of independence.

Proposition 8.5 (Independent and Uncorrelated). Let X,Y ∈ L1 be independent, real-valued
random variables. Then XY ∈ L1 and

E[XY ] = E[X] ·E[Y ].
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Proof. The assertion is clear if X and Y are indicator functions. Then, note that if the
assertion applies to the pairs (Xi, Yj), i, j = 1, . . . , n, then it also for

∑n
i=1Xi and

∑n
j=1 Yj :

Indeed, due to the linearity of the expected value,

E
[ n∑
i=1

Xi ·
n∑
j=1

Yj

]
=

n∑
i=1

n∑
j=1

E[XiYj ] =

n∑
i=1

n∑
j=1

E[Xi]E[Yj ] = E
[ n∑
i=1

Xi

]
·E
[ n∑
j=1

Yj

]
.

So, since the assertion applies to indicator functions, it is also valid for simple functions, and
thus with monotonic convergence also for non-negative measurable functions. The general
case follows with the decomposition X = X+ −X− and Y = Y + − Y −.

Example 8.6 (Uncorrelated, non-independent random variables). Let U be a random variable
uniformly distributed on [0, 1], X = cos(2πU) and Y = sin(2πU). Then E[X] = E[Y ] = 0
and

E[XY ] =

∫ 1

0
cos(2πu) sin(2πu)du = 1

2

∫ 1

0
sin(4πu)du = 0

and thus X,Y are are uncorrelated. However, {|X| < ε, |Y | < ε} = ∅ for ε > 0 is small
enough and thus P(X−1(−ε, ε), Y −1(−ε, ε)) = 0 < P(X−1(−ε, ε)) · P(Y −1(−ε, ε)). This
means that X and Y are not independent.

If there is a probability space and (countably) many events, you can ask yourself how many
of these events will likely occur. The Borel-Cantelli lemma gives a sharp criterion for the
occurrence of only finitely many events.

Definition 8.7 (Limsup of sets). For A1, A2, · · · ∈ F ,

lim sup
n→∞

An :=
⋂
n≥1

⋃
m≥n

Am

is the event infinitely many of the An occur.

Theorem 8.8 (Borel-Cantelli lemma). 1. Let A1, A2, ... ∈ F . Then,

∞∑
n=1

P(An) <∞ =⇒ P(lim sup
n→∞

An) = 0.

2. If A1, A2, . . . are independent,

∞∑
n=1

P(An) =∞ =⇒ P(lim sup
n→∞

An) = 1.

Proof. We start with 1. Because of the continuity of P from above (see Proposition 2.8),

P(lim sup
n→∞

An) = lim
n→∞

P
( ⋃
m≥n

Am

)
≤ lim

n→∞

∞∑
m=n

P(Am) = 0
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by assumption. For 2. we use that log(1−x) ≤ −x for x ∈ [0, 1]. From this and the continuity
of P from below and the independence of (An)n=1,2,...,

P((lim sup
n→∞

An)c) = P
( ∞⋃
n=1

⋂
m≥n

Acm

)
= lim

n→∞
P
( ∞⋂
m=n

Acm

)
= lim

n→∞

∞∏
m=n

(1−P(Am))

= lim
n→∞

exp
( ∞∑
m=n

log(1−P(Am))
)

≤ lim
n→∞

exp
(
−
∞∑
m=n

P(Am)
)

= 0,

and the assertion follows.

Example 8.9 (Infinite coin toss and geometric distributions).

1. We consider an infinite coin toss. This means that we have a probability space (Ω,F ,P)
and independent random variables X1, X2, . . . with values in {heads, tails}. The coin
toss is fair, i.e. P(Xn = head) = 1/2. We consider the events An = {Xn = head}.
Since

∞∑
n=1

P(An) =
∞∑
n=1

1
2 =∞

and the family (An)n∈N is independent, it follows from the Borel-Cantelli lemma that
almost surely infinitely often head occurs.

2. We consider the same situation as in 1, but the events Bn := {X1 = Kopf}. It is
clear that the family (Bn)n∈N is not independent. (For example P(B1 ∩B2) = P(B1) =
1/2 6= 1

4 = P(B1) · P(B2).) Just like in 1.
∑∞

n=1 P(Bn) = ∞. It is also clear that
P(lim supn→∞Bn) = 1

2 . It follows from this, that in the Borel-Cantelli lemma the
condition of independence in 2. does not apply.

3. Let X1, X2, . . . be geometrically distributed with the success parameter p. We consider
the events An := {Xn ≥ n} and ask ourselves whether an infinite number of these events
can occur. Since

∞∑
n=1

P(An) =
∞∑
n=1

P(Xn ≥ n) =
∞∑
n=1

(1− p)n−1 = 1
p <∞.

Therefore, almost surely only a finite number of the events {Xn ≥ n} occur.
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8.2 Kolmogorov’s 0-1 law

The Borel-Cantelli lemma is already a statement about when an event that depends on an
infinite number of events is occur almost surely. We will now examine this situation further.

Proposition 8.10 (Independence of generated σ-algebras). Let (Ci)i∈I be a family of inde-
pendent, ∩-stable set systems. Then, (σ(Ci))i∈I is also an independent family.

Proof. Let J = {i1, . . . , in} ⊆f I and (wlog) n > 1. Then, (8.1) holds for any Ai1 , . . . , Ain
with Aik ∈ Cik , k = 1, . . . , n. We keep Ai2 , . . . , Ain fixed and define

D := {Ai1 ∈ F : (8.1) holds}.

We will now show that D is a Dynkin system. Namely, if A ⊆ B ∈ D, then B \ A ∈ D,
because

P
(

(B \A) ∩
n⋂
k=2

Aik

)
= P

(
B ∩

n⋂
k=2

Aik

)
−P

(
A ∩

n⋂
k=2

Aik

)
= (P(B)−P(A)) ·

n∏
k=2

P(Aik)

= P(B \A) ·
n∏
k=2

P(Aik).

Furthermore, if A1, A2, · · · ∈ D with A1 ⊆ A2 ⊆ A2 . . . , then due to the continuity of P from
below,

P
(( ∞⋃

j=1

Aj

)
∩

n⋂
k=2

Aik

)
= sup

j∈N
P
(
Aj ∩

n⋂
k=2

Aik

)
= sup

j∈N
P(Aj) ·

n∏
k=2

P(Aik)

= P
( ∞⋃
j=1

Aj

)
·
n∏
k=2

P(Aik).

Since Ci1 is ∩-stable and Ci1 ⊆ D, σ(Ci1) ⊆ D according to theorem 1.13. In particular,
(8.1) applies for Ai1 ∈ σ(Ci1), Ai2 ∈ Ci2 , . . . , Ain ∈ Cin . Iterating the above procedure for
k = 2, . . . , n, you get the statement.

Corollary 8.11 (Independence of indicator functions). A family of sets (Ai)i∈I is independent
if and only if the family of random variables (1Ai)i∈I is independent. In particular,

P
( ⋂
j∈J

Bj

)
=
∏
j∈J

P(Bj)

for J ⊆f I, Bj ∈ {Aj , Acj}, j ∈ J.

Proof. For i ∈ I let Ci = {Ai}. Then σ(1Ai) = {∅, Ai, Aci ,Ω} = σ(Ci). Since Ci is trivially
cut-stable, the statement follows from Proposition 8.10.
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Corollary 8.12 (Grouping). Let (Fi)i∈I be a family of independent σ-algebras. Further, let
I be a partition of I, i.e. I = {Ik, k ∈ K} with

⊎
k∈K Ik = I, so the Ik are disjoint and their

union is I. Then, (σ(Fi : i ∈ Ik))k∈K is also an independent system.

Proof. The set system Ck :=
{⋂

i∈Jk Ai : Jk ⊆f Ik, Ai ∈ Fi
}

is ∩-stable and σ(Ck) = σ(Fi :
i ∈ Ik), k ∈ K. Since, according to the assumption, the family (Ck)k∈K is independent, the
assertion follows from Proposition 8.10.

We now come to the main statement of this section, Kolmogorov’s 0-1 law. For this we
introduce a certain σ-algebra, the terminal σ-algebra.

Definition 8.13 (Terminal and trivial σ-algebras). 1. Let F1,F2, ... ⊆ F be a sequence of
σ-algebras. Then

T (F1,F2, . . . ) =
⋂
n≥1

σ
( ⋃
m>n

Fm
)

the σ-algebra of terminal events of F1,F2, . . .

2. A σ-algebra F̃ ⊆ F is called P-trivial if P(A) ∈ {0, 1} for all A ∈ F̃ .

Lemma 8.14 (Trivial σ-algebras). 1. A σ-algebra F̃ is P-trivial if and only if F̃ is inde-
pendent of itself.

2. Let F̃ be a P-trivial σ-algebra and X a F̃-measurable random variable with values in a
separable metric space E. Then X is constant, almost surely.

Proof. 1. Let F̃ be P-trivial and A,B ∈ F̃ . Then P(A ∩B) = P(A) ∧P(B) = P(A) ·P(B),
therefore F̃ is independent of itself. If on the other hand, F̃ is independent of itself and
A ∈ F̃ , then P(A) = P(A ∩A) = (P(A))2, i.e. P(A) ∈ {0, 1}.
2. For n ∈ N, let (Bnj)j=1,2,... be a countable covering of E with balls of radius 1/n. Since F̃ is
a P-trivial σ-algebra then P(X ∈ Bnj) ∈ {0, 1} applies to all n, j. For n ∈ N let Jn := {j ∈ N :

P(X ∈ Bnj) = 1} 6= ∅. Thus, due to the continuity from above, P
(
X ∈

⋂∞
n=1

⋂
j∈Jn Bnj

)
=

1. Since
⋂∞
n=1

⋂
j∈Jn Bnj has at most one element, the assertion follows.

Under independence, the σ-algebra of terminal events is particularly simple.

Theorem 8.15 (Kolmogorov’s 0-1 law). Let F1,F2, · · · ⊆ F be a sequence of independent
σ-algebras. Then T := T (F1,F2, . . . ) P-trivial.

Proof. Let Tn := σ
(⋃

m>nFm
)

, n = 1, 2, . . . . According to Corollary 8.12, (F1, . . . ,Fn, Tn)

are independent, n = 1, 2, . . . This means that (F1, . . . ,Fn, T ) are also independent, n =
1, 2, . . . and thus also (T ,F1,F2, . . . ). Again with Corollary 8.12, it follows that (T0, T ) are
independent and, since T ⊆ T0 it also follows that T is independent of itself. Therefore, the
assertion follows from Lemma 8.14.

23



8.3 Sums of independent random variables

Many important theorems in probability theory deal with independent random variables. In
this lecture, these are in particular the Strong Law of Large Numbers (Theorem 8.21) and
the Central Limit Theorem (Theorem 10.8). We present here important tools for analyzing
sums of independent random variables. The first is the connection with the convolution of
probability measures (see section 5.4).

Proposition 8.16 (Convolution is distribution of the independent sum). Let X1, . . . , Xn be
independent, real-valued random variables. Then,

(X1 + · · ·+Xn)∗P = (X1)∗P ∗ · · · ∗ (Xn)∗P.

Further, for the characteristic functions

ψX1+···+Xn = ψX1 · · ·ψXn

and, if X1, . . . , Xn assume values in R+,

LX1+···+Xn = LX1 · · ·LXn .

Proof. First of all, according to Proposition 8.2 ((X1, . . . , Xn))∗P = (X1)∗P⊗ · · · ⊗ (Xn)∗P.
Thus, the first assertion already follows from Definition 5.17 of the convolution of measures.
The further assertions follow from Proposition 8.5, since for example

ψX1+···+Xn(t) = E[eit(X1+···+Xn)] = E
[
eitX1 · · · eitXn

]
= E[eitX1 ] · · ·E[eitXn ] = ψX1(t) · · ·ψXn(t).

Kolmogorov’s 0-1 law provides a very simple statement as to when sums of independent
random variables are almost sure to converge.

Proposition 8.17 (Convergence of sums of independent random variables). Let X1, X2, . . .
be independent random variables and Sn := X1 + · · ·+Xn.

1. Then,
P(ω : Sn(ω) converges for n→∞) ∈ {0, 1}

2. Further,
P(ω : Sn(ω)/n converges for n→∞) ∈ {0, 1}.

If P(Sn/n converges) = 1, the limit value is almost surely constant.

Proof. Set Fi := σ(Xi), i = 1, 2, . . . This means that the family (Fi)i=1,2,... is indepen-
dent. The set {ω : Sn(ω) converges for n→∞} is measurable with respect to T (F1,F2, . . . )
and thus the first statement from Theorem 8.15 follows. In the same way it follows that
P(Sn/n converges) ∈ {0, 1}. Let S = limn→∞ Sn(n)/n. Thus, for all m = 1, 2, . . . ,

S = lim
n→∞

X1 + · · ·+Xn

n
= lim

n→∞

Xm + · · ·+Xn

n
,

so S is measurable wrt σ
(⋃

k≥mFk
)

. This means that S is also T -measurable and therefore

almost surely constant according to Theorem 8.15 and Lemma 8.14.
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Proposition 8.18 (Maximum inequality of Kolmogorov). Let X1, X2, · · · ∈ L2 be indepen-
dent random variables. Then, for K > 0,

P
(

sup
n∈N

∣∣∣ n∑
k=1

Xk −E[Xk]
∣∣∣ > K

)
≤
∑∞

n=1 V(Xn)

K2
.

Proof. Wlog, let E[Xk] = 0, k = 1, 2, . . . . We further set Sn = X1 + · · ·+Xn and T := inf{n :
|Sn| > K}. Then, P(supn |Sn| > K) = P(T <∞). Because of Corollary 8.12, Sk · 1T=k and
Sn − Sk are independent for k ≤ n. Therefore

n∑
k=1

E[X2
k ] = E[S2

n] ≥
n∑
k=1

E[S2
n, T = k]

=
n∑
k=1

E[S2
k + (Sn − Sk + 2Sk)(Sn − Sk), T = k]

≥
n∑
k=1

E[S2
k , T = k] + 2E[Sk(Sn − Sk), T = k]

=
n∑
k=1

E[S2
k , T = k] ≥ K2P(T ≤ n)

Now follows the assertion with n→∞.

Theorem 8.19 (Convergence criterion for series). Let X1, X2, · · · ∈ L2 be independent ran-
dom variables with

∑∞
n=1 V[Xn] <∞. Then,

∑n
k=1Xk −E[Xk] converges almost surely.

Proof. Again, let E[Xk] = 0, k = 1, 2, . . . and we write Sn = X1 + · · · + Xn. For ε > 0,
according to Proposition 8.18,

lim
k→∞

P(sup
n≥k
|Sn − Sk| > ε) ≤ lim

k→∞

∑∞
n=k+1 E[X2

n]

ε2
= 0.

Therefore, supn≥k |Sn−Sk|
k→∞−−−→p 0. So, by Proposition 7.6, there is a subsequence k1, k2, . . .

with supn≥ki |Sn − Ski |
i→∞−−−→fs 0. However, since (supn≥k |Sn − Sk|)k=1,2,... is decreasing,

supn≥k |Sn − Sk|
k→∞−−−→fs 0 applies. This means, however, that (Sn)n=1,2,... converges.

8.4 The Strong Law of Large Numbers

In the lecture Basic Probability, we already proved the weak law of large numbers: ifX1, X2, · · · ∈
L2 are identically distributed and uncorrelated, then, for ε > 0

P
( 1

n

∣∣∣ n∑
k=1

(Xk −E[Xk])
∣∣∣ > ε

)
≤ 1

ε2
V
[ 1

n

n∑
k=1

Xk

]
=

1

ε2n2

n∑
k=1

V[Xk] =
V[X1]

ε2n

n→∞−−−→ 0.

As we now know, this means in other terms,

1

n

n∑
k=1

Xk
n→∞−−−→p E[X0].
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We now want to improve this statement in two directions. On the one hand, we want to
replace convergence in probability by almost sure convergence, and on the other hand only
assume the existence of first moments (but not the existence of second moments). First,
however, we define what exactly what we mean when we say that a sequence of random
variables follows a law of large numbers.

Definition 8.20 (Law of large numbers). Let X1, X2, · · · ∈ L1 be a sequence of real-valued
random variables. We say that the sequence follows the weak law of large numbers if

1

n

n∑
k=1

(Xk −E[Xk])
n→∞−−−→p 0.

The sequence satisfies the strong law of large numbers if

1

n

n∑
k=1

(Xk −E[Xk])
n→∞−−−→fs 0.

Theorem 8.21 (Strong law for independent random variables). A sequence X1, X2, · · · ∈ L1

of independent and identically distributed random variables satisfies the strong law of large
numbers, i.e.

1

n

n∑
k=1

Xk
n→∞−−−→fs E[X1].

Remark 8.22 (Weak law of large numbers). Since convergence in probability is implied by
almost sure convergence (see Proposition 7.6), the sequence X1, X2, . . . from the theorem
also satisfies the weak law of large numbers. Furthermore, the sequence X+

1 , X
+
2 , . . . also

satisfies the strong law and E[ 1
n(X+

1 + · · ·X+
n )] = E[X+

1 ]. This means that the sequence
( 1
n(X+

1 + · · · + X+
n ))n=1,2,... is uniformly according to Corollary 7.12. In the same way, the

sequence of partial sums of the negative parts is uniformly integrable. It follows from Theorem
7.11 that 1

n(X1 + · · ·+Xn)
n→∞−−−→L1 E[X1].

Remark 8.23 (Finite fourth and second moments). The difficulty in proving the strong law
is that only may be used that X1 ∈ L1. The proof is significantly easier if we use X1 ∈ L4 or
X1 ∈ L2. We start with these two proofs and write Sn := X1 + · · ·+Xn.

1. The case X1 ∈ L4: Here you can get by without further aids: From the linearity of the
expected value, it is clear that E[Sn/n] = E[X1]. Wlog, let E[X1] = 0, otherwise you go
to the random variables X1 − E[X1], X2 − E[X2], · · · ∈ L4. First we calculate with the
help of the independence of (Xk)k=1,2,...

E[S4
n] =

n∑
k=1

E[X4
k ] + 3

∞∑
k,l=1
k 6=l

E[X2
kX

2
l ] ≤ (n+ 6n2)E[X4

1 ]

because of the Cauchy-Schwartz inequality. From this,

E
[ ∞∑
n=1

(Sn
n

)4]
≤
∞∑
n=1

n+ 6n2

n4
E[X4

1 ] <∞.

Therefore,
∑∞

n=1

(
Sn
n

)4
<∞ applies is almost sure, in particular Sn

n
n→∞−−−→fs 0.
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2. The case X1 ∈ L2: Here the convergence criterion for series, theorem 8.19 is of crucial
help. We also need the following result:

Lemma 8.24 (Kronecker Lemma). Let x1, x2, · · · ∈ R, y1, y2, · · · ∈ R be monotone with
yn ↑ ∞ and

∑∞
n=1 xn/yn <∞. Then,

∑n
k=1 xk/yn

n→∞−−−→ 0.

Proof. Let z0 = 0, zn :=
∑n

k=1 xk/yk. Then zn
n→∞−−−→ z∞ <∞ and xk = yk(zk − zk−1).

We write with y0 = 0∑n
k=1 xk
yn

=
1

yn

n∑
k=1

yk(zk − zk−1) = zn +
1

yn

( n−1∑
k=0

ykzk −
n∑
k=1

ykzk−1

)
= zn −

1

yn

( n∑
k=1

ykzk−1 − yk−1zk−1

)
n→∞−−−→ z∞ − z∞ · lim

n→∞

1

yn

n∑
k=1

yk − yk−1 = 0.

Back to the proof of the strong law in the case X1 ∈ L2. Wlog, let E[X1] = 0. Con-
sider the sequence X1/1, X2/2, . . . Because

∑∞
n=1 V[Xn/n] = V[X1]

∑∞
n=1 1/n2 applies

according to Theorem 8.19 that
∑n

k=1Xk/k almost surely converges. With Lemma 8.24

it follows that Sn/n
n→∞−−−→fs 0.

Proof of theorem 8.21 if X1 ∈ L1. It is sufficient to consider the case of non-negative random
variables. In the general case, note that X+

1 , X
+
2 , · · · ∈ L1 and X−1 , X

−
2 , · · · ∈ L1 fulfill the

conditions of the theorem, and from (X+
1 + · · · + X+

n )/n
n→∞−−−→fs E[X+

1 ] and (X−1 + · · · +
X−n )/n

n→∞−−−→fs E[X−1 ] the statement follows due to linearity of the expectation.
For Sn = X1 + · · ·+Xn we will show that

E[lim sup
n→∞

Sn/n] ≤ E[X1]. (8.2)

If this is true, then firstly

E[lim inf
n→∞

Sn/n] ≥ E[lim inf
n→∞

(X1 ∧ k + · · ·+Xn ∧ k)/n]

= k −E[lim sup
n→∞

((k −X1)+ + · · ·+ (k −Xn)+)/n]

≥ E[k − (k −X1)+]
k→∞−−−→ E[X1].

Secondly, then E[lim supn→∞ Sn/n−lim infn→∞ Sn/n] = 0, i.e. lim supn→∞ Sn/n = lim infn→∞ Sn/n =
0 almost surely, since both lim infn→∞ Sn/n as well as lim supn→∞ Sn/n are terminal func-
tions, and thus according to Theorem 8.15 and Lemma 8.14 are almost surely constant.
Furthermore,

lim inf
n→∞

Sn/n = E[lim inf
n→∞

Sn/n] ≥ E[X1] ≥ E[lim sup
n→∞

Sn/n] = lim sup
n→∞

Sn/n,

from which the assertion follows.
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◦ · · · ◦ • · · · • ◦ · · · ◦ • · · · • · · · ◦ · · · ◦
In1 In2

Mi > n− i+ 1Mi > n− i+ 1 Mi > n− i+ 1︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷
1 n︸ ︷︷ ︸ ︸ ︷︷ ︸

Anzahl=MIn1
Anzahl=MIn2

(XIn
1

+ · · ·+XIn
1 +MIn1

−1)/MIn
1
≥ α (XIn

2
+ · · ·+XIn

2 +MIn2
−1)/MIn

2
≥ α

Figure 1: Illustration of Mi, I
n
j , introduced below (8.3). The size Ln is the number of con-

tiguous areas of •’s.

It therefore remains to show (8.2). Wlog let E[X1] > 0, otherwise Xk = 0 is almost sure,
k = 1, 2, . . . and the statement is trivial. For this we will use

0 < α < E[lim sup
n→∞

Sn/n] =⇒ α ≤ E[X1] (8.3)

can be proved. According to the assumption, for i = 0, 1, 2, . . .

α < E[lim sup
n→∞

Sn/n] = lim sup
n→∞

Sn/n = lim sup
n→∞

(Xi+1 + · · ·Xi+n)/n.

Thus,

Mi := inf{n ∈ N : (Xi + · · ·+Xi+n−1)/n ≥ α}

is finite, almost surely, i = 1, 2, . . . The Mi’s are identically distributed. We define recursively
for n = 1, 2, . . . (see also Figure 1) In1 = 0 and for j = 0, 1, 2, . . . (with M0 := 0)

Inj+1 := inf{i ∈ N : i ≥ Inj +Mn
Ij ,Mi ≤ n− i+ 1}

with inf ∅ = ∞ and Ln := sup{n ∈ N0 : Inj < ∞}. This means that for 1 ≤ j ≤ Ln,
Inj +MInj

≤ n, i.e. (XInj
+ · · ·+XInj +MIn

j
−1)/MInj

≥ α. We now use this by means of

E[X1] = E[(X1 + · · ·+Xn)/n]

≥ 1
nE
[ Ln∑
j=1

MInj
· (XInj

+ · · ·+XInj +MIn
j
−1)/MInj

]

≥ α
nE
[ Ln∑
j=1

MInj

]
= α− α

nE
[
n−

Ln∑
j=1

MInj

]
≥ α− α

nE
[ n∑
i=1

1Mi>n−i+1

]
= α

(
1− 1

n

n∑
i=1

P(Mi > i)
)

n→∞−−−→ α,

since
(

1
n

∑n
i=1 P(Mi > i)

)
n=1,2,...

as Cesàro-Limes of (P(Mi > i))i=1,2,... because of the iden-

tity of the distributions of the Mi’s converges to 0. Thus (8.3) is shown and the assertion is
proven.
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We now give a simple application of the strong law. It often happens in statistics that a large
number of independent, identically distributed, real-valued random variables must be studied.
The Glivenko-Cantelli theorem (Theorem 8.26) states that the empirical distribution of the
random variables almost surely converges to the underlying distribution.

Definition 8.25 (Empirical distribution). Let X1, X2, . . . be random variables. For n =
1, 2, . . . the distribution is called (random) probability distribution

µ̂n :=
1

n

n∑
k=1

δXk

the empirical distribution of X1, . . . , Xn. If the random variables are real-valued, then in
addition

F̂n(x) :=
1

n

n∑
k=1

1Xk≤x,

the empirical distribution function of X1, . . . , Xn.

Theorem 8.26 (Glivenko-Cantelli Theorem). Let X1, X2, . . . be independent, real-valued
random variables with identical distribution with distribution function F . Then,

lim
n→∞

sup
x∈R

widehasFn(x)− F (x)| n→∞−−−→fs 0.

Proof. For x ∈ R and n = 1, 2, . . . let Yn(x) := 1Xn≤x and Zn(x) := 1Xn<x. According to
Theorem 8.21, for each x ∈ R

F̂n(x) =
1

n

n∑
k=1

Yk(x)
n→∞−−−→fs E[Y1(x)] = P(X1 ≤ x) = F (x),

F̂n(x−) =
1

n

n∑
k=1

Zk(x)
n→∞−−−→fs E[Z1(x)] = P(X1 < x) = F (x−).

We must show that these limits hold uniformly for all x ∈ R. For N = 1, 2, . . . and j =
0, . . . , N we set

xNj := inf{x ∈ R : F (x) ≥ j/N}

and
RNn := max

j=1,...,N−1

(
|F̂n(xNj )− F (xNj )|+ |F̂n(xNj −)− F (xNj −)|

)
.

For N = 1, 2, . . . , therefore, RNn
n→∞−−−→fs 0. Furthermore, for x ∈ (xNj−1, x

N
j )

F̂n(x) ≤ F̂n(xNj ) ≤ F̂n(xNj ) +RNn ≤ F (x) +RNn + 1
N ,

F̂n(x) ≥ F̂n(xNj−1) ≥ F (xNj−1)−RNn ≥ F (x)−RNn − 1
N ,

thus, for each N = 1, 2, . . .

sup
x∈R

widehatFn(x)− F (x)| ≤ 1
N +RNn

n→∞−−−→fs
1
N .

Since the left-hand side does not depend on N , the assertion follows with N →∞.
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9 Weak convergence

For measurable spaces, we have often used the Borel σ-algebra, i.e. the σ-algebra that is
generated by a topology. In this section we will often assume that the topological space is
Polish, i.e. separable and metrizable by a complete metric; recall from Definition A.1 in the
manuscript on measure theory. To save us some work, we will assume throughout that (E, r)
is a metric space and sometimes we will assume that it is complete and separable.

For a measurable mapping f : E → R and a measure µ on B(E) (the Borel’s σ-algebra of
E) we will use throughout this and the next chapter the notation

µ[f ] :=

∫
fdµ.

9.1 Definition and simple properties

So far, we have dealt with different types of convergence of random variables. The convergence
in distribution of random variables is the same as the weak convergence of the distributions
of random variables. For the motivation behind the following definitions, let us recall a fact:
in a metric space (E, r) we have xn

n→∞−−−→ x if and only if f(xn)
n→∞−−−→ f(x) for all continuous

functions on E (i.e. f ∈ C(E,R)).

Definition 9.1 (Weak convergence and convergence in distribution).

1. We denote by P(E) the set of probability measures on B(E) and with P≤1(E) the set of
finite measures µ on B(E) with µ(E) ≤ 1. Further, Cb(E) is the set of the real-valued,
bounded, continuous functions on E and Cc(E) ⊆ Cb(E) is the set of the real-valued,
bounded continuous functions on E with compact support.

2. A sequence P1,P2, · · · ∈ P(E) converges weakly to P ∈ P(E), if

Pn[f ]
n→∞−−−→ P[f ] (9.1)

for all f ∈ Cb(E). We then write

Pn
n→∞
===⇒ P.

3. Let µ1, µ2, · · · ∈ P≤1 and µ be a measure on E. If (9.1) only applies to all f ∈ Cc(E),
we say that µn converges vagely to µ. We then write

µn
n→∞
===⇒v µ.

4. Let X,X1, X2, . . . be random variables on probability spaces (Ω,A,P), (Ω1,A1,P1),
(Ω2,A2,P2), . . . with values in E. Then, X1, X2, . . . converges in distribution to X if
(Xn)∗Pn

n→∞
===⇒ X∗P. We then write

Xn
n→∞
===⇒ X.

Remark 9.2. 1. Note that for random variables X,X1, X2, . . . with values in E, we have
Xn

n→∞
===⇒ X if

P[f(Xn)]
n→∞−−−→ P[f(X)]
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for all f ∈ Cb(E). Many of the following results can therefore be formulated in two
ways: either by means of probability distributions, or by means of random variables.
The connection here is always that the statement about the probability distributions is
also a statement about the distributions of the random variables.

2. The weak limit of probability measures must again be a probability measure, since 1 ∈
Cb(E). The vague limit of probability measures does not necessarily have to be a proba-
bility measure, since 1 /∈ Cc(E) if E is not compact; see also Example 9.3.1. After all,
the vague limit is in P≤1(E), as Lemma 9.12 shows.

3. We already know the almost sury convergence, the convergence in probability, and the
convergence in Lp of random variables X1, X2, . . . to X. The difference to convergence
in distribution is that the latter does not require that the random variables are defined
on the same probability space.

4. By Definition 9.1, the topology of weak convergence on P(E) is the weakest (i.e. the
smallest) topology for which P 7→ P[f ] for all f ∈ Cb(E) is continuous.

Example 9.3. 1. Let x, x1, x2, · · · ∈ R with xn
n→∞−−−→ x and P = δx,P1 = δx1 ,P2 =

δx2 , . . . Then, Pn
n→∞
===⇒ P, since

Pn[f ] = f(xn)
n→∞−−−→ f(x) = P[f ]

for all f ∈ Cb(R).

If the sequence x1, x2, . . . diverges, for example xn = n, then Pn
n→∞−−−→v 0 (this is the

0-measure on B(R)), since

Pn[f ] = f(xn)
n→∞−−−→ 0 = 0[f ]

for all f ∈ Cc(R). However, weak convergence does not hold, since Pn[1] = 1 6= 0 = 0[1].

2. Let X,X1, X2, . . . be identically distributed. Then Xn
n→∞
===⇒ X, but in general the

convergence is neither almost sure, nor in probability nor in Lp for any p > 0.

3. As we will see, the Central Limit Theorem (Theorem 10.8), is a result about conver-
gence in distribution. In its simplest form, the theorem of deMoivre-Laplace (see also
Remark 9.8 and Example 9.34), it states: let p ∈ (0, 1), Xn ∼ B(n, p), n = 1, 2, . . . and
X ∼ N(0, 1). Then,

Xn − np√
np(1− p)

n→∞
===⇒ X.

4. Similarly, the Poisson approximation of the binomial distribution is a statement about
convergence in distribution (see the course in Basic Probability and Theorem 10.5): let
Xn ∼ B(n, pn), n = 1, 2, . . . with n · pn

n→∞−−−→ λ and X ∼ Poi(λ). Then,

Xn
n→∞−−−→ X.

Lemma 9.4 (Uniqueness of the weak limit). Let P,Q,P1,P2, · · · ∈ P(E) with Pn
n→∞
===⇒ P

and Pn
n→∞
===⇒ Q. Then P = Q.
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Proof. According to Proposition 2.11 it suffices to show that P(A) = Q(A) for all closed
A ⊆ E. (The set of all closed sets is a ∩-stable generator of B(E).) So let A ⊆ E be closed.
We set

r(x,A) := inf
y∈A

r(x, y)

and
fm(x) 7→ (1−m · r(x,A))+.

for m = 1, 2, . . . . Then fm
m→∞−−−−→ 1A, since A is is closed. Then, using cominated convergence,

P(A) = lim
m→∞

P[fm] = lim
m→∞

lim
n→∞

Pn[fm] = lim
m→∞

lim
m→∞

Q[fm] = Q(A)

and the assertion follows.

Recall the initial figure of Chapter 7. A sequence of random variables can converge almost
surely, in probability, in Lp or in distribution. Convergence in distribution is the weakest of
these terms in the following sense.

Proposition 9.5 (Convergence in probability and in distribution). Let X,X1, X2, . . . be
random variables with values in E. If Xn

n→∞−−−→p X, then Xn
n→∞
===⇒ X. If X is constant, the

inversion also applies.

Proof. Let Xn
n→∞−−−→p X. Suppose that there is an f ∈ Cb(E) such that limn→∞P[f(Xn)] 6=

P[f(X)]. Then there is a subsequence (nk)k=1,2,... and a ε > 0 with

lim
k→∞

|P[f(Xnk)]−P[f(X)]| > ε. (9.2)

Because of Xn
n→∞−−−→p X and Proposition 7.6 there is a subsequence (nk`)`=1,2,... such that

Xnk`

`→∞−−−→ X almost surely. By dominated convergence, this would imply

lim
`→∞

P[f(Xnk`
)] = P[f(X)]

in contradiction to (9.2).
For the inverse, let X = s ∈ E. Note that x 7→ r(x, s) ∧ 1 is a bounded, continuous

function and therefore

P[r(Xn, s) ∧ 1]
n→∞−−−→ P[r(X, s) ∧ 1] = 0.

Thus, Xn
n→∞−−−→p X holds because of (7.1).

Theorem 9.6 (Portmanteau theorem). Let X,X1, X2, . . . be random variables with values
in E. The following conditions are equivalent:

(i) Xn
n→∞
===⇒ X

(ii) P[f(Xn)]
n→∞−−−→ P[f(X)] for all bounded, Lipschitz-continuous functions f .

(iii) lim inf
n→∞

P(Xn ∈ G) ≥ P(X ∈ G) for all open G ⊆ E.

(iv) lim sup
n→∞

P(Xn ∈ F ) ≤ P(X ∈ F ) for all completed F ⊆ E.
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(v) lim
n→∞

P(Xn ∈ B) = P(X ∈ B) for all B ∈ B(E) with3 P(X ∈ ∂B) = 0.

Proof. (i)→ (ii): clear.

(ii)⇒ (iv): Let F ⊆ E be closed and f1, f2, . . . Lipschitz-continuous such that fk ↓ 1F . (For
example, one chooses εk ↓ 0 and fk(x) = (1 − 1

εk
r(x, F ))+, where r(x, F ) := infy∈F r(x, y).)

This means that

lim sup
n→∞

P(Xn ∈ F ) ≤ inf
k=1,2,...

lim sup
n→∞

P[fk(Xn)] = inf
k=1,2,...

P[fk(X)] = P(X ∈ F ).

(iii) ⇐⇒ (iv): That is clear. For (iii) ⇒ (iv), set F := E \ G and for (iv) ⇒ (iii), set
G := E \ F .

(iii)⇒ (i): Let f ≥ 0 be continuous. By Proposition 6.10 and Fatou’s lemma,

P[f(X)] =

∫ ∞
0

P(f(X) > t)dt ≤
∫ ∞

0
lim inf
n→∞

P(f(Xn) > t)dt

≤ lim inf
n→∞

∫ ∞
0

P(f(Xn) > t)dt = lim inf
n→∞

P[f(Xn)].

For −c < f < c, since −f + c ≥ is0,

lim sup
n→∞

P[f(Xn)] = c− lim inf
n→∞

P[−f(Xn) + c] ≤ c−P[−f(X) + c] = P[f(X)]

≤ lim inf
n→∞

P[f(Xn)],

thus P[f(Xn)]
n→∞−−−→ P[f(X)].

(iii), (iv)→ (v) For B ∈ B(E),

P(X ∈ B◦) ≤ lim inf
n→∞

P(Xn ∈ B◦) ≤ lim sup
n→∞

P(Xn ∈ B) ≤ P(X ∈ B).

Given P(X ∈ ∂B) = P(X ∈ B)−P(X ∈ B◦) = 0, therefore P(Xn ∈ B)
n→∞−−−→ P(X ∈ B).

(v) → (iv): Assume (v) is true and F ⊆ E is closed. We write F ε := {x ∈ E : r(x, F ) ≤ ε}
for ε > 0. The sets ∂F ε ⊆ {x : r(x, F ) = ε} are disjoint, so

P(X ∈ ∂F ε) = 0 (9.3)

for Lebesgue-almost every ε. Let ε1, ε2, . . . denote a sequence with εk ↓ 0 such that (9.3)
holds for all ε1, ε2, . . . . This means that

lim sup
n→∞

P(Xn ∈ F ) ≤ inf
k=1,2,...

lim sup
n→∞

P(Xn ∈ F εk) = inf
k=1,2,...

P(X ∈ F εk) = P(X ∈ F ).

Corollary 9.7 (Convergence of distribution functions). Let P,P1,P2, · · · ∈ P(R) with distri-
bution functions F, F1, F2, . . . Then Pn

n→∞−−−→ P exactly if Fn(x)
n→∞−−−→ F (x) for all continuity

points x of F .

3For the closure B and the interior B◦ denote here ∂B := B \B◦ the edge of B.

33



Proof. ’⇒’: If x is a continuity point of F , then P(∂(−∞;x]) = P({x}) = 0. This means
that – according to Theorem 9.6 (direction (i)⇒ (v)) – that

Fn(x) = Pn((−∞;x])
n→∞−−−→ P((−∞;x]) = F (x).

’⇐’: According to Theorem 9.6 (direction (ii)⇒ (i)), it suffices to show that Pn[f ]
n→∞−−−→ P[f ]

for all bounded, Lipschitz functions f . Wlog, we assume that |f | ≤ 1 and f has Lipschitz
constant 1. For ε > 0 choose N ∈ N and continuity points y0 < · · · < yN of F , so that
F (y0) < ε, F (yN ) > 1− ε and yi − yi−1 < ε for i = 1, . . . , N . Then Fn(yi)

n→∞−−−→ F (yi) and

f ≤ 1(−∞,y0] + 1(yN ,∞) +
N−1∑
i=1

(f(yi) + ε)1(yi,yi+1],

as well as

lim sup
n→∞

Pn[f ] ≤ lim sup
n→∞

Fn(y0) + 1− Fn(yN ) +
N∑
i=1

(f(yi) + ε)(Fn(yi)− Fn(yi−1)

≤ 3ε+
N∑
i=1

f(yi)(F (yi)− F (yi−1)) ≤ 4ε+ P[f ].

With ε→ 0 and by replacing f with 1− f , we find Pn[f ]
n→∞−−−→ P[f ].

Remark 9.8 (The Theorem of deMoivre-Laplace). In Example 9.3 we claimed that deMoivre-
Laplace’s Theorem makes a statement about weak convergence. The Theorem states that for
B(n, p)-distributed random variables Xn, n = 1, 2, ...,

P
( Xn − np√

np(1− p)
≤ x

)
n→∞−−−→ Φ(x),

where Φ is the distribution function of the standard normal distribution. As Corollary 9.7
shows, this means exactly the convergence in distribution to a standard normal distribution.

Corollary 9.9 (Slutzky’s Theorem ). Let X,X1, X2, ..., Y1, Y2, ... be random variables with
values in E. If Xn

n→∞
===⇒ X and r(Xn, Yn)

n→∞−−−→p 0, then Yn
n→∞−−−→ X.

Proof. Let f : E → R be bounded and Lipschitz-continuous with Lipschitz constant L. Then,

|f(x)− f(y)| ≤ L · r(x, y) ∧ (2||f ||∞)

for all x, y ∈ E. From this,

lim sup
n→∞

E[f(Xn)− f(Yn)] ≤ lim sup
n→∞

E[L · r(Xn, Yn) ∧ (2||f ||∞)] = 0

according to Lemma 7.5. Thus,

lim sup
n→∞

∣∣E[f(Yn)]−E[f(X)]
∣∣ ≤ lim sup

n→∞

∣∣E[f(Yn)]−E[f(Xn)]
∣∣+
∣∣E[f(Xn)]−E[f(X)]

∣∣ = 0,

and the claimed convergence follows with Theorem 9.6.
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Theorem 9.10 (Continuous mapping theorem). Let E be separable, (E′, r′) another metric
space and ϕ : E → E′ measurable and Uϕ ⊆ E the set of discontinuity points of ϕ.

1. If P,P1,P2, · · · ∈ P(E) and P(Uϕ) = 0 and Pn
n→∞
===⇒ P, then ϕ∗Pn

n→∞
===⇒ ϕ∗P.

2. If X,X1, X2, . . . are random variables with values in E and P(X ∈ Uϕ) = 0 and

Xn
n→∞
===⇒ X, then also ϕ(Xn)

n→∞
===⇒ ϕ(X).

Proof. First, we note that 2. is an application of 1. if one sets Pn = (Xn)∗P. The set Uϕ is
Borel-measurable, since

U δ,εϕ = {x ∈ E : ∃y, z ∈ Bδ(x), r′(ϕ(y), ϕ(z)) > ε}

is Borel-measurable (here the separability of E is included) and

Uϕ =

∞⋃
n=1

∞⋂
k=1

U1/k,1/n
ϕ .

Let G ⊆ E′ be open and x ∈ ϕ−1(G) ∩ U cϕ. Since ϕ is continuous in x, there is a δ > 0 with
ϕ(y) ∈ G (i.e. y ∈ ϕ−1(G)) for all y with r(x, y) < δ. Therefore, ϕ−1(G) ∩ U cϕ ⊆ (ϕ−1(G))◦.
This follows with Theorem 9.6 (direction (i)⇒ (iii))

ϕ∗P(G) = P(ϕ−1(G)) = P(ϕ−1(G) ∩ U cϕ) ≤ P((ϕ−1(G))◦)

≤ lim inf
n→∞

Pn((ϕ−1(G))◦) ≤ lim inf
n→∞

Pn(ϕ−1(G)) = lim inf
n→∞

ϕ∗Pn(G).

Again due to theorem 9.6 (direction (iii)⇒ (i)), this implies ϕ∗Pn
n→∞
===⇒ ϕ∗P.

Apart from the vague convergence, convergence in distribution is the weakest form of conver-
gence. However, there is a connection with almost sure convergence, as the following theorem
shows.

Theorem 9.11 (Weak and almost sure convergence, Skorohod). Let X,X1, X2, . . . be random
variables with values in a complete and separable space (E, r). Then, Xn

n→∞
===⇒ X holds if

and only if there is a probability space on which random variables Y, Y1, Y2, . . . are defined

with Yn
n→∞−−−→fs Y and Y

d
= X,Y1

d
= X1, Y2

d
= X2, . . .

Proof. ’⇐’: This is clear, since almost sure convergence implies weak convergence (see Propo-
sition 9.5).
’⇒’: We extend the probability space on which X is defined, and we set Y = X. Let
E = {1, . . . ,m} be finite, U be uniformly distributed on [0, 1] and independent of Y , and
W1,W2, . . . independent with

P(Wn = k) =
P(Xn = k)−P(X = k) ∧P(Xn = k)

1−
∑m

l=1 P(X = l) ∧P(Xn = l)
.

We set Yn = k if either

X = k and U ≤ P(Xn = k)

P(X = k)

or

X = l and U >
P(Xn = l)

P(X = l)
and Wn = k.
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Then

P(Yn = k) = P(X = k) · P(Xn = k)

P(X = k)
∧ 1

+
m∑
l=1

P(X = l) ·
(

1− P(Xn = l)

P(X = l)

)+ P(Xn = k)−P(X = k) ∧P(Xn = k)

1−
∑m

l′=1 P(X = l′) ∧P(Xn = l′)

= P(Xn = k) ∧P(X = k)

+

m∑
l=1

(P(X = l)−P(Xn = l) ∧P(X = l))
P(Xn = k)−P(X = k) ∧P(Xn = k)

1−
∑m

l′=1 P(X = l′) ∧P(Xn = l′)

= P(Xn = k).

Thus Yn
d
= Xn. Since according to the condition P(Xn = k)

n→∞−−−→ P(X = k), the almost
sure convergence follows.

For general E, let p = 1, 2, ... and choose a partition of E in sets B1, B2, . . . in E with
P(Y ∈ ∂Bk) = 0 and diameter at most 2−p. Choose m large enough, so that P(Y /∈ B0) < 2−p

with B0 := E \
⋃
k≤mBk. For k = 1, 2, . . . , define random variables Z̃, Z̃1, Z̃2, . . . such that

Z̃ = k exactly when Y ∈ Bk and Z̃n = k if Yn ∈ Bk. Then Z̃n
n→∞
===⇒ Z̃. Since Z̃, Z̃1, . . . only

takes values in a finite set, we can use random variables Z,Z1, Z2, . . . with Zn
n→∞−−−→fs Z.

Furthermore, let Wn,k be random variables with distribution P[Xn ∈ .|Xn ∈ Bk] and Ỹn,p =∑
kWn,k1Zn=k, so that Ỹn,p

d
= Xn for all n. It is now clear{

r(Ỹn,p, Y ) > 2−p
}
⊆ {Zn 6= Z} ∪ {Y ∈ B0}.

Since Zn
n→∞−−−→fs Z and P{Y ∈ B0} < 2−p, for each p there are numbers n1 < n2 < . . . with

P
( ⋃
n≥np

{
r(Ỹn,p, Y ) > 2−p

})
< 2−p

for all p. With the Borel-Cantelli lemma we get

sup
n≥np

r(Ỹn,p, Y ) ≤ 2−p

for almost all p. We therefore define Yn := Ỹn,p for np ≤ n < np+1 and note that Xn
d
=

Yn
n→∞−−−→fs Y .

9.2 Prohorov’ Theorem

In this section, we first examine the concept of vague convergence. We will restrict ourselves to
the space E = R. (Most of the statements shown here are still valid in locally compact spaces).
It is already clear that weak convergence of distributions implies vague convergence (since all
continous functions with compact support are bounded), and that the weak convergence is
equivalent to the convergence of the distribution functions (Corollary 9.7). The main result
here is the theorem of Helly (Theorem 9.13), which states that every sequence of probability
measures has a vaguely convergent subsequence.
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We then examine the question when a sequence of probability measures also has weakly
convergent subsequence. This leads us to the notion of tightness of probability measures and
Prohorov’s theorem (Theorem 9.19).
As we have already seen in Remark 9.2.1, it can be that the vague limit measure of probability
measures is not a probability measure. However, the following result shows that the limit
measure has total mass at most 1.

Lemma 9.12 (Mass loss at vague convergence). Let P1,P2, · · · ∈ P(R) and µ a measure on
B(R) with Pn[f ]

n→∞−−−→ µ[f ], f ∈ Cc(R), then µ ∈ P≤1(R) applies.

Proof. Let f1, f2, · · · ∈ Cc(R) with fk ↑ 1. Then with monotonic convergence

µ(R) = sup
k∈N

µ[fk] = sup
k∈N

lim sup
n→∞

Pn[fk] ≤ 1.

.

Theorem 9.13 (Helly’s theorem). Let P1,P2, · · · ∈ P(R). Then there is a subsequence

(nk)k=1,2,... and a µ ∈ P≤1(R) with Pnk
k→∞
===⇒v µ.

Proof. Let F1, F2, . . . be the distribution functions of P1,P2, . . . Further, let (x1, x2, . . . ) be
a count of Q. Since [0, 1] is compact, for each sequence there is (Fn(xi))n=1,2,... a convergent
subsequence. By means of a diagonal argument, there is a sequence (nk)k=1,2,... such that
(Fnk(xi))k=1,2,... for all i against a limit G(xi) converges to Q. We define

F (x) := inf{G(r) : r ∈ Q, r > x}.

Since all Fn and therefore G have non-negative increments, the same applies to F . From
the definition of F and the monotonicity of G, it also follows that F is right-continuous.
According to Proposition 2.19, there is a measure µ on R with µ((x, y]) = F (y) − F (x) for
all x, y ∈ R, x ≤ y. It remains to show that Pn[f ]

n→∞−−−→ µ[f ] for all f ∈ Cc(R). Wlog we can
assume that f ≥ is0.

It is Fn(x)
n→∞−−−→ F (x) at all continuity points x of F by construction. There is a countable

set D ⊆ R such that F is continuous on Dc is continuous. This means that Pn(U)
n→∞−−−→ µ(U)

for all finite unions U of intervals with vertices in Dc. Now let B ⊆ R be open and bounded.
Let U1, U2, . . . and V1, V2, . . . be sequences of finite unions of open intervals with vertices in
C such that such that Uk ↑ B, Vk ↓ B. Then,

µ(B) = lim
k→∞

µ(Uk) = lim
k→∞

lim inf
n→∞

Pn(Uk) ≤ lim inf
n→∞

Pn(B)

≤ lim sup
n→∞

Pn(B) ≤ lim
k→∞

lim sup
n→∞

Pn(Vk) = lim
k→∞

µ(Vk) = µ(B).

Since µ(f = t) > 0 for at most countably many t, and since Pn(f > t) ≤ 1t≥||f ||, it follows
with dominated convergence

µ[f ] =

∫ ∞
0

µ(f > t)dt ≤
∫ ∞

0
lim inf
n→∞

Pn(f > t)dt = lim inf
n→∞

∫ ∞
0

Pn(f > t)dt = lim inf
n→∞

En[f ]

≤ lim sup
n→∞

Pn[f ] = lim sup
n→∞

∫ ∞
0

Pn(f > t)dt =

∫ ∞
0

lim sup
n→∞

Pn(f > t)dt ≤
∫ ∞

0
µ(f ≥ t)

= µ[f ].
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We now return to the case of a general metric space (E, r). To show the existence of ac-
cumulation points in the sense of weak convergence, it must be ensured that limit measures
are again limit measures are again probability measures. In particular no mass is lost at the
boundary crossing as in the case of vague convergence (see Lemma 9.12). Here, the concept
of tightness is central.

Definition 9.14 (Tightness). Let K be the system of all compact sets in E. A family (Pi)i∈I
in P(E) is tight, if

sup
K∈K

inf
i∈I

Pi(K) = 1.

A family (Xi)i∈I of E-valued random variables is tight if ((Xi)∗P)i∈I is tight, i.e.

sup
K∈K

inf
i∈I

P(Xi ∈ K) = 1.

Remark 9.15 (Equivalent formulations). 1. The definition of the tightness of a family
(Pi)i∈I in P(E) is equivalent to the following condition: for all ε > 0 there exists
K ⊆ E compact with infi∈I Pi(K) ≥ 1− ε.

2. If E = Rd, a family (Pi)i∈I is tight if and only if

sup
r>0

inf
i∈I

Pi(Br(0)) = 1,

where Br(0) is the sphere around 0 with radius r.

3. In Lemma 2.9 we have shown that P ∈ P(E) is tight if (E, r) is complete and is
separable. It also follows that every finite family of probability measures on the Borel’s
σ-algebra of a Polish space is tight.

4. Further, a countable family (Pi)i=1,2,... is of probability measures on a Polish space (E, r)
is tight if and only if

sup
K∈K

lim inf
i=1,2,...

Pi(K) = 1.

Proof. ’⇒’: This is clear, since lim infi=1,2,... Pi(K) ≥ infi=1,2,... Pi(K) = 1.

’⇐’: Let ε > 0 and K such that lim infi=1,2,... Pi(K) ≥ 1 − ε/2. Choose N such that
infi=N+1,N+2,... Pi(K) ≥ 1 − ε and K1, . . . ,KN compact such that Pi(Ki) ≥ 1 − ε for

i = 1, . . . , N . Since K̃ = K ∪K1 ∪ · · · ∪KN is compact and infi=1,2,... Pi(K̃) ≥ 1 − ε
the tightness of (Pi)i=1,2,... follows.

Example 9.16 (Tight sets of probability measures). 1. If E is compact, every family of
probability measures on B(E) is tight.

2. A family (Xi)i∈I of real-valued random variables with

sup
i∈I

P[|Xi|] <∞,

is tight. This is because

inf
r>0

sup
i∈I

P(|Xi| ≥ r) ≤ inf
r>0

sup
i∈I

P[|Xi|]
r

= 0.

.
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3. The family (δn)n=1,2,..., where δn is the Dirac measure on n, is not tight.

Lemma 9.17 (Vague convergence and tightness). Let P1,P2, · · · ∈ P(R) and µ ∈ P≤1(R)
with

Pn
n→∞
===⇒v µ.

Then
µ(R) = 1 ⇐⇒ (Pn)n=1,2,... is tight

. In this case, Pn
n→∞
===⇒ µ.

Proof. For r > 0 choose a gr ∈ Cc(R), 1Br(0) ≤ gr ≤ 1Br+1(0). Then (Pn)n=1,2,... is tight if and
only if

sup
r>0

lim inf
n→∞

Pn[gr] = 1.

’⇒’: Since µ is continuous from below, we find

1 = sup
r>0

µ(Br(0)) ≤ sup
r>0

µ[gr] = sup
r>0

lim inf
n→∞

Pn[gr] ≤ 1.

’⇐’: Let (Pn)n=1,2,... be be tight. Then, from Lemma 9.12,

1 ≥ µ(R) = sup
r>0

µ(Br(0)) = sup
r>0

µ[gr] = sup
r>0

lim inf
n→∞

Pn[gr] = 1.

It remains to show the weak convergence. Assuming that (Pn)n=1,2,... is tight and f ∈ Cb(R).
Then,

lim sup
n→∞

|Pn[f ]− µ[f ]| ≤ inf
r>0

lim sup
n→∞

(
|Pn[f − fgr]|+ |Pn[fgr]| − µ[fgr]|+ |µ[f − fgr]|

)
≤ ||f || inf

r>0
lim sup
n→∞

Pn(Br(0)c) + inf
r>0

µ[Br(0)c] = 0,

and Pn
n→∞
===⇒ µ follows.

Corollary 9.18 (Weak convergence and tightness). Let P,P1,P2, · · · ∈ P(R). If Pn
n→∞
===⇒

P, then (Pn)n∈N is tight.

Proof. Since weak convergence of P1,P2, . . . to P implies vague convergence, for P,P1,P2, . . .
the conditions of Lemma 9.17 and P(R) = 1 are satisfied. Therefore, (Pn)n∈N is tight.

To determine the weak convergence of probability measures Theorem 9.6 is helpful. We now
turn to the question whether a sequence of probability measures can have an accumulation
point. This means that there is a subsequence that converges weakly to a probability measure.

Theorem 9.19 (Prohorov’s theorem). Let (E, r) be complete and separable and (Pi)i∈I a
family in P(E). The following are equivalent:

1. The family (Pi)i∈I is relatively compact with respect to the topology of weak convergence,
i.e. every sequence in (Pi)i∈I has a weakly convergent subsequence.

2. For every ε > 0 there is an N ∈ N and x1, . . . , xN ∈ E, so that

inf
i∈I

Pi

( N⋃
k=1

Bε(xk)
)
≥ 1− ε.
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3. The family (Pi)i∈I is tight.

Proof. Let x1, x2, . . . be a dense subsequence in E (which exists since (E, r) is separable).
1. ⇒ 2.: Suppose 2. is not true. Then there is ε > 0 and for each N = 1, 2, . . . a PiN with

PiN

(⋃N
k=1Bε(xk)

)
≤ 1− ε. By relative compactness, there would then be some subsequence

(PiM )M=1,2,... which is weakly convergent to some P ∈ P(E). Thus, because of Theorem 9.6
((i)⇒ (iii)) we find that

1 = P(E) = sup
N∈N

P
( N⋃
k=1

Bε(xi)
)
≤ sup

N∈N
lim inf
M→∞

PiM

( N⋃
k=1

Bε(xi)
)
≤ 1− ε,

thus a contradiction.
2.⇒ 3.: Let ε > 0. For j = 1, 2, . . . we choose xj1, . . . , xjNj such that

inf
i∈I

Pi

( Nj⋃
k=1

Bε2−j (xjk)
)
> 1− ε2−j .

We further set

K :=

∞⋂
j=1

Nj⋃
k=1

Bε2−j (xjk).

Then K ⊆ E is totally bounded by construction, according to Proposition A.9 therefore
relatively compact, so K is compact. Furthermore

sup
i∈I

Pi(K
c
) ≤ sup

i∈I

∞∑
j=1

Pi

( Nj⋂
k=1

(Bε2−j (xjk))
c
)
≤ ε.

Thus the family (Pi)i∈I is tight.
3.⇒ 1.: Let P1,P2, . . . be a sequence in the family of the family (Pi)i∈I . The aim is to find
a convergent subsequence. For this purpose, we choose compact sets K1 ⊆ K2 ⊆ · · · ⊆ E
with infn=1,2,... Pn(Kj) ≥ 1− 1/j. Further, we choose the system of compact sets

K :=
{ N⋃
k=1

Kjk ∩Bεk(xk) : N, jk ∈ N, εk ∈ Q+
}
.

Since K is countable, we can use a diagonal argument in order to create a subsequence
Pn1 ,Pn2 , . . . from P1,P2, . . . so that Pnk(A) converges for all A ∈ K. Define the set function
µ on K by

µ(A) = lim
k→∞

Pnk(A), A ∈ K.

Our goal is to construct a probability measure P, such that, for all open sets B,

P(B) = sup
K3A⊆B

µ(A). (9.4)

Indeed, if we find such a P, we can write for B open

P(B) = sup
K3A⊆B

lim
k→∞

Pnk(A) ≤ lim inf
k→∞

Pnk(B),
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and Pnk
k→∞
===⇒ P follows by Theorem 9.6. In order to find P, we are going to construct an

outer measure γ, and show that the open sets are γ-measurable. Then, P can be defined via
γ on the σ-algebra of all measurbale sets; see Lemma 6.2.

We first extend µ to all open sets (giving rise to β below), and directly construct γ by
setting

γ(C) := inf
B⊇C open

β(B), β(B) =: sup
K3K⊆B

µ(K).

So, β is defined on all open sets, and, by construction, β is monotone, additive, sub-additive,
and γ = β on all open sets.
We claim that

γ is an outer measure and all closed sets are γ-measurable. (9.5)

(Recall that C is measurable with respect to the outer measure γ, if γ(S) ≥ γ(S∩C)+γ(S∩Cc)
for all S ⊆ E; see Definition 2.1.6 and sub-additivity of γ). Then, we write for B open
P(B) = γ(B) = β(B) = supK3A⊆B µ(A), i.e. (9.4) follows.
In order to show (9.5), we proceed in steps:
Step 1: If F ⊆ B ∩ K is closed, with B open and K ∈ K, then there is K ′ ∈ K with
F ⊆ K ′ ⊆ B.
For each x ∈ F , choose ε(x) ∈ Q such that Bε(x)(x) ⊆ B. Since (Bε(x)(x))x∈F is an open
cover of F ∩K, which is compact, there must be a finite subcover, i.e. some F = F ∩K ⊆⋃N
n=1Bε(xn)(xn) ∩K ⊆ B. We can now read off the required K ′.

Step 2: β is σ-sub-additive on the open sets.
For finite sub-additivity, let B1, B2 be open, and K 3 K ⊆ B1 ∪B2. Define

F1 := {x ∈ K : r(x,Bc
1) ≥ r(x,Bc

2}, F2 := {x ∈ K : r(x,Bc
2) ≥ r(x,Bc

1)}.

Note that F1 ⊆ B1: Indeed, if x ∈ F1 ⊆ K ⊆ B1 ∪ B2 and x ∈ B2 \ B1, then 0 = r(x,Bc
1) <

r(x,Bc
2) since Bc

2 is closed, which is a contradiction. Analogously, F2 ⊆ B2.
So, for i = 1, 2, we find Fi ⊆ Bi ∩K, and we find Ki ∈ K with Fi ⊆ Ki ⊆ Bi with Step 1. So,
note that F1 ∪ F2 = K, and we can write

µ(K) ≤ µ(K1 ∪K2) ≤ µ(K1) + µ(K2) ≤ β(B1) + β(B2).

Finite sub-additivity follows by taking the supremum over K 3 K ⊆ B1 ∪B2 on the left hand
side. For σ-sub-additivity, take K 3 K ⊆

⋃∞
n=1Bn. Since K is compact, choose n0 such that

K ⊆
⋃n0
n=1Bn and write

µ(K) ≤ β
( n0⋃
n=1

Bn

)
≤

n0∑
n=1

β(Bn) ≤
∞∑
n=1

β(Bn).

Then, σ-sub-additivity by taking the supremum over K 3 K ⊆
⋃∞
n=1Bn on the left hand side.

Step 3: γ is an outer measure.
Since γ(∅) = 0 and γ is monotone by construction, it remains to show σ-sub-additivity. If
§1, S2, ... ⊆ E, let ε > 0 and choose B1 ⊆ S1, B2 ⊆ S2, ... open with β(Bn) < γ(Sn) + ε/2n.
Then, using Step 2,

γ
( ∞⋃
n=1

Sn

)
≤ β

( ∞⋃
n=1

Sn

)
≤
∞∑
n=1

β(Bn) ≤ ε+

∞∑
n=1

γ(Sn).
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The assertion follows by letting ε ↓ 0.
Step 4: Closed sets are γ-measurable.
It suffices to show

β(B) ≥ γ(F ∩B) + γ(F c ∩B)

for F closed and B open. Once this is shown, consider an arbitrary S and B ⊇ S open. Then,
β(B) ≥ γ(F ∩B) + γ(F c ∩B) ≥ γ(F ∩ S) + γ(F c ∩ S) by monotonicity og γ. From here, the
assertion follows by taking infB⊆S open on the left hand side.
So, let F be closed and B be open and ε > 0. Choose K1,K2 ∈ K with K1 ⊆ F c ∩ B
and K2 ⊆ Kc

1 ∩ B (in particular, K1,K2 are disjoint) with µ(K1) > β(F c ∩ B) − ε and
µ(K2) > β(Kc

1 ∩B)− ε. Then, since β(Kc
1 ∩B) ≥ γ(F ∩B)

β(B) ≥ µ(K1 ∪K2) = µ(K1) + µ(K2) > γ(F c ∩B) + γ(Kc
1 ∩B)− 2ε.

By letting ε→ 0, this concludes the proof, i.e. (iii)⇒(i) is shown.

9.3 Separating classes of functions

Now we will introduce separating classes of functions. In particular, this will shed some
light on the usefulness of characteristic functions and Laplace transforms of distributions (see
Definition 6.11). These are based on two specific classes of functions that are separating.

Definition 9.20 (Classes of functions separating points and separating function classes).

1. A function class M⊆ C(E) is said to separate points in E if for all x, y ∈ E with x 6= y
there exists an f ∈M with f(x) 6= f(y).

2. A class of functions M⊆ C(E) is called separating in P(E) if from P,Q ∈ P(E) and

P[f ] = Q[f ] for all f ∈M

implies that P = Q.

Example 9.21. 1. The class of functions M := Cb(E) is both, separating points and
separating. Namely, if x 6= y, then z 7→ r(x, z) ∧ 1 is a bounded, continuous function
that separates x and y. Furthermore, if P,Q ∈ P(E) and P 6= Q, then there is an
open ball A with P(A) 6= Q(A). Let f1, f2, . . . be a sequence in Cb(E) with fn ↑ 1A. If
P[fn] = Q[fn] for all n = 1, 2, . . . , then it would also

P(A) = lim
n→∞

P[fn] = lim
n→∞

Q[fn] = Q(A)

in contradiction to the assumption.

2. The class of functions {x 7→ cx : c ∈ R} of all linear functions separates points, but is
not separating.

The next result requires the Stone-Weierstrass theorem, which we repeat first.

Definition 9.22 (Algebra). A set system M ⊆ C(E) is called an algebra, if 1 ∈ M, and if
α, β ∈ R and it contains f, g it also contains αf + βg, as well as fg.
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Theorem 9.23 (Stone-Weierstrass). Let (E, r) be compact and M⊆ Cb(E) an algebra sep-
arating points. Then, M is dense in Cb(E) with respect to the supremum norm.

Proof. See some lecture on Analysis.

Theorem 9.24 (Algebras separating points and separating algebras).
Let (E, r) be complete and separable. IfM⊆ Cb(E) separates points and is such that f, g ∈M
implies fg ∈M. Then M is is separating.

Proof. Let P,Q ∈ P(E). Without restriction, 1 ∈ M, since P[1] = Q[1] always holds. Thus
M is wlog an algebra. Let ε > 0 and K be compact such that P(K) > 1−ε, Q(K) > 1−ε. For
g ∈ Cb(E), according to the Stone-Weierstrass Theorem 9.23 there is a sequence (gn)n=1,2,...

in M with

sup
x∈K
|gn(x)− g(x)| n→∞−−−→ 0. (9.6)

Now, ∣∣P[ge−εg
2
]−Q[ge−εg

2
]
∣∣ ≤ ∣∣P[ge−εg

2
]−P[ge−εg

2
;K]

∣∣
+
∣∣P[ge−εg

2
;K]−P[gne

−εg2n ;K]
∣∣

+
∣∣P[gne

−εg2n ;K]−P[gne
−εg2n ]

∣∣
+ |P[gne

−εg2n ]−Q[gne
−εg2n ]

∣∣
+
∣∣Q[gne

−εg2n ]−Q[gne
−εg2n ;K]

∣∣
+
∣∣Q[gne

−εg2n ]−Q[ge−εg
2
;K]

∣∣
+
∣∣Q[ge−εg

2
;K]−Q[ge−εg

2
]
∣∣

We restrict the first term by∣∣P[ge−εg
2
]−P[ge−εg

2
;K]

∣∣ ≤ C√
ε
P(Kc) ≤ C

√
ε

with C = supx≥0 xe
−x2 ; analogous to the third, fifth and last terms. The second and penul-

timate terms converge to 0 for n → ∞ due to (9.6). Since M is an algebra, gne
−εg2n can be

approximated by functions inM, which means that the fourth term for n→∞ converges to
0. This means that∣∣P[g]−Q[g]

∣∣ = lim
ε→0

∣∣P[ge−εg
2
]−Q[ge−εg

2
]
∣∣ ≤ 4C lim

ε→0

√
ε = 0.

Since g was arbitrary and Cb(E) is separating, P = Q follows.

We now come back to the characteristic function and the Laplace transform. As already
mentioned, the usefulness of the characteristic function and the Laplace transforms is due to
the fact that they are distribution-determining.

Proposition 9.25 (Characteristic function distribution-determining).
A probability measure P ∈ P(Rd) (P ∈ P(Rd+)) is uniquely characterized by the characteristic
function ψP (the Laplace transform LP).
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Proof. We show the statement only for characteristic functions that are proven for Laplace
transforms is proven analogously. We establish that the set M := {x 7→ eitx; t ∈ Rd} in
Rd separates points. Since M ⊆ Cb(Rd) and is closed under product formation, it is also
separating according to theorem 9.24. This finishes the proof.

Corollary 9.26 (Independence and characteristic function). 1. A family (Xj)j∈I of real-
valued random variables is is independent if and only if for all J ⊆f I

E
[∏
j∈J

eitjXj
]

=
∏
j∈J

E[eitjXj ] (9.7)

for all (tj)j∈J ∈ RJ is valid.

2. A family (Xj)j∈I of random variables with values in R+ is independent if and only if
for all J ⊆f I

E
[∏
j∈I

e−tjXj
]

=
∏
j∈J

E[e−tjXj ]

for all (tj)j∈J ∈ RJ applies.

Proof. We only show the first statement, the second follows analogously. If (Xj)j∈I is inde-
pendent, then according to Lemma 8.4, the random variables (eitjXj )j∈I for all (tj)j∈J ∈ RJ
are independent. Thus, (9.7) follows from Proposition 8.5. Conversely, the following applies.
On the one hand, the left-hand side of (9.7) represents the characteristic function of the
distribution ((Xj)j∈J)∗P. On the other hand, the right side of (9.7) is the characteristic
function of

⊗
j∈J(Xj)∗P. Since the characteristic function according to Proposition 9.25 is

the joint distribution of (Xj)j∈J is uniquely determined, ((Xj)j∈J)∗P =
⊗

j∈J(Xj)∗P. The
independence of (Xj)j∈I thus follows from Proposition 8.2.

9.4 Lévy’s theorem

We now want to analyze the relationship between weak convergence and the convergence
of the characteristic functions of the underlying distributions. Let P,P1,P2, · · · ∈ P(Rd).
How to get from Proposition 9.27, the weak convergence follows Pn

n→∞
===⇒ P follows from

the pointwise convergence of the characteristic functions, ψPn(t)
n→∞−−−→ ψP(t), t ∈ Rd, given

(Pn)n∈N is tight. The decisive factor is that the tightness of the family (Pn)n∈N can also
be read from the characteristic functions as we will show in Proposition 9.32. This leads to
the statement of Lévy’s continuity theorem (Theorem 9.33), which states when the pointwise
limit of characteristic functions is again a characteristic function of a probability measure.

Proposition 9.27 (Separating class of functions and weak convergence). Let (E, r) be com-
plete and separable and P,P1,P2, · · · ∈ P(E). Then the following are equivalent:

1. Pn
n→∞
===⇒ P.

2. (Pn)n=1,2,... is tight and there is a separating family M⊆ Cb(E) with

Pn[f ]
n→∞−−−→ P[f ] for all f ∈M.
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Proof. 1. ⇒ 2. According to Corollary 9.18, we have that (Pn)n=1,2,... is tight. The second
part of 2. holds because of the definition of weak convergence.
2. ⇒ 1. Suppose (Pn)n=1,2,... is tight and P1,P2, . . . does not converge weakly to P. Then
there is ε > 0, some f ∈ Cb(E) and a subsequence (nk)k=1,2,... such that

Pnk [f ]−P[f ]| > ε for all k. (9.8)

According to theorem 9.19 there is a subsequence (nk`)`=1,2,... and a Q ∈ P(E), such that

Pnk`

`→∞
===⇒ Q. Because of (9.8),

|P[f ]−Q[f ]| ≥ | lim inf
`→∞

(
P[f ]−Pnk`

[f ]|) + lim inf
`→∞

(Pnk`
[f ]−Q[f ])| > ε,

in particular P 6= Q. On the other hand, for all g ∈M we have

P[g] = lim
`→∞

Pnk`
[g] = Q[g].

Since M is separating, this is a contradiction and 1. is shown.

Let P ∈ P(R) and ψP be its characteristic function. We first show an estimate, which is
important to relate tightness and ψP.

Lemma 9.28 (Tightness and the characteristic function function). Let P ∈ P(R). Then for
all r > 0

P((−∞;−r] ∪ [r;∞)) ≤ r

2

∫ 2/r

−2/r
(1− ψP(t))dt, (9.9)

Proof. It is sin(x)/x ≤ 1 for x ≤ 2 and sinx ≤ x/2 for x ≥ 2. Let X be a random variable
with distribution P. Therefore, for every c > 0 according to Fubini,∫ c

−c
(1− ψP(t))dt = P

[ ∫ c

−c
(1− eitX)dt

]
= P

[
2c− 1

iX
eitX

∣∣∣c
t=−c

]
= 2cP

[
1− sin(cX)

cX

]
≥ 2cP

[
1− sin(cX)

cX
; |cX| ≥ 2

]
≥ c ·P(|cX| ≥ 2) = cP((−∞;−2

c ] ∪ [2
c ;∞)),

and the assertion follows with c = 2/r.

Definition 9.29 (Uniform continuity). We repeat a definition from calculus. A set M ⊆
C(Rd) is called uniformly continuous in x ∈ Rd if

sup
f∈M

|f(y)− f(x)| y→x−−−→ 0.

Remark 9.30 (Equivalent condition for sequences). If M = {f1, f2, . . . }, then the condition

lim sup
n→∞

|fn(y)− fn(x)| y→x−−−→ 0

equivalent.
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Lemma 9.31 (Uniform integrability and convergence). Let f1, f2, · · · ∈ C(Rd), so that
fn

n→∞−−−→ f pointwise for a function f : Rd → R. Then f is continuous in 0 iff (fn)n=1,2,... is
uniformly continuous in 0.

Proof. If (fn)n=1,2,... is uniformly continuous in 0, then

|f(t)− f(0)| = | lim
n→∞

(fn(t)− fn(0))| ≤ lim sup
n→∞

|fn(t)− fn(0)| t→0−−→ 0.

Conversely, if f is continuous in 0, then

lim sup
n→∞

|fn(t)−fn(0)| ≤ lim sup
n→∞

|fn(t)−f(t)|+|f(t)−f(0)|+|f(0)−fn(0) = |f(t)−f(0)| t→0−−→ 0.

Proposition 9.32 (Tightness and uniformity continuity). Let (Pi)i∈I be a family in P(Rd).
If (ψPi)i∈I is uniformly continuous in 0, then (Pi)i∈I is tight.

Proof. It suffices to show that ((πk)∗Pi)i∈I is tight for all projections π1, . . . , πd. Apparently,
ψ(πk)∗Pi(t) = ψPi(tek), if ek is the k-th unit vector. It is therefore sufficient to prove the
assertion in the case d = 1. Since ψPi(0) = 1 for all i ∈ I, we conclude from uniform
continuity that

sup
i∈I
|1− ψPi(t)|

t→0−−→ 0,

thus, see Remark 9.15,

sup
r>0

inf
i∈I

Pi([−r; r]) ≥ 1− inf
r>0

sup
i∈I

r

2

∫ 2/r

−2/r
(1− ψPi(t))dt

≥ 1− inf
r>0

r

2

∫ 2/r

−2/r
sup
i∈I
|1− ψPi(t)|dt

≥ 1− 2 inf
r>0

sup
t∈[0;2/r]

sup
i∈I
|1− ψPi(t)| = 1.

This shows the assertion.

Theorem 9.33 (Lévy’s continuity theorem). Let P1,P2, · · · ∈ P(Rd) and ψ : Rd → C, so
that ψPn(t)

n→∞−−−→ ψ(t) for all t ∈ Rd. If ψ is continuous in 0, then Pn
n→∞
===⇒ P for a

P ∈ P(Rd) with ψP = ψ.

Proof. Since ψPn converges pointwise to a function ψ which is continuous in 0, it follows
from Lemma 9.31 that (ψPn)n=1,2,... is uniformly continuous in 0. With Proposition 9.32 it
follows that (Pn)n=1,2,... is tight. Let (nk)k=1,2,... be a subsequence and P ∈ P(Rd) such that

Pnk
k→∞
===⇒ P. Since x 7→ eitx is a continuous, bounded function, it follows that ψPnk

(t)
k→∞−−−→

ψP(t) for all t ∈ Rd. On the other hand, since ψPn(t)
n→∞−−−→ ψ(t), and ψP = ψ follows. This

identifies ψ as a characteristic function of P and since this uniquely determines P, we find
Pn

n→∞
===⇒ P.
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Example 9.34 (Theorem of deMoivre-Laplace). Let Sn ∼ B(n, p). The Theorem of deMoivre-
Laplace states that

S∗n :=
Sn − np√
np(1− p)

n→∞
===⇒ N(0, 1). (9.10)

We now want to show this again with the help of characteristic functions, i.e. ψS∗n
n→∞−−−→

ψN(0,1) pointwise. To do this, we use Proposition 6.12.3 and write with q := 1 − p and
C1, C2, · · · ∈ C with lim supn→∞ |Cn| <∞

ψS∗n(t) = exp
(
− it

√
np

q

)
· ψB(n,p)

( t
√
npq

)
= exp

(
− it

√
np

q

)(
q + p exp

( it
√
npq

))n
=
(
q exp

(
− it

√
p

nq

)
+ p exp

(
it

√
q

np

))n
=
(

1− qit
√

p

nq
− q t

2

2

p

nq
+ pit

√
q

np
− pt

2

2

q

np
+

Cn

n3/2

)n
=
(

1− t2

2

1

n
+

Cn

n3/2

)n n→∞−−−→ e−
t2

2 = ψN(0,1)(t).

The result now follows from Theorem 9.33.

Lévy’s continuity theorem can also be formulated with Laplace transforms. We state the
theorem without proof:

Theorem 9.35 (Lévy’s continuity theorem for Laplace transforms). Let P1,P2, · · · ∈ P(Rd+)

and L : Rd → [0, 1], so that LPn(t)
n→∞−−−→ L (t) for all t ∈ Rd. If L is continuous in 0, then

Pn
n→∞
===⇒ P for a P ∈ P(Rd) with LP = L .

Example 9.36 (Convergence of the geometric to the exponential distribution). Let Xn ∼
µgeo(pn) be distributed and n · pn

n→∞−−−→ λ. Then

LXn/n(t) = P[e−tXn/n] =
∞∑
k=1

(1− pn)k−1pne
−tk/n

= pne
−t/n 1

1− (1− pn)e−t/n

=
λ

n(1− (1− λ/n)(1− t/n))
+ o(1/n)

n→∞−−−→ λ

λ+ t
.

Therefore, Xn
n

n→∞
===⇒ Y , where Y ∼ µexp(λ), since

Lexp(λ)(t) =

∫ ∞
0

λe−λae−tada =
λ

λ+ t
.
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10 Weak limit laws

We will now apply our knowledge of weak convergence and characteristic functions in special
situations. In Section 10.1 we are concerned with statements about when the sum of random
variables converges against a Poisson distributed random variable. In section 10.2 we will ap-
ply the central Lindeberg-Feller’s central limit theorem, which provides a characterization for
the weak convergence against a normal distribution. Section 10.3 finally deals with extensions
for the case of multidimensional random variables.

10.1 Poisson convergence

We already know the statement that B(n, pn) for n · pn
n→∞−−−→ λ converges weakly against

Poi(λ) for large n; see Example 10.1. In this section we generalize this statement; see Theo-
rem 10.5.

Example 10.1 (Poisson approximation of the binomial distribution). Let p1, p2, · · · ∈ [0, 1]
be such that n · pn

n→∞−−−→ λ. Then we already know from Basic probability that

B(n, pn)({k}) n→∞−−−→ Poi(λ)({k}).

In other words, this is a statement about weak convergence:

B(n, pn)
n→∞
===⇒ Poi(λ). (10.1)

Lévy’s theorem provides another way to prove this result. We recall the characteristic functions
of the binomial and Poisson distribution from Example 6.13. We write directly

ψB(n,pn)(t) =
(

1− pn
(
1− eit

))n
=
(

1− n · pn
n

(
1− eit

))n
n→∞−−−→ exp

(
− λ(1− eit)

)
= ψPoi(λ)(t).

In particular, the characteristic functions of the binomial distributions converge pointwise to a
function that is continuous in 0, namely the characteristic function of the Poisson distribution.
With Theorem 9.33 this imples (10.1).

In the following, we will see that the weak convergence to a Poisson distribution is even more
general. For this we will use use generating functions.

Remark 10.2 (Generating function). Consider a random variable X with values in Z+ and
define the generating function

z 7→ ϕX(z) := P[zX ] =

∞∑
k=0

zkP[X = k].

We note that for z ∈ [0, 1] this is related to the Laplace transform of X because (with z = e−t)

LX(t) = P[e−tX ] = P[zX ] = ϕX(z).

In particular, the following two properties of Laplace transforms carry ofer to generating
functions.
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1. Generating functions determine the distribution, see Proposition 9.25: The distribution
of X is uniquely determined by z 7→ ϕX(z) for z ∈ [0, 1].

2. Weak convergence equivalent to the convergence of the generating functions, see The-
orem 9.33: Let X1, X2, . . . be a sequence of random variables with values in Z+ such
that ϕXn(z)

n→∞−−−→ ϕ(z) for z ∈ [0, 1] for a function ϕ that is continuous from below in
1. Then Xn

n→∞
===⇒ X for a random variable X with generating function ϕ.

Sometimes generating functions are practical tools. By their definition, they are power series
with radius of convergence r ≥ 1. It is known that inside the radius of convergence, the
derivative and sum are interchanged. So if r > 1, for example, we write

ϕ′X(1) =
∞∑
k=0

kzk−1P(X = k)
∣∣∣
z=1

=
∞∑
k=0

kP(X = k) = P[X].

Analogous calculations for higher derivatives are also possible.

Definition 10.3 (Asymptotic negligibility). A triagonal family of random variables
(Xnj)n=1,2,...,n,j=1,...,mn with m1,m2, · · · ∈ N is asymptotically negligible, if the random vari-
ables Xn1, . . . , Xn,mn are independent for each n = 1, 2, . . . , and

sup
j=1,...,mn

P(|Xnj | > ε)
n→∞−−−→ 0 (10.2)

for all ε > 0. If Xij ≥ 0 for all i, j, then mn =∞ is also permitted.

Remark 10.4 (Equivalent formulation). 1. For a triagonal family of random variables
(Xnj)n=1,2,...,n,j=1,...,mn, (10.2) holds iff

sup
j=1,...,mn

E[|Xnj | ∧ 1]
n→∞−−−→ 0.

2. Let (Xnj)n=1,2,...,n,j=1,...,mn be a triangular of Z+-valued random variables. Then (10.2)
holds iff

inf
z∈[0,1]

inf
j=1,...,mn

ϕXnj (z) = inf
j=1,...,mn

ϕXnj (0) = inf
j=1,...,mn

P(|Xnj | = 0)
n→∞−−−→ 1. (10.3)

Theorem 10.5 (Poisson convergence). Let (Xnj)n=1,2,...,n,j=1,...,mn be a family of asymptoti-
cally negligible random variables with values in Z+ and X ∼ Poi(λ). Then,

mn∑
j=1

Xnj
n→∞
===⇒ X

iff

1.

mn∑
j=1

P(Xnj > 1)
n→∞−−−→ 0

2.

mn∑
j=1

P(Xnj = 1)
n→∞−−−→ λ.
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We prepare the proof with a lemma.

Lemma 10.6. Let (λnj)n=1,2,...,j=1,...,mn be a triangular family of asymptotically negligible,
non-negative constants and λ ∈ [0;∞]. Then,

mn∏
j=1

(1− λnj)
n→∞−−−→ e−λ ⇐⇒

mn∑
j=1

λnj
n→∞−−−→ λ

Proof. First note that log(1 − x) = −x + ε(x) for x > 0 with ε(x)/x
x→0−−−→ 0. Since

supj=1,...,mn λnj < 1 for large n, the left hand side is equivalent to

−λ = lim
n→∞

mn∑
j=1

log(1− λnj) = − lim
n→∞

mn∑
j=1

λnj
(
1− ε(λnj)

λnj

)
= − lim

n→∞

mn∑
j=1

λnj ,

as

sup
j=1,...,mn

ε(λnj)
λnj

n→∞−−−→ 0.

From this, the right hand side is immediate.

Proof of Theorem 10.5. We denote by ϕn,j the generating function of Xn,j . According to
Remark 10.2.2, the weak convergence in the theorem is equivalent to pointwise convergence
of
∏mn
j=1 ϕnj(z)

n→∞−−−→ e−λ(1−z), since

ϕX(z) =
∞∑
k=0

e−λ
λk

k!
zk = e−λ(1−z).

By Lemma 10.6 this is true iff

An(z) :=

mn∑
j=1

(1− ϕnj(z))
n→∞−−−→ λ(1− z), (10.4)

since the family (1 − ϕnj(z))n=1,2,...,j=1,...,mn for each z ∈ [0, 1] after (10.3) is asymptotically
negligible. We decompose An(z) = A1

n(z) +A2
n(z) with

A1
n(z) =

∞∑
k=1

(1− z)
mn∑
j=1

P(Xnj = k) = (1− z)
mn∑
j=1

P(Xnj > 0),

A2
n(z) =

∞∑
k=2

(z − zk)
mn∑
j=1

P(Xnj = k).

First, z(1− z) ≤ z − zk ≤ z for all k = 2, 3, . . . This means that

z(1− z)
mn∑
j=1

P(Xnj > 1) ≤ A2
n(z) ≤ z

mn∑
j=1

P(Xnj > 1). (10.5)

Let us now turn to the proof of the assertion.
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’⇒’: Let (10.4) hold. For z = 0 this means, since ϕnj(0) = P(Xnj = 0), that

mn∑
j=1

P(Xnj > 0) =

mn∑
j=1

(1− ϕnj(0))
n→∞−−−→ λ.

Therefore, A1
n(z)

n→∞−−−→ λ(1 − z) for z ∈ [0, 1]. But then A2
n(z)

n→∞−−−→ 0 must apply to
z ∈ [0, 1]. Because of (10.5) this means that 1. is valid. The statement 2. follows from this
by subtraction.

’⇐’: So 1. and 2. apply. It is clear that A2
n(z)

n→∞−−−→ 0 by (10.5). Then A1
n(z)

n→∞−−−→ (1− z)λ
by 2., i.e. (10.4) is shown.

Example 10.7 (Convergence of geometric distributions against Poisson). Let Xnj, j =
1, . . . , n, n = 1, 2, . . . be geometrically distributed with parameter pn (i.e. P(Xnj = k) =
(1 − pn)k−1pn, see Example 2.2.4) and Ynj = Xnj − 1. (Thus, Ynj is the number of failures
before the first success). We set Yn :=

∑n
j=1 Ynj, which is as distributed as the number of

failures before the nth success. If Y ∼ Poi(λ) and (1 − pn) · n n→∞−−−→ λ, then Yn
n→∞−−−→ Y .

Since

n∑
j=1

P(Ynj = 1) = n(1− pn)pn
n→∞−−−→ λ,

n∑
j=1

P(Ynj > 1) = n(1− pn)2 n→∞−−−→ 0,

Theorem 10.5 gives the result.

10.2 The Central Limit Theorem

The central limit theorem, Theorem 10.8, generalizes the Theorem of deMoivre Laplace. The
generalization consists of the fact that any sums of independent (not necessarily identically
distributed) random variables converge weakly to a normally distributed random variable if
they satisfy the Lindeberg condition (see 2. in Theorem 10.8).

Theorem 10.8 (Central limit theorem of Lindeberg-Feller). Let (Xnj)n=1,2,...,j=1,...,mn be
a family of random variables such that for n = 1, 2, . . . the random variables Xn1, . . . , Xnmn

are independent. Assume that

mn∑
j=1

E[Xnj ]
n→∞−−−→ µ,

mn∑
j=1

V[Xnj ]
n→∞−−−→ σ2

and X ∼ N(µ, σ2). Then the following statements are equivalent:

1.

mn∑
j=1

Xnj
n→∞
===⇒ X and sup

j=1,...,mn

V[Xnj ]
n→∞−−−→ 0,

2.

mn∑
j=1

E[(Xnj −E[Xnj ])
2; |Xnj −E[Xnj ]| > ε]

n→∞−−−→ 0 for all ε > 0.
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Before we prove the central limit theorem, we refer to the special case of identically distributed
random variables, which was already discussed in the lecture Basic Probability.

Corollary 10.9 (Central limit theorem for identically distributed random variables). Let
X1, X2, . . . be independent and identically distributed with E[X1] = µ,V[X1] = σ2 > 0. Let
Sn :=

∑n
k=1Xk and X ∼ N(0, 1). Then,

Sn − nµ√
nσ2

n→∞
===⇒ X.

Proof. Let mn = n and Xnj =
Xj−µ√
nσ2

. Then the family (Xnj)n=1,2,...,j=1,...,n fulfills the condi-

tions of Theorem 10.8 with µ = 0, σ2 = 1. Furthermore

n∑
j=1

E[X2
nj ; |Xnj | > ε] =

1

σ2
E[(X1 − µ)2; |X1 − µ| > ε

√
nσ2]

n→∞−−−→ 0

due to dominated convergence.

The Lindeberg condition is often not easy to verify. The stronger Lyapunoff condition is often
simpler.

Remark 10.10 (Lyapunoff condition). The family (Xnj)n=1,2,...,j=1,...,mn from Theorem 10.8
satisfies the Lyapunoff condition if for some δ > 0

mn∑
j=1

E
[
|Xnj −E[Xnj ]|2+δ

] n→∞−−−→ 0.

Under the conditions of Theorem 10.8, the Lyapunoff condition implies the Lindeberg condi-
tion. To see this, let wlog E[Xnj ] = 0. For all ε > 0,

x21|x|>ε ≤
|x|2+δ

εδ
1|x|>ε ≤

|x|2+δ

εδ
.

If the Lyapunoff condition applies, the Lindeberg condition follows from

mn∑
j=1

E[X2
nj ; |Xnj | > ε] ≤ 1

εδ

mn∑
j=1

E[|Xnj |2+δ]
n→∞−−−→ 0.

The proof of Theorem 10.8 is based on the clever use of the characteristic functions of the
random variable random variable Xnj and Taylor approximations. We prepare the proof of
the theorem with two lemmas.

Lemma 10.11 (An estimate). For complex numbers z1, . . . , zn, z
′
1, . . . , z

′
n with |zi| ≤ 1, |z′i| ≤

1 for i = 1, . . . , n,

∣∣∣ n∏
k=1

zk −
n∏
k=1

z′k

∣∣∣ ≤ n∑
k=1

|zk − z′k|. (10.6)
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Proof. For n = 1 the equation is obviously correct. Moreover, if (10.6) is valid for an n, then∣∣∣ n+1∏
k=1

zk −
n+1∏
k=1

z′k

∣∣∣ ≤ ∣∣∣zn+1

( n∏
k=1

zk −
n∏
k=1

z′k

)∣∣∣+
∣∣∣(zn+1 − z′n+1)

n∏
k=1

z′k

∣∣∣
≤

n∑
k=1

|zk − z′k|+ |zn+1 − z′n+1|.

From this the assertion follows.

Lemma 10.12 (Taylor approximation of the exponential function). Let t ∈ C and n ∈ Z+.
Then, ∣∣∣eit − n∑

k=0

(it)k

k!

∣∣∣ ≤ 2|t|n

n!
∧ |t|

n+1

(n+ 1)!
. (10.7)

Proof. Denote by hn(t) the difference on the left-hand side. For n = 0, (10.7) follows from

|h0(t)| =
∣∣∣ ∫ t

0
eisds

∣∣∣ ≤ ∫ t

0
|eis|ds = |t|

and
|h0(t)| ≤ |eit|+ 1 = 2.

In general, the following applies to t ∈ R, n ∈ N∣∣∣ ∫ t

0
hn(s)ds

∣∣∣ =
∣∣∣− i(eit − 1) + i

n∑
k=0

(it)k+1

(k + 1)!

∣∣∣ =
∣∣∣ieit − i n+1∑

k=0

(it)k

k!

∣∣∣ = |hn+1(t)|,

and (10.7) follows by induction.

Remark 10.13 (notation). In the following proof, we will use for functions a and b the
notation a > b iff there is a constant C with a ≤ Cb.

Proof of theorem 10.8. Wlog let E[Xnj ] = µ = 0 and σ2 = 1; otherwise we replace Xnj by
Xnj−E[Xnj ]√

σ2
. Let σ2

nj := V[Xnj ] and σ2
n :=

∑mn
j=1 σ

2
nj

n→∞−−−→ 1. Denote by ψnj the characteristic

function of Xnj .
2.⇒ 1. Since for every ε > 0

sup
j=1,...,mn

σ2
nj ≤ ε2 + sup

j=1,...,mn

E[X2
nj ; |Xnj | > ε] ≤ ε2 +

mn∑
j=1

E[X2
nj ; |Xnj | > ε]

n→∞−−−→ ε2, (10.8)

the second part of 1. is already shown.
Let (Znj)n=1,2,...,j=1,...,mn be independent random variables with Znj ∼ N(0, σ2

nj). This

means that Zn =
∑mn

j=1 Znj ∼ N(0, σ2
n). In particular, the following applies thus Zn

n→∞
===⇒ X,

which can be derived directly from the form of the characteristic functions of the normal
distribution, Example 6.13.3 can be read off. Let ψ̃nj be the characteristic function of Znj .
Then it suffices to show, see Theorem 9.33, that

nj∏
j=1

ψnj(t)−
mn∏
j=1

ψ̃nj(t)
n→∞−−−→ 0 (10.9)
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for all t. Using Lemma 10.11 and Lemma 10.12 we write∣∣∣ mn∏
j=1

ψnj(t)−
mn∏
j=1

ψ̃nj(t)
∣∣∣ ≤ mn∑

j=1

|ψnj(t)− ψ̃nj(t)|

≤
mn∑
j=1

|ψnj(t)− 1 + 1
2 t

2σ2
nj |+

mn∑
j=1

|ψ̃nj(t)− 1 + 1
2 t

2σ2
nj |

> 2

mn∑
j=1

E[X2
nj(1 ∧ |Xnj |) +

mn∑
j=1

|e−
1
2σ

2
njt

2

− 1 + 1
2 t

2σ2
nj |.

Furthermore,

mn∑
j=1

E[X2
nj(1 ∧ |Xnj |)] ≤ ε

mn∑
j=1

σ2
nj +

mn∑
j=1

E[X2
nj ; |Xnj | > ε]

n→∞−−−→ ε

and

mn∑
j=1

|e−
1
2σ

2
njt

2

− 1 + 1
2 t

2σ2
nj | >

mn∑
j=1

σ4
nj ≤ σ2

n sup
j=1,...,mn

σ2
nj

n→∞−−−→ 0

because of (10.8). This means (10.9) is already proven.
1.⇒ 2. According to the second part of 1. for each ε > 0 with the Chebyshev inequality

sup
j=1,...,mn

P[|Xnj | > ε] ≤ sup
j=1,...,mn

σ2
nj

ε2

n→∞−−−→ 0. (10.10)

With Lemma 10.12,

sup
j=1,...,mn

|ψnj(t)− 1| ≤ sup
j=1,...,mn

E[2 ∧ |t ·Xnj |] ≤ 2 sup
j=1,...,mn

P[|Xnj | > ε] + ε|t| n→∞−−−→ ε|t|.

In particular,
∑mn

j=1 logψnj(t) is defined for every t if n is large enough. From 1.

mn∑
j=1

logψnj(t)
n→∞−−−→ − t

2

2
. (10.11)

Furthermore, because ψ′nj(0) = iE[Xnj ] = 0, ψ′′nj(0) = −V[Xnj ] = −σ2
nj with the help of a

Taylor expansion of ψnj around 0

|ψnj(t)− 1| > σ2
nj |t|2

and ∣∣∣ mn∑
j=1

logψnj(t)−
mn∑
j=1

(ψnj(t)− 1)
∣∣∣ > mn∑

j=1

|ψnj(t)− 1|2

>
mn∑
j=1

(σ2
nj)

2|t|4 > |t|4 sup
j=1,...,mn

σ2
nj

n→∞−−−→ 0.

(10.12)
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Since the convergence of an imaginary series follows from the convergence of its real and
imaginary parts, we deduce from (10.11) and (10.12) because Re(ψnj(t)) = E[cos(tXnj)]

mn∑
j=1

E[cos(tXnj)− 1]
n→∞−−−→ − t

2

2

For ε > 0 is now because of 0 ≤ 1− cos(θ) ≤ θ2

2

0 ≤ lim sup
n→∞

mn∑
j=1

E[X2
nj ; |Xnj | > ε] = lim sup

n→∞
1−

mn∑
j=1

E[X2
nj ; |Xnj | ≤ ε]

≤ lim sup
n→∞

1− 2

t2

mn∑
j=1

E[1− cos(tXnj); |Xnj | ≤ ε]

= lim sup
n→∞

2

t2

mn∑
j=1

E[1− cos(tXnj); |Xnj | > ε]

≤ lim sup
n→∞

2

t2

mn∑
j=1

P[|Xnj | > ε]

≤ 2

ε2t2
lim sup
n→∞

mn∑
j=1

σnj =
2

ε2t2
.

(10.13)

Since t, ε > 0 were arbitrary, 2. is shown, if in the the last inequality chain t → ∞ is
considered.

10.3 Multidimensional limit laws

So far, we have only considered weak limit theorems (Theorems 10.5 and 10.8) for the case
of R–valued random variables. We now generalize this to Rd–valued random variables. In
particular, we give a variant of the multidimensional central limit theorem.

Definition 10.14 (Multidimensional normal distribution). Let µ ∈ Rd and C ∈ Rd×d be a
strictly positive definite symmetric matrix.4,5. The d-dimensional normal distribution with
expected value µ and covariance matrix C is the probability measure Nµ,C on Rd with density

fµ,C(x) =
1√

(2π)d det(C)
exp

(
− 1

2(x− µ)C−1(x− µ)>
)
.

Proposition 10.15 (Properties of the multidimensional normal distribution). Let µ ∈ Rd,
C = AA> ∈ Rd×d a strictly positive definite symmetric matrix and I the d-dimensional unit
matrix. The following are equivalent:

1. X ∼ Nµ,C ;

2. tX> ∼ Ntµ>,tCt> for each t ∈ Rd;
4We denote row vectors by x and column vectors by x>.
5Strictly positive definite means xCx> > 0 for all x ∈ Rd. From linear algebra it is known that for a strictly

positive definite matrix C there is always an invertible matrix A with C = AA>
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3. ψX(t) = eitµ
>
e−

1
2 tCt

>
for each t ∈ Rd.

In each of these cases

4. X
d
= AY + µ for Y ∼ N0,I ,

5. E[Xi] = µi for i = 1, . . . , d,

6. COV[Xi, Xj ] = Cij for i, j = 1, . . . , d.

Proof. First, let X ∼ Nµ,C . We first show 4.-6. The property 4. is an application of the
transformation theorem. For B ∈ B(Rd) and T : y 7→ Ay> + µ>,

N0,I(T
−1(B)) =

1√
(2π)d

∫
T−1(B)

e−
1
2yy
>
dy

y=A−1(x−µ)
=

1√
(2π)d

1

detA

∫
B

exp
(
− 1

2(x− µ)(A>)−1A−1(x− µ)>
)
dx

=
1√

(2π)d detC

∫
B

exp
(
− 1

2(x− µ)C−1(x− µ)>
)
dx

= Nµ,C(B).

5. follows from 4. with

E[Xi] = E[πi(AY + µ)] = πiµ = µi,

where πi is the projection onto the i-th coordinate.

6. also follows from 4. with

COV[Xi, Xj ] = E[(πiAY
>)(πjAY

>)] = E[(Ai·Y
>)(Aj·Y

>)] = E[Ai·Y
>Y A>j·]

= Ai·A
>
j· = (AA>)ij = Cij .

We now come to the equivalence of 1.-3.: ’1. ⇒ 2.’: Since X
d
= AY > + µ> as in 4. tX> =

tAY > + tµ> as a linear combination of (one-dimensional) normal distributions is normally
distributed again. The expected value is obviously tµ> and the variance

V[tX>] = E[(tAY >)2] = E[tAY >Y A>t>] = tAA>t> = tCt>.

’2.⇒ 3.’: Since tX> ∼ Ntµ>,tCt> , the statement follows from example 6.13.3.

’3.⇒ 1.’: This follows from Proposition 9.25.

Remark 10.16 (Special cases). 1. If C in Definition 10.14 is positive, but not strictly
positive definite (i.e. there is x ∈ Rd with x 6= 0 and xCx = 0), one cannot determine
Nµ,C by specifying the density as in the definition above. In this case Nµ,C is defined by
specifying the characteristic function, i.e. function, i.e. Nµ,C is the uniquely determined

distribution on Rd with ψNµ,C (t) = eitµe−
1
2 tCt

>
.

2. If Y ∼ N0,I and A is an orthogonal matrix, then also X := AY ∼ N0,I . This follows
from Proposition 10.15, if you write I = AA> and use 4. is used.
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Proposition 10.17 (Cramér-Wold Device). If X,X1, X2, . . . are random variables with val-
ues in Rd. Then Xn

n→∞
===⇒ X applies if and only if tXn

n→∞
===⇒ tX for all t ∈ Rd (where

(t, x) 7→ tx is the scalar product in Rd).

Proof. ’⇒’: Let t ∈ Rd and f ∈ Cb(R). Then f(t·) ∈ Cb(Rd). This means that E[f(tXn)]
n→∞−−−→

E[f(tX)], i.e. tXn
n→∞−−−→ tX.

’⇐’: Let πi be the projection onto the ith coordinate. Since (πiXn)n=1,2,... according to
Corollary 9.18 is tight for all i, you can see that (Xn)n=1,2,... is tight. Since {x 7→ eitx : t ∈ Rd}
is a separating class of functions, the assertion follows from E[eitXn ]

n→∞−−−→ E[eitX ] for all
t ∈ Rd and Proposition 9.27.

Theorem 10.18 (Multidimensional central limit theorem). Let X1, X2, . . . be indepen-
dent, identical distributed random variables with values in Rd with E[Xn] = µ ∈ Rd and
COV[Xn,i, Xn,j ] = Cij for i, j = 1, . . . , d and Sn =

∑n
i=1Xi. If X ∼ N0,C , then

Sn − nµ√
n

n→∞
===⇒ X.

Proof. We apply the one-dimensional central limit theorem, Corollary 10.9, to the indepen-
dent, identically distributed random variables tX1, tX2, . . . . This provides

t
Sn − nµ√

n

n→∞
===⇒ tX.

Since t was arbitrary, the statement follows from Proposition 10.17.

11 The conditional expectation

Let (Ω,A,P) be a probability space. We write L1 := L1(P) for the set of all real random
variables whose expected value exists. In this chapter we again use the notation E[·] for the
integral with respect to the probability measure P, as well as Lp := Lp(P).

11.1 Motivation

Define as in Elementary Probability for A,G ∈ A and P(G) > 0

P(A|G) :=
P(A ∩G)

P(G)

and analogously the conditional expectation

E[X|G] :=
E[X;G]

P(G)
.

Then P(A|G) = E[1A|G]. This relationship means that conditional expectations can be used
to calculate conditional probabilities. In particular, the notion of conditional expectation is
more general than the notion of conditional probability.

In this chapter, we will use the conditional expectation E[X|G] for a random variable
X and a σ-algebra G ⊆ F . Here, E[X|G] is a G-measurable random variable. As a simple

57



example, {G1, G2, . . . } ⊆ F is a partition of Ω with P(Gi) > 0 for i = 1, 2, . . . and G the
generated σ algebra. Then we set for X ∈ L1

E[X|G](ω) :=
∞∑
i=1

E[X|Gi] · 1Gi(ω). (11.1)

The following therefore applies: for ω ∈ Gi, the random variable E[X|G] is given by E[X|G](ω) =
E[X|Gi] = E[X;Gi]/P(Gi). In particular it is constant on Gi, i = 1, 2, . . . In other words,
E[X|G] is measurable with respect to G. The following also applies to J ⊆ N and A =⋃
j∈J Gj ∈ G

E[E[X|G];A] = E
[ ∞∑
i=1

E[X|Gi]1Gi1A
]

=
∑
j∈J

E
[
E[X|Gj ]1Gj

]
=
∑
j∈J

E[X|Gj ] ·P(Gj)

= E[X;A].

(11.2)

In particular, with J = N therefore E
[
E[X|F ]

]
= E[X]. The definition of the conditional

expectation (11.1) can be generalized with the help of the property (11.2) to any σ-algebras
G ⊆ F .

Example 11.1 (Binomial distribution with random success probability). Let X be uniformly
distributed on [0, 1], i.e. the distribution of X has density 1[0;1]. Given X = x let Y1, . . . , Yn be
a sequence of Bernoulli distributed random variables with probability of success x. Therefore,
Y = Y1 + · · ·+Yn is binomially distributed with n and x, i.e. Y counts the number of successes
in n independent experiments with probability of success x. Intuitively, it is clear what

P(Y = k|X) =

(
n

k

)
Xk(1−X)n−k

should mean. However, this has not yet been defined, since P(X = x) = 0. However, it is
worth noting that the right side is a σ(X)-measurable random variable (since it is a function
of X; see Lemma 6.2).

11.2 Definition and properties

We now formally define the conditional expectation E[X|G] for G ⊆ F . As mentioned above,
this is a G-measurable random variable whose expectations are as in (11.2) match those of X.

Theorem 11.2 (Existence and properties of the conditional expectation). Let G ⊆ F be a
σ-algebra. Then there is an almost surely unique linear operator E[.|G] : L1 → L1 such that
E[X|G] for all X ∈ L1 a G-measurable random variable with

1. E
[
E[X|G];A

]
= E[X;A] for all A ∈ G.

Further,

2. E[X|G] ≥ 0 if X ≥ 0.
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3. E
[
|E[X|G]|

]
≤ E[|X|].

4. If 0 ≤ Xn ↑ X for n→∞, then also E[Xn|G] ↑ E[X|G] in L1 if all expectations exist.

5. If X is a G-measurable function, then E[XY |G] = XE[Y |G] if all expectations exist.

6. E
[
XE[Y |G]

]
= E

[
E[X|G]Y

]
= E

[
E[X|G]E[Y |G]

]
if all expectations exist.

7. If H ⊆ G, then E
[
E[X|G]|H

]
= E[X|H].

8. If X is independent of G, then E[X|G] = E[X].

Proof. 1. in the case X ∈ L2: Let M be the closed linear subspace of L2, which consists of all
functions which, except for a zero set, correspond to a G-measurable function. According to
Proposition 4.10 there are almost surely unique functions Y ∈ M,Z ⊥ M with X = Y + Z.
We define E[X|G] := Y . This means that X − E[X|G] ⊥ M , i.e. E[X − E[X|G];A] = 0 for
A ∈ G, from which 1. for X ∈ L2 follows.
3. in the case X ∈ L2: Choose A := {E[X|G] ≥ 0}. According to 1.,

E[|E[X|G]|] = E[E[X|G];A]−E[E[X|G];Ac] = E[X;A]−E[X;Ac] ≤ E[|X|].

1. in the case X ∈ L1: If X ∈ L1 ⊃ L2, then choose X1, X2, · · · ∈ L2 with ||Xn−X||1
n→∞−−−→ 0

(such that |Xn| := |X| ∧ n), and define E[X|G] := limn→∞E[Xn|G]. This limit value exists
in L1, since because of 3.

E[|E[Xn|G]−E[Xm|G]|] = E[|E[Xn −Xm|G]|] ≤ E[|Xn −Xm|]
n,m→∞−−−−−→ 0

the sequence (E[Xn|G])n=1,2,... is a Cauchy sequence and L1 is complete. Furthermore, this

means that ||E[Xn|G]−E[X|G]||1
n→∞−−−→ 0. Furthermore, for A ∈ G

|E[X −E[X|G];A]| ≤ E[|X1A −Xn1A|]
+ |E[Xn −E[Xn|G];A]]|
+ E[|E[Xn|G]1A −E[X|G]1A|]
n→∞−−−→ 0

due to dominated convergence and 1. follows in the case X ∈ L1.
3. in the case X ∈ L1. Here, too, you can see through an approximation argument if
X1, X2, · · · ∈ L2 with Xn

n→∞−−−→L1 X,

E[|E[X|G]|] = lim
n→∞

E[|E[Xn|G]|] ≤ lim
n→∞

E[|Xn|] = E[|X|],

since, due to the inverse triangle inequality, approximately,

E[||E[Xn|G]| − |E[X|G]||] ≤ E[|E[X|G]−E[Xn|G]|] n→∞−−−→ 0.

.
2. set A = {E[X|G] ≤ 0} and thus

0 ≥ E[E[X|G];A] = E[X;A] ≥ 0,

thus because of E[X|G]1A ≤ 0 also E[X|G]1A = 0 is almost sure.
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4. Due to monotone convergence, ||Xn −X||1
n→∞−−−→ 0, i.e. with 3.,

E[|E[Xn|G]−E[X|G]|] = E[|E[Xn −X|G]|] ≤ E[|Xn −X|]
n→∞−−−→ 0.

6. in the case X,Y ∈ L2. According to the definition of the conditional expectation,
E[X|G],E[Y |G] ∈M if M is the linear subspace of L2 which contains functions which, apart
from a zero set with a G-measurable function. Furthermore X −E[X|G] ⊥M . Thus

E[(X −E[X|G])E[Y |G]] = 0.

6. in the case X,Y ∈ L1. Choose X1, Y1, X2, Y2, · · · ∈ L2 with Xn ↑ X,Yn ↑ Y . Because of
4. and dominated convergence, if all expectations exist,

E[(X −E[X|G])E[Y |G]] = lim
n→∞

E[(Xn −E[Xn|G])E[Yn|G]] = 0.

5. because of 1. is E[X|G]1A = X1A for A ∈ G, almost surely. This means that

E[XY ;A] = E[XE[Y |G];A]

after 6. from this follows after 1. already E[XY |G] = XE[Y |G].
Since H ⊆ G, for A ∈ H,

E[E[X|G];A] = E[X;A] = E[E[X|H];A]

after 1. From here follows but E[E[X|G]|H] = E[X|H].
8. Certainly, E[X] is measurable with respect to G. For A ∈ G,

E[E[X|G];A] = E[X;A] = E[X]E[1A] = E
[
E[X];A

]
and thus E[X|G] = E[X].

Remark 11.3 (Interpretation and alternative proof). 1. Let X ∈ L2. As the proof of 1.
in Theorem 11.2 shows, X − E[X|G] is perpendicular to the linear subspace of all G-
measurable functions. In particular E[X|G] is the G-measurable random variable that
(in terms of the L2 norm) is closest to the random variable X comes closest. Therefore,
we can say that E[X|G] is the best estimate of X if information from the σ algebra G is
available.

2. The almost surely unambiguous existence of the conditional expectation with the property
1. in Theorem 11.2 can be proved differently than above with the help of the theorem of
Radon-Nikodým (Corollary 4.17):

Let X ≥ 0 first. Set P̃ := P|G, the restriction of P to G, and µ(.) := Ẽ[X; .] a finite
measure. Then obviously µ� P̃ applies. The theorem of Radon-Nikodým ensures that
µ is a density with respect to P̃, i.e. there is a G-measurable random variable Z with

E[X;A] = Ẽ[X;A] = µ(A) = Ẽ[Z;A] = E[Z;A]

for all A ∈ G. Thus Z fulfills the properties of 1. from theorem 11.2. The general case
(i.e. X can also take can also assume negative values) then follows with the decompo-
sition X = X+ −X−.

To prove the (almost sure) uniqueness of the conditional expectation, let Z ′ be another
G-measurable random variable with random variable with E[Z ′;A] = E[X;A] for all
A ∈ G. Then B := {Z ′ − E[X|G] > 0} ∈ G and E[E[X|G]− Z ′;B] = E[X −X;B] = 0
and likewise E[E[X|G]−Z ′;Bc] = 0. This therefore means Z ′ = E[X|G], almost surely.
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Proposition 11.4 (Jensen’s inequality for conditional expectations). Let I be an open in-
terval, G ⊆ A and X ∈ L1 with values in I and ϕ : I → R is convex. Then,

E[ϕ(X)|G] ≥ ϕ(E[X|G]).

Proof. The proof is analogous to that of Jensen’s inequality in the unconditional case, Propo-
sition 6.6: Since I is open, E[X|G] ∈ I, almost surely. We recall the definition of λ in (6.4).
Further, as in (6.5) for x ∈ I,

ϕ(x) ≥ ϕ(E[X|G]) + λ(E[X|G])(x−E[X|G])

and thus

E[ϕ(X)|G] ≥ E[ϕ(E[X|G])|G] + E[λ(E[X|G]) · (X −E[X|G])|G]

= ϕ
(
E[X|G]

)
.

Lemma 11.5 (Uniform integrability and conditional expectation). Let X ∈ L1. Then the
family (E[X|G])G⊆A is uniformly integrable.

Proof. Since {X} is uniformly integrable, according to Lemma 7.9 there is a monotonically

increasing convex function ϕ : R+ → R+ with ϕ(x)
x

x→∞−−−→ ∞ and E[ϕ(|X|)] < ∞. With
Theorem 11.2.3, we obtain

sup
F⊆A

E[ϕ(|E[X|F ]|)] ≤ E[ϕ(|X|)] <∞.

This means that {E[X|F ] : F ⊆ A σ-algebra} is uniformly integrable, again according to
Lemma 7.9.

Theorem 11.6 (Dominated and monotone convergence for conditional expectations). Let
G ⊆ F and X1, X2, · · · ∈ L1. Assume one of the following:

1. Let X ∈ L1 such that Xn ↑ X, almost surely.

2. If Y ∈ L1 such that |Xn| ≤ |Y | for all n, and Xn
n→∞−−−→ X almost surely.

Then
E[Xn|G]

n→∞−−−→ E[X|G]

almost surely and in L1.

Proof. For the L1-convergence one has in both cases with Theorem 11.2.3

E
[∣∣E[Xn|G]−E[X|G]

∣∣] = E
[∣∣E[Xn −X|G]

∣∣]
≤ E[|Xn −X|]

n→∞−−−→ 0.

We divide the almost sure convergence into the two cases: in case 1. it is clear from Theo-
rem 11.2.2 that E[Xn|G] grows monotonically. Furthermore, for A ∈ F with the theorem of
monotone convergence

E
[

sup
n

E[Xn|G];A
]

= sup
n

E
[
E[Xn|G];A

]
= sup

n
E[Xn;A] = E[sup

n
Xn;A] = E[X;A].
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However, this shows that supn E[Xn|G] = E[X|G], almost surely. In case 2. we set

Yn := sup
k≥n

Xk ↓ lim sup
n

Xn = X almost surely,

Zn := inf
k≥n

Xk ↑ lim inf
n

Xn = X almost surely.

Thus −Y ≤ Zn ≤ Xn ≤ Yn ≤ Y , i.e. in particular Y1, Z1, Y2, Z2, · · · ∈ L1, so according to 1.,

E[X|G] = lim
n→∞

E[Zn|G] ≤ lim
n→∞

E[Xn|G] ≤ lim
n→∞

E[Yn|G] = E[X|G],

almost surely. In particular, E[Xn|G]
n→∞−−−→ E[X|G], almost surely.

11.3 The case G = σ(X)

In the case G = σ(X), E[Y |X] := E[Y |σ(X)] is the expectation of Y , given that the random
variable X is fixed. This is a function of X, as Proposition 11.7 shows.

Proposition 11.7 (Conditioning on a random variable). Let (Ω′,F ′) be a measurable space,
X a random variable with values in Ω′ and Y ∈ L1. Then there exists a F ′/B(R)-measurable
mapping ϕ : Ω′ → R with E[Y |X] = ϕ(X).

Proof. Clear according to Lemma 6.2.

Example 11.8 (Random success probability). Let us consider the question posed in Ex-
ample 11.1 regarding the existence of the conditional probability P(Y = k|X), where X is
uniform on [0, 1] and X is independently binomially distributed with n and X. We now show
(the intuitive equation)

P(Y = k|X) =

(
n

k

)
Xk(1−X)n−k. (11.3)

Let A = {X ∈ I} for I ∈ B([0, 1]), i.e. A is a σ(X)-measurable quantity. Then,

E[1Y=k;A] = P(Y = k,X ∈ I) =

∫
I

(
n

k

)
xk(1− x)n−kdx = E

[(n
k

)
Xk(1−X)n−k;A

]
However, this means that (11.3) is true.

Example 11.9 (Sums of independent identically distributed random variables). Let
X1, X2, . . . be a sequence of independent, identically distributed random variables, µ = E[X1]
and Sn := X1 + · · ·+Xn. Then

E[Sn|X1] = E[X1|X1] + E[X2 + · · ·+Xn|X1] = X1 + (n− 1)µ,

E[X1|Sn] = 1
n

n∑
i=1

E[Xi|Sn] = 1
nE[Sn|Sn] = 1

nSn.

In the second calculation, for example, for X = Sn and Y = X1 the function ϕ from Propo-
sition 11.7 is given by ϕ(x) = 1

nx.
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Example 11.10 (Buffon’s needle problem). On a plane, vertical lines are at a horizontal
distance of 1. Needles, also of length 1, are thrown onto the plane; see Figure 2. Let us
consider a needle. We set

Z :=

{
1, if the needle intersects a straight line

0, otherwise
.

The center of the needle X is away from the left straight line and the (extension of the)

x

θθ

Figure 2: Sketch of Buffon’s needle problem

needle makes an angle Θ with the straight line. This means that X is uniform on [0; 1], Θ is
uniformly independent on [0; π2 ] and

P(Z = 1|Θ) = P(X ≤ 1
2 sin(Θ) or X ≥ 1− 1

2 sin(Θ)Theta) = sin(Θ).

This means that

P(Z = 1) = E[P(Z = 1|Θ)] = E[sin(Θ)] =
2

π

∫ π/2

0
(sin(θ)dθ =

2

π
.

This can be interpreted as follows: if you want to determine by simulation (i.e. by a Monte
Carlo method) to find the numerical value of π you can simulate Buffon’s needles. Since each
individual needle has the probability 2

π of hitting a vertical line, is approximately

π ≈ 2

proportion of needles that hit a vertical line

according to the law of large numbers.

Example 11.11 (Search in lists). Consider n names of people who come from r different
cities. Each person comes (independently of any other) with probability pj from city j, j =
1, . . . , r. The names (together with other personal data) are entered in r different (unordered)
lists. If you now want a (random, according to the probabilities p1, . . . , pr) person in the list,
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first determine the list, you first determine the city j from which the person comes from and
then search the list j for the person’s name. Until you realize that the name does not appear
in the list you have to compare the person to be found with names on the list. The question
now is: How many times on average do you have to compare the name of the person to be
found with names on the list without success until you finally know that the person is not on
the list?

We first define a few random variables:
J : number of the city from which the person to be searched comes
L : number of unsuccessful comparisons until the name of the person to be found is found
Zj : number of people from city j
and Z = (Z1, . . . , Zr). In order to determine E[L], we first determine

P(L = a|J, Z) = 1ZJ=a

and thus

P(L = a|Z) =

r∑
j=1

pj1Zj=a.

From this we conclude

E[L|Z] =
∞∑
a=1

r∑
j=1

a · pj · 1Zj=a =
r∑
j=1

pjZJ

and therefore

E[L] = E[E[L|Z]] =

r∑
j=1

pjE[Zj ] = n ·
r∑
j=1

p2
j .

Example 11.12 (Mixture of Poisson distributions). Let λ > 0 and λ ∼ exp(λ) and for a
given λ let X ∼ Poi(λ). We now show that X + 1 ∼ geo(1/(1 + λ)).
Because: According of Proposition 9.25, the distribution is determined by the characteristic
function. First of all, the characteristic function of Y ∼ geo(p)

t 7→ E[eitY ] =
∞∑
k=0

(1− p)k−1peitk = peit
∞∑
k=0

(
(1− p)eit

)k
=

peit

1− (1− p)eit
=

p
1−pe

it

1
1−p − eit

.

We calculate with Example 6.13.2 for t ∈ R

E[eit(X+1)] = eitE
[
E[eitX |Λ]

]
= eitE

[
e−(1−eit)Λ] =

λeit

1 + λ− eit
,

so that the assertion with λ = p/(1− p) or p = 1/(1 + λ) follows.

11.4 Conditional independence

In Section 8, we have already learned about the independence of σ algebras (or of random
variables). Conditional expectations and independence are closely related, as the next lemma
shows.

Lemma 11.13 (Conditional probability and independence). The σ-algebras G,H ⊆ F are
independent if and only if P(G|H) = P(G) for all G ∈ G.
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Proof. ’⇒’: Let G and H be independent. Then, for G ∈ G, H ∈ H,

E[P(G), H] = P(G ∩H) = E[P(G|H), H].

This means that P(G|H) = P(G) according to the definition of the conditional expectation.
’⇐’: So if P(G|H) = P(G), it follows for H ∈ H

P(G ∩H) = E[1G, H] = E[P(G|H), H] = E[P(G), H] = P(G) ·P(H).

The concept of independence is often also required in a conditional form. Let’s start with an
important example.

Example 11.14 (Markov chains). Let E be a countable set. A Markov chain X = (Xt)t=0,1,2,...

is a family of E-valued random variables such that for all A ⊆ E

P(Xt+1 ∈ A|X0, . . . , Xt) = P(Xt+1 ∈ A|Xt). (11.4)

This means: if you want to know the distribution of Xt+1, and the information of the random
variable Xt is already available, the information about the random variables X0, . . . , Xt−1 does
not provide any additional information. One also says:

Given Xt, Xt+1 is independent of X0, . . . , Xt−1.

Or in terms of σ-algebras:

Given σ(Xt), σ(Xt+1) is independent of σ(X0, . . . , Xt−1).

One can also say in this case: given the present (that is the state at time t, Xt) the future
(i.e. Xt+1) is independent of the past (these are the states X0, . . . , Xt−1).

A simple example of a Markov chain is the one-dimensional random walk: let Y1, Y2, . . .
be independent and identically distributed such that P(Y1 = 1) = p and P(Y1 = −1) = q for
a p ∈ [0, 1]. Further, let X0 = 0 and Xt = Y1 + · · · + Yt. Then (Xt)t≥0 is a Markov chain,
because

P(Xt+1 = k|X0, . . . , Xt) =

{
p, k = Xt + 1,

q, k = Xt − 1.

In particular, the right-hand side defines an Xt-measurable random variable and is therefore
equal to P(Xt+1 = k|Xt).

Definition 11.15 (Conditional independence). Let G ⊆ F . A family (Ci)i∈I of set systems
with Ci ⊆ F is called independently given G if

P
( ⋂
j∈J

Aj |G
)

=
∏
j∈J

P(Aj |G) (11.5)

applies to all J ⊆f I and Aj ∈ Cj , j ∈ J .
Similarly, conditional independence is de fined for random variables. Let Y be a random

variable. A family (Xi)i∈I of random variables is independent given G (or Y ) if (σ(Xi))i∈I is
independent given G (resp. σ(Y )).
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Example 11.16 (Simple cases). Let G ⊆ F be a σ-algebra and (Ci)i∈I a family of set systems.

1. If G = F , then (Ci)i∈I is always independent given G.

2. If G = {∅,Ω}, then (Ci)i∈I is independent given G if and only if (Ci)i∈I are independent.

Example 11.17 (Binomial distribution with random success probability). We look again
at the coin toss with random success probability from Example 11.1 and 11.8. Here X was
uniformly distributed on [0, 1] and, given X, Y1, . . . , Yn are Bernoulli distributed. Now it
should hold that (Y1, . . . , Yn) are independent given X. Just like in Example 11.8, we calculate
for A = {X ∈ I} and for some I ∈ B([0, 1]) and y1, . . . , yn ∈ {0, 1} and k := y1 + · · ·+ yn

E[1Y1=y1,...,Yn=yn , A] = P(Y1 = y1, . . . , Yn = yn, X ∈ I)

=

∫
I
xy1+···+yn(1− x)n−y1−···−yndx = E

[
Xk(1−X)n−k, A

]
,

so
P(Y1 = y1, . . . , Yn = yn|X) = Xk(1−X)n−k.

Analogously, one shows for i = 1, . . . , n

P(Yi = y1|X) = Xyi(1−X)1−yi .

From this follows

P(Y1 = y1, . . . , Yn = yn|X) =
n∏
i=1

P(Yi = yi|X),

so (Y1, . . . , Yn) are independent given X.

Lemma 11.13 also exists in the following version, in which the independence is replaced by
conditional independence.

Proposition 11.18 (Conditional probability and conditional independence). Let K ⊆ F be
a σ-algebra. The σ-algebras G,H ⊆ F are independent given K if and only if P(G|σ(H,K)) =
P(G|K) for all G ∈ G.

Proof. ’⇒’: If G and H are independent given K, then for G ∈ G, H ∈ H,K ∈ K

E[P(G|K), H ∩K] = E[P(G|K)P(H|K),K] = E[P(G ∩H|K),K] = P(G ∩H ∩K).

Now we can show that the set system

D := {A ∈ σ(H,K) : E[P(G|K), A] = P(G ∩A)}

is a ∩-stable Dynkin system with D ⊇ H,K. Now it follows from Theorem 1.13 that D =
σ(H,K), from which P(G|σ(H,K)) = P(G|K) follows.
’⇐’: So if P(G|σ(H,K)) = P(G|K), it follows for H ∈ H

P(G ∩H|K) = E[P(G|σ(H,K)), H|K] = E[P(G|K), H|K] = P(G|K) ·P(H|K).

Example 11.19 (Markov chains). Let’s look again at the Markov chain (Xt)t=0,1,2,... from
Example 11.14. For fixed t we set G = σ(Xt+1),H = σ(X0, . . . ., Xt−1),K = σ(Xt). The
Markov property (11.4) now says for G ∈ G, H ∈ H,K ∈ K that P(G|σ(H,K)) = P(G|K).
According to Proposition 11.18 this means that Xt+1 and (X0, . . . , Xt−1) are independent
given Xt.
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11.5 Regular version of the conditional distribution

We have seen in Section 11.1 how the conditional probability P(A|G) := E[1A|G] for a σ-
algebra G ⊆ F is defined. However, this does not mean that we have a probability measure
A 7→ P(A|G); see the next remark. In most cases, however, one can define such a (random,
G-measurable) measure, the (or better: a) regular version of the conditional distribution.

Remark 11.20 (Conditional probabilities and conditional distributions). Let G ⊆ F be a
σ-algebra and A1, A2, · · · ∈ F with Ai ∩Aj = ∅. Then, for B ∈ G

E
[
P
( ∞⋃
n=1

An|G
)

;B
]

= E
[
E[1⋃∞

n=1 An
|G];B

]
= E[1⋃∞

n=1 An
;B]

= E
[ ∞∑
n=1

1An ;B
]

=

∞∑
n=1

E[1An ;B]

=
∞∑
n=1

E
[
P(An|G);B

]
= E

[ ∞∑
n=1

P(An|G);B
]

and therefore

P
( ∞⋃
n=1

An|G
)

=
∞∑
n=1

P(An|G) (11.6)

P-almost surely. This means that there is a zero set (depending on A1, A2, . . . ) so that (11.6)
applies to all ω outside this zero set. However, since there are uncountably many sequences
A1, A2, · · · ∈ F , there does not have to be a zero set N , so that (11.6) holds for every choice
of A1, A2, · · · ∈ F outside of N . However, if there is such an N , we will say that a regular
version of the conditional distribution of P given G exists. We will give conditions for this
in Theorem 11.23.

We recall the concept of the stochastic kernel; see Definition 5.9.

Definition 11.21 (Regular version of the conditional distribution). Let (Ω′,F ′) be a measur-
able space, Y an Ω′-valued measurable random variable and G ⊆ F . A stochastic kernel κY,G
from (Ω,G) to (Ω′,F ′) is called regular version of the conditional distribution of Y , given G,
if

κY,G(ω,B) = P(Y ∈ B|G)(ω)

for P-almost all ω and every B ∈ F ′.

Remark 11.22 (Distribution conditional on a random variable). 1. For the stochastic ker-
nel from Definition 11.21 it is sufficient to use property (ii) from Definition 5.9 only
for a ∩-stable generator C of F . This is because

D := {A′ ∈ F ′ : ω 7→ κ(ω,A′) is A-measurable}

is alwaysa Dynkin system. Thus, according to Theorem 1.13, D = σ(C).

2. Let G = σ(X) for a random variable X in Definition 11.21.2. Then, if κY,σ(X) is a
regular version of the conditional expectation of Y given σ(X), then ω 7→ κY,σ(X)(ω,A

′)
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σ(X)-is measurable for all A′ ∈ A′. This means that, according to Proposition 11.7,
there is a σ(X)/B([0; 1])-measurable map ϕA′ : Ω→ [0; 1] with ϕA′ ◦X = κY,σ(X)(., A

′).
We then set

κY,X(x,A′) := ϕA′(x)

and say κY,X is the regular version of the conditional distribution of Y given X.

Theorem 11.23 (Existence of the regular version of the conditional distribution). Let (E, r)
be a complete and separable metric space space equipped with Borel’s σ-algebra, G ⊆ F a
σ-algebra and Y a (according to F measurable) random variable with values in E. Then there
exists a regular version of the conditional distribution of Y given G.

Before we can prove the theorem, we need a property (Proposition 11.25) over complete,
separable metric spaces.

Definition 11.24 (Borel space). 1. Two metric spaces (Ω,F) and (Ω′,F ′) are called iso-
morphic if there is a bijective, according to F/F ′-measurable mapping ϕ : Ω→ Ω′ exists
such that ϕ−1 is F ′/F-measurable.

2. A measurable space (Ω,F) is called Borel space if there is a Borel set A ∈ B(R) exists
such that (Ω,F) and (A,B(A)) are isomorphic.

Proposition 11.25 (Polish and Borel spaces). Every complete and separable metric space
(E, r), equipped with the Borel’s σ-algebra, is a Borel space.

Proof. See, for example, Dudley, Real analysis and probability, Theorem 13.1.1.

Proof of theorem 11.23. We prove the theorem under the weaker condition that E, equipped
with the Borel σ-algebra, is a Borel space. Wlog, we can therefore assume that E ∈ B(R)
is. The strategy of our proof consists of finding a distribution function of the conditional
distribution by first fixing it for rational values before extending it to all real numbers.

For r ∈ Q, let Fr be a version of P(Y ≤ r|G) (i.e. Fr = P(Y ≤ r|G) almost surely. Let
A ∈ F be such that for ω ∈ A the mapping r 7→ Fr(ω) is non-increasing with limits 1 and
0 at ±∞. Since A is given by countably many conditions, all of which are almost certainly
fulfilled, P(A) = 1. Now define for x ∈ R

Fx(ω) := 1A(ω) · inf
r>x

Fr(ω) + 1Ac(ω) · 1x≥0.

Thus, x 7→ Fx(ω) is a distribution function for all ω. Define

κ(ω, .) := measure defined by x 7→ Fx(ω).

For r ∈ Q and B = (−∞; r],

ω 7→ κ(ω,B) = 1A(ω) ·P(Y ≤ r|G)(ω) + 1Ac(ω) · 1r≥0 (11.7)

is F-measurable. Since {(−∞; r] : r ∈ Q} is a ∩-stable generator of B(R), according to
Remark 11.22 the mapping ω 7→ κ(ω,B) is measurable for all B ∈ F . Therefore, κ is a
stochastic kernel.

It remains to show that κ is a regular version of the conditional distribution. Since (11.7)
is based on a ∩-stable generator of E , for ω ∈ A

κ(ω,B) = P(Y ∈ B|G)(ω).

In other words, κ is a regular version of the conditional distribution.
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